Because Motion Matters™

This is a Discontinued Product

Contact Kollmorgen Customer Support at

1-540-633-3545 or email us at support.kollmorgen.com
If assistance is required.

PRICE: $50.00

SLO-SYN® MODEL MX2000
PROGRAMMABLE MULTI-AXIS
MOTION CONTROLLER
(with VERSION 4.0 SOFTWARE)
INSTALLATION
AND
OPERATION
MANUAL

Superior

Electric

ENGINEERING CHANGES

Superior Electric reserves the right to make engineering refinements on all its products. Such

refinements may affect information given in instructions, Therefore, USE ONLY THE
INSTRUCTIONS THAT ARE PACKED WITH THE PRODUCT.

RECORD OF REVISION

Revision Date Description
A 4/30/99 Initial Release
B 6/08/00 Revise corporate identity

The MX2000-2 and MX2000-6 are UL recognized components, File No. E146240.

© Superior Electric 2000

Table of Contents

SECTION & TITLE PAGE
1 —Important Safety Information 1
1.1 — Cautions and Warnings 2
2 —Introduction 5
2.1 —How To Use This Manual 6
2.2 —What you need to know first 6
2.3 —Conventions Used In This Manua 6
2.4 — Applications Assistance 7
3 —Quick Start Installation Guide 9
3.1 — Switch and Jumper Settings 10
3.1.1 Seria Communications Baud Rate switches 10
3.1.2 HOST RS232/485 10
3.1.3 Auxiliary RS232/R$485 10
3.1.4 Unit ID switches 10
3.1.5 32 bit DSP board Inputs 11
3.1.6 Dua Axis Inputs settings 11
3.1.7 Digital 1/O settings 11
3.2 — Step-by-step Start-up Procedure 11
3.2.1 Bench Set Up 11
3.2.2 Installation into Mechanical System 13
3.3 - Instalation 13
3.4 —Wiring the Controller for Operation 14
4 — Overview Of System Operation 15
4.1 — Features and Functions 16
4.2 — General Overview 17
4.2.1 Serial Communications 17
4.2.2 Shutdown input & Program Select Inputs 17
4.2.3 Expansion |/O — BCD Port 17
4.2.4 Digita 1/0 17
4.2.5 Stepper Interface 17
4.2.6 Analog Drive 17
4.2.7 Encoder Interface 17
4.2.8 Axis1/O and Analog I/O 18
4.3 — Use of the Serial Ports Host and Auxiliary 19
5 — Specifications and Equivalent Circuits 21
5.1 - Mechanical Specifications 22
5.2 - Environment Specifications 22
5.3 - Input Power 22
5.4 - MX 2000 System 22
5.5 - Dua Axis Interface Card 24
5.5.1 Stepper Drive Connections 24
5.5.2 Servo Drive Connections 24
5.5.3 Encoder Connectors 25
5.5.4 Axis I/O Connectors 26
5.5.5 Stepper Drive Connectors 27
5.5.6 Analog Connector 28
5.5.7 Dua AxisInterface Card 29

Table of Contents

SECTION & TITLE PAGE

5.6 — 32 bit DSP Controller Card 30
5.6.1 Auxiliary Serial Port 30
5.6.2 Host Seria Port 31
5.6.3 DSP Card Inputs 33

5.7 — Expansion |/O Board 35
5.7.1 EXIN/EXOUT assignments 35
5.7.2 BCD assignments 36

5.8 —Digita 1/0 Board 40
5.8.1 Input Connector 40
5.8.2 Output Connector 41
5.8.3 Internal Power Supply 42

5.9 -MX2 and MX6 Power Supply Board 44
5.9.1 AC Input 44
5.9.2 EXIN/EXOUT assignments 44
5.9.3 BCD assignments 44

5.10 - MX2A and MX6A Power Supply Board 45
5.10.1 AC Input 45
5.10.2 Input Connector 45
5.10.3 Output Connector 45
5.10.4 Interna Power Supply 45

5.11 —MX8 Power Supply Board 46
5.11.1 AC Input 46

5.12—-MX2 Outline 47

5.13—-MX6 Outline 48

5.14 —MX8 Outline 48

5.15-MX & Servo Amplifier Connection Diagram 49

6 —Motion Controller Programming Interface 51

6.1 — Programming 52

6.1.1 Genera Description of Programming 52
6.1.1.1 What is Programming? 52
6.1.1.2 What'sin a Program 52
6.1.1.3 How isthe Controller Programmed? 52

6.1.2 What are “Host Commands’? 53

6.1.3 Memory Types and Usage 53

6.1.4 References 53

6.2 — Multi-Tasking Operations 53
6.2.1 Multi-Tasking timing 54

6.3 — Motion Controller Programming Interface (MCPI) 54
6.3.1 Software Installation 54
6.3.2 Starting the MCPI Environment 54

6.3.2.1 The MCPI opening screen 55
6.3.3 Setting communication parameters 55
6.3.4 Creating a new project 55
6.3.5 The Task Editor 56

6.3.5.1 Document settings 57

6.3.5.2 Editor Tool Box 57
6.3.6 Terminal Emulation 58

6.3.6.1 Configuring Buttons 58

6.3.6.2 Configuring Fonts & colors 58

i Table of Contents

SECTION & TITLE

6.3.7 Configuration & Setup Folders
6.3.7.1 Controller type Folder
6.3.7.2 System Folder
6.3.7.3 Profile Folder
6.3.7.4 Analog Inputs Folder
6.3.7.5 Encoder Folder
6.3.7.6 Open Loop Stepper Folder
6.3.7.7 Closed Loop Stepper Folder
6.3.7.8 Servo Drive Folder
6.3.7.9 Travel Limit Folder

6.3.7.10 Mechanical Home & Mark Registration Folder

6.3.7.11 1/0O Folder
6.3.8 Preparing User Project for Execution
6.3.8.1 Project Source Code
6.3.8.2 Compiling a Project
6.3.8.3 Downloading a Project
6.3.8.4 Uploading Source Code
6.3.9 Downloading an Operating System
6.3.10 Other Menus
6.3.10.1 Project Menu
6.3.10.2 Utility Menu
6.3.10.3 Window Menu
6.3.10.4 Help Menu
6.3.11 Project Command Buttons

7 — Softwar e Reference Guide

7.1 — SEBASIC Conventions
7.1.1 Arithmetic Operators
7.1.2 Logica Operators
7.1.3 Relationship Operators
7.1.4 Basic Data Types
7.1.5 Case Sensitivity in Statements & Commands
7.1.6 Program Limits
7.1.7 Numeric Formats and Range
7.1.8 Program Comments
7.1.9 Axis Related Command Syntax
7.1.9.1 Definitions Used in the Syntax Description
7.1.9.2 Syntax Descriptions
7.2 — Programming Command Grouped by Functions
7.3 — Programming Command Summary (al phabetical list)

7.4 — Alphabetical List of Programming Commands with Syntax and Examples

&
I

N

>>

<<

ABS
ABSPOS
ACCEL
ACTSPD
ANALOG
AND
ARC
ASC
ATN

Table of Contents

PAGE

59
59
59
59
60
60
60
60
60
60
61
61
61
61
61
62
62
62
62
62
63
63
63
63

65
66
66
66
66
66
66
67
67
67
67
67
68
69
73
78
78
78
78
79
79
79
80
81
81
82
83
84
84
85

Alphabetical List of Programming Commands with Syntax and Examples CONTINUED

SECTION & TITLE PAGE
ATN2 85
BCD 86
BOOST 86
BUSY 86
CAPPOS 87
CAPTURE 88
CHR$ 89
COMMON 89
COS 89
DATA 90
DECEL 90
#DEFINE 91
DELTACAPPOS 92
DIM 93
DIST 93
DO ... LOOP 94
DONE 95
DRVREADY 96
ENCBAND 97
ENCERR 97
ENCFOL 97
ENCMODE 98
ENCPOS 98
ENCSPD 98
END 99
ERR 100
ERRAXIS 102
ERRTRAP 102
EVENT1 103
EVENT2 104
EXIN 105
EXOUT 106
FEEDRATE 107
FOLACCDIST 107
FOLDCCDIST 107
FOLERR 108
FOLINPUT 108
FOLJOG 108
FOLMAXRATIO 109
FOLMINRATIO 109
FOLMOVE 109
FOLMOVEREG 110
FOLOFFSET 110
FOLOFFSETDIST 110
FOLRATIO 111
FOLRATIOINC 111
FOLSTARTDIST 111
FOLSYNC 112
FOLSYNCDIST 112
FOLTRIG 112
FORMAT 113
FOR ... NEXT ... STEP 114
GETCHAR 115

iv Table of Contents

Alphabetical List of Programming Commands with Syntax and Examples CONTINUED

SECTION & TITLE PAGE
GOSUB ... RETURN 115
GOTO 116
HARDLIMIT 117
HARDLIMNEG 118
HARDLIMPOS 118
HEX$ 118
HVAL 119
IF...THEN ... ELSEIF ... ELSE ... END IF 120
IN 121
INCHAR 121
#INCLUDE 122
INPUT 122
INSTR 123
INTLIM 123
JOG 124
JOGSTART 124
JOYSTICK 125
KAFF 126
KD 126
Kl 126
KP 126
KVFF 127
LCASES$ 127
LEFT$ 127
LEN 127
LINE 128
LOF 129
LOG 129
LOWSPD 129
MAXSPD 130
MID$ 130
MOD 131
MOTIONSTATE 131
MOVE 132
MOVEHOME 133
MOVEREG 135
NOT 137
NVR 137
NVRBIT 138
NVRBYTE 139
OPTION DECLARE 139
OR 140
ouT 141
OUTLIMIT 142
PATH ... PATH CLOSE ... PATH END 143
POINT 144
POSERR 144
POSMODE 145
PRINT 146
PRINT USING 147
PROFILE 150
RADIUS 151
READ 151

Table of Contents

Alphabetical List of Programming Commands with Syntax and Examples CONTINUED

SECTION & TITLE

Vi

REDUCE
REGLIMIT
REM *

RESET
RESTORE
RIGHTS
SETCOM
SHIFT

SIGN

SIN
SOFTLIMIT
SOFTLIMNEG
SOFTLIMPOS
SPEED

SQRT

STOP
STOPERR
STR$
STRINGS
TAN

TIMER
TIMER2
TOLERANCE
UCASES$
VAL
VELOCITY
WAIT
WAITDONE
WARNING
WNDGS

7.5 Host Commands Grouped by Functions
7.6 Host Commands Summary (al phabetical list)
7.7 Host Commands — Alphabetical Listing

<n

?

ABSPOS
ACCEL
ANALOG
ARC
AXISBRD
AXSTAT
BACKSPACE
BCD

BUSY
CAPPOS
CAPTURE
CTRL-A
CTRL-C
DECEL
DELTACAPPOS
DIR
DRVREADY
ENCBAND

PAGE
152
152
153
153
153
154
154
155
155
155
156
157
158
159
160
160
160
161
161
161
162
162
163
163
164
164
164
165
166
166
167
169
172
172
172
173
173
174
174
174
175
175
175
176
176
177
177
177
178
178
179
179
180

Table of Contents

Host Commands — Alphabetical Listing CONTINUED

SECTION & TITLE PAGE
ENCERR 180
ENCFOL 181
ENCMODE 181
ENCPOS 182
ENCRES 182
ENCSPD 182
ERASE 183
ERR 183
ERRAXIS 184
ERRM 185
ESC 186
EVENT1 186
EVENT2 187
EXIN 187
EXOUT 188
FILTER 188
FOLERR 189
FREE 189
FREEMEM 190
HARDLIMNEG 190
HARDLIMPOS 190
IN 191
INTLIM 191
JOG 192
JOGSTART 192
KAFF 192
KD 193
Kl 193
KP 194
KVFF 194
LINE 195
LOAD 195
LOWSPD 195
MAXSPD 196
MOVE 196
MOVEHOME 197
MOVE REG 197
NVR 197
NVRBIT 198
NVRBYTE 198
ouT 198
OUTLIMIT 199
POSERR 199
POSMODE 200
PROFILE 200
REGLIMIT 201
RESET 201
REVISION 201
RUN 202
SNVR 202
SOFTLIMNEG 203
SOFTLIMPOS 203
SPEED 204

Table of Contents Vii

Host Commands — Alphabetical Listing CONTINUED

SECTION & TITLE

STOP
STOPERR
UNIT
VELOCITY
WARNING
WNDGS
XON XOFF

8 —-FOLLOWING

viii

8.1 — Following Description

8.1.1 Follower Definition
8.1.1.1 Anaog Following
8.1.1.2. Encoder Following
8.1.1.3 Command & Variable Following
8.1.2 Following Ratio
8.1.3 Follower Mations
8.1.4 Basic Fallowing States
8.1.4.1 Following Trigger
8.1.4.2 Follower Start Delay Distance
8.1.4.3 Follower Acceleration
8.1.4.4 Follower Synchronization
8.1.4.5 Follower Deceleration
8.1.5 Advance/Recede Cycle
8.1.5.1 Offset Wait Distance
8.1.5.2 Offset Velocity Limits
8.1.5.3 Offset Distances
8.1.6 Following Program Template
8.1.7 Distance M easurements
8.1.8 Cut to Length Example
8.1.8.1 Cut to Length Program Example
8.1.9 Rotating Knife Example
8.1.9.1 Rotating Knife Cycle

8.1.9.2 Rotating Knife Program Example (advance cycle)
8.1.9.3 Rotating Knife Program Example (recede cycle)

8.1.10 Gear Box Following Example
8.1.11 Following Command Listing
ACTSPD
ENCSPD
FOLINPUT
FOLTRIG
FOLSTARTDIST
FOLACCDIST
FOLDCCDIST
FOLRATIO
FOLRATIOINC
FOLJOG
FOLMOVE
FOLMOVEREG
STOP
FOLSYNC
MOTIONSTATE
FOLMAXRATIO
FOLMINRATIO

PAGE
204
205
205
206
206
207
207

209
210
210
210
210
210
211
211
212
212
212
212
212
212
213
213
213
213
215
215
216
217
218
218
221
222
223
224
224
224
225
226
227
228
229
230
231
232
233
234
235
235
236
238
239

Table of Contents

Following CONTINUED

SECTION & TITLE
FOLOFFSET
FOLOFFSETDIST
FOLSYNCDIST

8.1.11 Follower Exercise

9—Servo Drive
9.1 — Servo Control
9.1.1 Servo Tuning
9.1.1.1 System Folder
9.1.1.2 Encoder Folder
9.1.1.3 Servo Drive Folder
9.1.1.4 Servo Tuning Environment
9.1.1.5 Auto Tuning
9.1.1.6 Manua Tuning Adjustment

9.1.1.6.1 Adjustment based on auto tuning calculation

9.1.1.6.2 Fully Manual Adjustment

9.2 — Servo Drive Command Listing

FOLERR

INTLIM

KAFF

KD

Kl

KP

KVFF

OUTLIMIT

STOPERR

WNDGS

10 — Stepper Drive
10.1 - Stepper Features
10.2 - Open Loop Stepper Folder
10.3 - Closed Loop Stepper Folder
10.4 - Encoder Folder

10.5 - Specia Programming Notes for Closed L oop Stepper Operation

10.6 - Stepper Command Listing
BOOST
ENCMODE
FOLERR
LOWSPD
REDUCE
STOPERR
WNDGS

11 — Data L ogging
11.1 — Data Logging
11.1.1 Parameter & Trigger Setup
11.1.1.1 Parameter List Descriptions
11.1.2 Data Transfer
11.1.3 View Data

Table of Contents

PAGE

240
242
243
244

249
250
250
251
251
251
252
253
256
257
257
261
261
262
262
263
264
265
266
266
267
268

269
270
270
271
271
272
273
273
274
275
275
276
277
278

279
280
280
280
281
281

SECTION & TITLE

12 — Debug Environment

12.1 — Setting Project Debugging
12.2 — Task Debugging

12.2.1 Debug Program Execution
12.2.2 Breakpoint Setting/Clearing
12.2.3 Terminal Window

12.2.4 Watch Variables

12.2.5 Exit Debug Environment

13— Application Examples

13.1 — Using Joystick to Teach an Arbitrary Shape Program

13.1.1 MX2000 Joystick Connection
13.1.2 Example Description

13.1.3 Main Section

13.1.4 Teach Section

13.1.5 Print Program Section

13.1.6 Execute Program Section

13.2 — Arbitrary Continuous Mation
13.2.1 Example Program

13.3 - Changing Velocity During Motion
13.3.1 Example Program

13.4 — Glue Application on a Gasket
13.4.1 Example Program

13.5 — Spring Winding Machine

13.5.1 Example Program

13.6 — Two Axis Conveying System
13.6.1 Example Program

13.7 — Optional Programming Environments
13.7.1 MX2000 CAD-To-Motion

14 — Troubleshooting Guide
14.1 — Status Indicator Lights

14.1.1 Power LED

14.1.2 Fault LED

14.1.3 Busy LED

14.2 — Serial Communications

14.3 — If you can not access Axis I/O

15— Glossary

PAGE
279
280
280
281
281
281
281
281

283
284
284
285
285
285
285
285
289
290
291
291
292
292
294
295
296
296
296
296

297
398
398
398
398
398
398

299

Table of Contents

List of Illustrations

[lustration or Chart Section
PC receiver Baud Rate Chart
General Application Overview
MX 2000 System Block Diagram
Dual AxisBoard
Dual Axis Interface board selection chart
Stepper Drive Connection Diagram
Servo Drive Connection Diagram
Encoder Connector signal description & electrical specification chart
Encoder Equivalent Circuit Diagram
Encoder Pulse and Direction connection Diagram
AXxis I/O Connector signal description & electrical specification chart
AXxis /O Equivalent Circuit Diagram
AXxis /O Connection Diagram
Stepper Drive Connector signal description & electrical specification chart
Stepper Drive Equivalent Circuit Diagram
Analog Drive Connector signal description & electrical specification chart
Analog Drive Equivalent Circuit Diagram
Dual Axis Interface Panel and Card Diagram
32 bit DSP Board
Auxiliary Serial Port signal description chart
Auxiliary Seria Port Equivalent Circuit Diagram
Auxiliary Seria Port RS485 connections to a control panel
Auxiliary Seria Port RS232 connections to a control panel
Host Serial Port dip switch setting chart
Host Serial Port signal description chart for RS485 connector
Host Serial Port signal description chart for RS232 connector
Host Serial Port Equivalent Circuit Diagram RS232/RS485 position
Daisy Chaining MX 2000 Controllers Diagrams
Auto Execute selection chart (SEL inputs)
DSP Card Inputs signal description & electrical specification chart
DSP front Panel Diagram
DSP Input connections for Sinking & sourcing chart
DSP card Inputs equivalent Circuit Diagram
Expansion 1/0O Board
Expansion 1/0 assignment chart
Expansion 1/0O Connector pin outs Diagram
Expansion 1/0 connection to OPTO-22 Module rack Diagram
OPTO-22 Manufacturer’s chart
Expansion 1/0 BCD bank assignment chart
Expansion 1/0 BCD bank Connection diagram
Expansion 1/0 BCD bank Connection diagram (BCD switch banks)
Expansion 1/0O BCD bank Signal Description & Electrical Specification chart
Expansion 1/O Equivalent Circuit Diagram
Expansion 1/O front Panel & Card Diagram
Digital I/0 Board
Digital I/0 Sink/Source Jumper Position Diagram
Digital 1/0 Input Signal Description & Electrical Specification chart
Digital 1/0O Input Sink/Sourcing Connection Diagrams
Digital I/0 Output Signal Description & Electrical Specification chart
Digital 1/0 Output Sink/Sourcing Connection Diagrams
Digital 1/O Internal Supply Signal Description chart
Digital I/0 Equivalent Circuit Diagram
Digital I/0 Panel and Circuit Card

Table of Contents

gororo1ororo1o1 oo o1 o1 o1 ol o1t o1Oo1 010101 0101010101 A1 g b w

g1 o1 o1o1 01 o101 0101 A1

o1 o101 o1 o1 o1l ool

35
35
36
36
36
36
37
38
38
39

40

41
41
42
42

Xi

[lustration or Chart
MX2 & MX6 Power Supply Board
MX2 & MX6 panel
AC input Description and Lead color chart
EXIN & EXOUT assignments chart
BCD assignment chart
MX2 outline
MX6 outline
MX2A & MX6A Power Supply Board
MX2A & MX6A panel
AC input Description and Lead color chart
Input connector description and electrical specification chart
Output connector description and electrical specification chart
Internal Power Supply description chart
MX2 outline
MX6 outline
MX8 Power Supply Board
MX8 panel
AC input Description and Lead color chart
MX8 outline
MX & Servo Amplifier Connection Diagram
MCPI
Multi Tasking diagram
MCPI Opening Screen
New Project Screens
Task Editor Screens
Document setting Screen
Editor Tool Box diagram
Terminal Emulation setup screen
Button configuration screens
Font & color configuration screen
System Folder screen
Profile Folder screen
Analog Inputs Folder screen
Travel Limit Folder screen
Mechanical Home & Mark Registration Folder screen
I/0 Folder screen
System Folder screen
Encoder Folder screen
Servo Drive Folder
Open Loop Stepper Folder screen
Closed Loop Stepper Folder screen
Source Code selection screen
Upload Source Code screen
Download Operating System screen
Project Menu screen
Utility Menu Screen
Window Menu Screen
Help Menu Screen
Software Reference Guide
Arithmetic Operators
Logical Operator
Relationship Operator chart
Case sensitivity chart
Program limit charts
Numeric Format and Ranges

Xii

©

o1 o1 010101 01Ol o1 o1 010101 O

o1 o1 01Ol

RO OO

ol
H
o

DO OO

NN ENENEN

Section

satere B

45
45
45
45
45
47
48

46
46
48
49

54
55
55 & 56
56
57
57
58
58
58
59
59
60
60
61
61
251
251 & 271
251
270
271
61
62
62
62
63
63
63

66
66
66
66
67
67

Table of Contents

Software Reference Guide Continued

[llustration or Chart Section Page
ANALOG input chart 7 82
AND operator truth table chart 7 83
CAPTURE trigger chart 7 88
JOG Cycle diagram 7 124
LINE Cyclediagram 7 128
MOVE Cycle diagram 7 132
MOVEHOME Cycle diagram 7 133
MOVEREG Cycle diagram 7 136
NOT operator truth table chart 7 137
OR operator truth table chart 7 140
PROFILE velocity response diagram 7 150
SPEED change during motion diagram 7 159

Following
Basic Following States diagram 8 212
Basic Advance/Recede Velocity Profile diagram 8 214
Following Program Template chart 8 215
Cut to Length Cycle Velocity Profile Diagram 8 216
Cut to Length Cycle Positional Profile Diagram 8 216
Rotary Knife Cycle diagram 8 219
Rotary Knife advance cycle diagram 8 220
Rotary Knife recede cycle diagram 8 220
FOLTRIG diagram 8 226
FOLSTARTDIST diagram 8 227
FOLACCDIST diagram 8 228
FOLDCCDIST diagram 8 228
FOLRATIO diagram 8 230
FOLRATIOINC diagram 8 231
FOLMOVE Cycle diagram 8 233
FOLMOVEREG Cycle diagram 8 234
MOTIONSTATE diagram 8 236
FOLMAXRATIO diagram 8 238
FOLMINRATIO diagram 8 239
FOLOFFSET diagrams 8 240 & 241
FOLSYNCDIST diagram 8 243
Follower Exercise chart & diagram 8 244 & 245
Exercise Answers 8 246 & 247

Servo Drive
Servo Block Diagram 9 250
System Folder screen 9 251
Encoder Folder screen 9 251
Servo Drive Folder screen 9 251
Servo Tuning Environment screen 9 253
Auto Tuning screen 9 253
Stable response with integration during motion disabled diagram 9 255
Stabl e response with integration during motion disabled diagram 9 255
Response with different KV FF values diagrams 9 255 & 256
Stable and Unstable response diagrams 9 256
Manua adjustment response diagrams 9 258-260

Stepper Drive
Open Loop Stepper Folder screen 10 270
Closed Loop Stepper Folder screen 10 271
Encoder Folder 10 271

Table of Contents Xiii

[lustration or Chart
Data L ogging Environment
Data L ogging entry screen
Parameter & Trigger Setup screen
Data Transfer screen
View Data screen
Debug Environment
Debug setup screen
Debug Environment screen
Watch Variable screens
Application Examples
Joystick connection diagram
Arbitrary Continuous Motion machine diagram
Arbitrary path Positional Profile diagram
Changing Velocity during Motion diagram
Glue Application diagram
Glossary
ASCII Table chart

Xiv

Section

11
11
11
11

12
12
12

13
13
13
13
13

15

284
285
288
294
295
296
297

307

Table of Contents

Section 1
| mportant
Safety I nformation

1.1 — Cautionsand Warnings

Before installing and operating your MX2000 motion
control product, it is extremely important both to you and
us that you read this section very

thoroughly and carefully. Your Slo-Syn product will de-
liver years of reliable, trouble-free, and most importantly,
safe operation if you heed the cautions and warnings out-
lined in this section, and follow the subsequent instruc-
tionsin the remainder of this manual.

Throughout this section, and the remainder of this man-
ual, two very important symbols will be used to identify
hazardous and potentially dangerous situations. These
symbols are the electrical shock indicator and the excla-
mation point. Both are always surrounded by a triangle as
shown.

The electrical shock symbol shown to the
left is used to indicate situations where
ELECTRICAL SHOCK hazards may
exist. These warnings must be followed to
ensure that YOU avoid electrocution that
could result in seriousinjury or death.

The exclamation point symbol shown to
the left is used to indicate situations other
than electrical hazardsthat may be poten-
tially dangerous to either YOU or to the
product. Follow these warnings carefully
to avoid injury to you and damage to the
product.

> [

The following is a partial list of precautions that must be
followed to ensure safe operation of the unit. Other more
specific precautions are indicated in the appropriate sec-
tions of this manual. As you read through the manual, pay
particularly close attention to these cautions and warnings
as they could save your life.

High voltages are present inside this unit.
An Electrical shock hazard exist that may
cause seriousinjury or death if thisunit is
operated without its protective cover in
place.

Be certain the power has been removed
for a minimum of 5 minutes before any
service work or circuit board configura-
tion changes are performed. This assures
that the power suppliesare at zero.

Do not exceed the voltage or current rat-
ings of the various inputs and outputs;
Please read the electrical specification in
Section 5. This will protect the circuitry
and components from accidental damage.

In order to provide the correct level of
protection in the unit, replacement fuses
must be the same exact style and ratings
asthoseoriginally installed in the unit.

PP

Secure mounting and proper grounding of
both the M X2000 controller and the mo-
tors are essential for proper operation of
the system.

Be sure to mount the unit so there is ade-
quate space around it for cooling airflow,
and observe the environmental limitations
for temperature and humidity.

The 24-volt dc power supply islimited to a
total current output of 0.75 amperes. Do
not exceed this rating, or the Controller
may shut down or work erratically as
the power supply’s current limiting cir-
cuitry operates to protect the unit from
overload.

Please follow good wiring practices and
keep low-level signal lines away from
power and motor wiring. It is best to use
shielded, twisted-pair cables for signal
lines, being sure to ground the shields at
one end. Doing this will help to avoid elec-
trical noiseinterference problems.

If the unit is opened or disassembled, be
sure to treat the circuit cards as static-
sensitive components to avoid damage due
to electrostatic discharge (ESD). Work
only in ESD protected areas, and it is best
not to touch the circuit conductors or
components unless you are wearing an
ESD-protective grounding strap.

It is your responsibility to follow the ap-
propriate federal, state, and local electrical
and occupational safety codes in the appli-
cation of this product.

NEVER wire the unit with the
power on! Serious injury as
’ well as damage to the unit may

result.

Caution Warning

NONE of the inputs to the unit are to be
used as an EMERGENCY STOP in ANY
application. Although activation of certain
inputs will discontinue motion or disable
motor current, these are NOT designed as
fail-safe E-STOP inputs. Relying exclu-
sively on inputsto the unit to cease motion
that could cause dangerous conditions is a
violation of Machine Safety Code (ref,
IEC204-1). Other measures such as me-
chanical stops and fail-safe brakes must be
used in these situations.

> PR B

Cautions & Warnings

Section 2
| ntroduction

2.1- How To Use This Manual

Congratulations on the purchase of your new
MX2000 motion control product! Your programmable
motion controller is a full-featured and flexible
product, yet it is fairly simple to apply it to your machine
control application. This manual is designed to guide and
assist you through the installation, programming, and op-
eration of the controller. If you're reading this, you under-
stand the importance of familiarizing yourself with how
this product should be installed and operated. We strongly
recommend that you read through this manual until you are
comfortable with electrical connections and operating con-
cepts of this unit.

Section 1, Important Safety Information, has cautions
and warnings information. This section should be read first
and the cautions and warnings should be followed.

Section 2, Introduction, has user prerequisite require-
ments, conventions used in the manual and Applications
Assistance information.

Section 3, Quick Start Installation Guide, contains the
minimum steps necessary to get up and running. The refer-
ences to the appropriate manua sections where further
details can be found are included.

Section 4, Overview of System Operation, contains fea-
tures and functions, along with a general overview of the
M X2000 system.

Section 5, Specification and Equivalent Circuits, has
specifications, setup requirements, connection diagrams,
and equivalent circuits for each board in the MX2000 sys-
tem.

Section 6, Motion Control Programming Interface,
contains general Programming information. PC software
installation and execution, communications with the
M X2000 controller, and user project creation.

Section 7, Software Reference Guide, contains the basic
command conventions used and a listing with descriptions
of the Basic Program commands and Host Commands.

Section 8, Following, contains detailed information on
following, description of follower commands, application
examples, and listing and descriptions of the individual
follower commands.

Section 9, Servo Drive, contains general information on
servos, tuning, testing performance. Also a listing and de-
scriptions of the individual servo commands.

Section 10, Stepper Drive, contains general information
on stepper drives, closed and open loop stepper setups.
Also a listing and descriptions of the individual stepper
commands.

Section 11, Data Logging, describes how to data log
MX2000 parameters.

Section 12, Debug Environment, describes how to debug
auser’stask.

Section 13, Application Examples, contains descrip-
tions of applications with example programs for them.
Section 14, Troubleshooting Guide, has helpful hints
on troubleshooting problems.

Section 15, Glossary, contains a glossary of terms used
in the manual.

2.2 —What you need to know first

This manual is written in a simple and easy to follow
format that should be suitable for both new and experi-
enced motion control users. In order to get the most out
of your SLO-SYN Programmable Motion Controller, we
assume the user will be knowledgeable in the following
areas:

Basic electrical and electronics skills, including prepar-
ing and following an equipment wiring diagram or
schematic.

The basics of motion control system applications, such
as torque, speed, move distance, and how to structure a
motion task into move segments and input/output con-
trol.

Some familiarity with elementary computer program-
ming, including defining the problem to be solved and
coding it in acomputer language.

2.3 —Conventions used in this manual

Motor rotation direction (CW and CCW) is properly
oriented when viewing the motor from the end opposite
the mounting flange.

Please refer to the Glossary section for detailed descrip-
tions of terms such as sink and source 1/O, various mo-
tion terms, etc.

2.4 - Applications Assistance

Although this manual represents a detailed compilation
of information regarding your SLO-SYN control prod-
uct, sometimes questions may arise which will require
that you contact us, You now have a few options avail-
able to you when you need information regarding your
product or its application.

On the Internet at www.danahermotion.com. Our multi-

media enabled web site offers you information such as:
Free Software

TechFax fax on demand documents (1-800-234-3369)
HTML Product Selector, HTML Brand Selector
Product News and Links

Sales and Distribution Information

Product information and specifications

Many more features

2. By Phone. You may reach us by phoning our Motion
Control Application Engineering Department at tele-
phone (800)787-3532 ext. 4751. Or call our main num-
ber at (860)585-4510. Both may be reached between the
hours of 8:00 AM and 5:00 PM (Eastern Time), Monday
through Friday. Technical personnel are available to as-
sist you in getting your application up and running.

Introduction

Section 3
Quick Start
| nstallation Guide

3.1 —Switch and Jumper Settings

Before mounting and installing the MX controller, it is
best to set the switches and internal jumpers that govern
various operating features.

3.1.1 —Serial Communication
Baud Rate switches

The "BAUD" DIP switch located on the 32 bit DSP con-
troller panel needs to be set to match the baud rate of the
host computer or terminal to which it is connected. The
factory default is 9600 baud; if thisis not what is desired,
then set the switches toward one of the appropriate values
shown on the label. Valid selections are "9.6" (9600),
"19.2" (19,200), and "38.4" (38,400). If all switches are
"off" (toward the right), then the baud rate is set to 4800.
These switches are only read at power-up, hence changing
the baud rate requires a power-down, power-up cycle be-
fore the change takes effect.

Although the controller's serial ports are configurable for
up to 38.4K baud, the serial communications may be li m-
ited by the PC. A PC may not be able to receive data
from the controller at baud rates above 9600. This limi-
tation is due to the PC's inability, at the higher baud rates,
to read the received character in time, before another
character is received. If this happens, an OVERRUN
ERROR will occur. This problem will not exist if the
serial port's UART has hardware buffering. The follow-
ingisalist of UART' s commonly used on PC serial port
cards. The UART’ smarked with an * are buffered.

UART’ s: 8250, 16450, 16451, 16452, * 16550, * 16552

The following is a table of controller operations vs.
Maximum PC receiver baud rate.

OPERATION (ng ﬁlf;;‘rer) (Ltﬁ‘?eTr)
L oad operating system 38400* 38400
Load user program 38400* 38400
Extract source code 9600 38400
Host commands 9600 38400

* The unbuffered UART will perform the first two
operations at the higher baud rate, since during these
operations, the controller does not transmit multiple
characters in succession.

3.1.2-Host RS232/R$485

The RS232/R$485 switch located on the 32 bit DSP con-
troller panel needs to be set to match the communication
protocol of the host device, RS-232 or RS-485, to which
the Controller is connected. The factory default is for
"232" (RS-232); if RS-485 is desired, set the switch to-
ward "485".

Serial communications format for the host port is"N-8-1",
or No parity, 8 data bits, and 1 stop bit.

6

3.1.3—-Auxiliary RS232/R$485

The communication protocol (RS232 or RS485) for the
Auxiliary Serial Port on the 32 bit DSP Card is selected
via a jumper on the card, immediately behind the port
connector. The factory default is for RS485; if RS232 is
desired, the DSP Card must be removed and the jumper
setting changed to the RS232 setting. Baud rate for this
port is set at 9600; if another Baud rate is desired, select it
via software using the "SETCOM" command. See Sec-
tion 7 for further details on this command.

Serial communications format for the auxiliary port is*N-
8-1", or No parity, 8 data bits, and 1 stop bit.

3.1.4—-Unit ID switch

The Controller is capable of being operated in a
"daisy-chain" fashion, with up to 9 units connected to a
single host. A connection diagram is depicted in Section

5.6.2 of this manual. Each unit in the chain requires a
unique identification number (ID #); this value is selected

by the "UNIT ID" selector switch on the DSP controller
board. The unit is shipped from the factory with 1 s-

lected (the first unit in the chain). If needed, set the se-
lector switch to a different value by using a small screw-

driver. Set the pointer on the switch to the desired value, 1
to 9.

The controller scans the Unit ID switch during power up
or when a system Reset command is issued.

3.1.5-32bit DSP Board I nputs

The four optically isolated inputs can either be sinking or
sourcing. A jumper on the card controls the selection,
located behind the DSP input connector. The factory set-
ting is sinking; if sourcing is desired, the DSP card must
be removed and the jumper setting changed to the Source
position.

Hint: A CLR to COM jumper isrequired for motion
to occur .

3.1.6 — Dual AxisInputs settings

The eight dedicated inputs on the Dual Axis Interface
Card can either be sinking or sourcing. A jumper on the
card controls the selection, located behind the AXIS 1/O
connector. The factory setting is sinking; if sourcing is
desired, the Dual Axis card must be removed and the
jumper setting changed to the Source position.

3.1.6.1 —Dual Axis|.D. switches

Each axis card must be assigned a unique ID (1-4) and ID
1 must always be assigned to one of the boards. The axis
ID switch settings assign thisID. A table for the different
assignmentsisillustrated in Section 5.5 of this manual.

3.1.7—Digital 1/O settings

Setup & Installation

The digital 1/0 board inputs and outputs can either be
sinking or sourcing. Two jumpers on the card controls the
selection, located in the lower left corner of the board.
The factory setting is sinking; if sourcing is desired, the
Digital 1/0O card must be removed and the jumpers setting
changed to the Source position.

3.2 - Step-by-Step Start-Up Procedure

The MX2000 stepper/servo motor positioning system is a
sophisticated and versatile product. Setting up the system,
however, can be simple and straight-forward if the proper
steps are followed. Please use the step-by-step set up
guide below.

3.2.1 - Bench Set Up.

Before connecting your MX2000 and motors to your re-
chanical system or machine, we recommend that you
“bench test” the system. This will allow you to become
familiar with the wiring, programming and operation of
the system before installing it into your machine. This
may also prevent inadvertent damage to your mechanical
system if you make programming errors that cause unex-
pected motion. The bench set up can be used to perform
simple motions with an unloaded motor. To perform a
bench test, do the following:

1) Wireit up. Connect the servo drives as illustrated in
section 5.5.2, connect the stepper drives asillustrated
in section 5.5.1, connect the AC power, 1/0 and other
required signals per the wiring diagrams and instruc-
tions in section 5. BE SAFE!! Do not apply AC
power to the unit until you are sure of al connec-
tions. Initially, there is no need to connect all of the
wiring of your system together. Wire the AC line in-
put, drives, motors and HOST communication ports.
Thiswill be all you need to establish communications
to the unit and perform simple notion.

HINT: Don't forget to wire the Enable and Ready
signals to the servo drive, see section 5.5.6 Analog
Drive Connector .

2) Load Software. You will need to use a PC to pro-
gram the unit according to your requirements. First
you must load the MCPI software onto the PC from
the floppy disks provided with your unit. Simply in-
sert disk #1 and run the file SETUP.EXE. Once the
software is loaded, run it by double clicking on the
MCPI icon. See Section 6.3.1 for more details on the
MCPI installation process.

3) Create your Project. You can now create your new
Project. Your Project will contain Configuration in-
formation for your particular system, and also your
program Task’s that holds the user program written
in BASIC-like language. Read section 6 of this man-
ual, and then step through the Configuration folders
and enter the appropriate data for your system, saving
the configuration when you are done. Don’t forget to
set up the seria port for your PC to the correct port
number and baud rate.

Setup & Installation

4)

5)

HINT: The Drive type for each axis must be =
lected in the System folder. Now the axes must be
assigned to a specific task. The Task assignment
item in the System folder is used for this purpose.

HINT: If the axis is a servo drive or closed loop
stepper the line count of the encoder must be entered
into the Encoder folder.

HINT: Motion is commanded in User Units. The
User Units per motor revolution itemin the System
folder allows you to enter the value. Initially, it is
easiest to set thisto 1. This will mean that move dis-
tances are in motor revolutions (e.g. move=1 moves
one revolution), speeds will be in revs/sec, and accel-
erations will be in revs/sec/sec. Later this can be
changed (e.g. to allow programming in inches on a
lead screw) to allow ease of programming once the
motor is installed into the mechanical system. All
move distances, speeds, and accelerations (or
decelerations), and encoder information are provided
in User Units, so be sure you understand this before
continuing.

Compile and Download the project into the con-
troller using the command buttons of the MCPI. Note
that initially, you can leave the Task blank and com-
mand motion using the Host Commands. Host
commands are entered in Terminal Mode from the
MCPI. Enter the terminal mode by clicking on the
Terminal command button on you screen. If your
system consists of stepper drives only go to step 8.
See Section 6.3.8.2 of this manual.

Tune the Servo axes. Before running the motor, the
controller compensation parameters (gains) must be
set. To aid in this task an automatic servo tuning
procedure is available. To enter the servo tuning
screen click on the servo tuning button. The default
values for auto-tuning procedure should work fine for
now. The motor may be tuned on the bench with no
load. Ensure that the motor is properly secured to
your work surface (bench). Note: Do not clamp the
motor anywher e except at the mounting flange.

Begin the auto-tuning process by selecting the servo
axis you desire to tune and then by clicking on the
Auto Tune button. A screen with the default values
will appear. Click on the OK button to use these s&-
tings. Next, click on the Measure System Gain but-
ton. The motor should bump, then the System Gain
value should update on the screen. Now click on the
Calculate Servo Gains button and the calculated
servo gain values will be displayed on the screen.
Click the Update Gains button, the servo should now
be locked in position. Verify this by manually trying
to turn the motor shaft. The servo should fight to stay
in position.

It's now time to try a test move by entering profile
parameters. First click the Motion Setup button and
enter the desired Acceleration, Deceleration, Speed
and Move Distance in user units (e.g. revolutions by

7

default). When finished click the Done button. Now
make the motor move by clicking the Move Re-
sponse button. The motor should complete the pro-
grammed profile and the position error plot should
appear on the screen. Y ou may have to adjust the dis-
play timein order to see the whole move.

6) Repeat step 5 for all servo axes. Then click on the
Exit command button and OK when save parameter
screen appears.

7) Compile and Download the project into the unit by
clicking on the Compile and then the Download
command buttons of the MCPI. Thiswill save the new
servo parameters to the M X2000 controller. Note that
initially, you can leave the Task blank and command
motion using the HOST Commands. Host commands
are entered in the Terminal Mode from the MCPI.
Enter the terminal mode by clicking on the Terminal
command button.

8) Make it move! Now that you have compiled and
downloaded your project into the unit, you are ready to
make the motor move. First you must enter the speed
at which you wish the motor to turn, such as 1 rev/sec.
Do this by typing speed(axis)=1<CR> (<CR> means
the Return or Enter key). Now enter the acceleration,
for example 50 revs/sec/sec by typing accel(axis)=
50<CR>. Set the deceleration to match by typing de-
cel(axis)=50<CR>. Make sure to connect CLR to
COM for sinking I/0 or CLR to +24V for sourcing
I/0 on the DSP board or no motor motion will occur.
With the motor secured to the bench, you can now
command a move. If the axis you want to move is a
servo drive you must enable the drive first. Thisis ac-
complished by typing wndgs(axis)=1<CR>. To com-
mand an incremental move of 10 revolutions type
move(axis)=10<CR>. The designated axis motor
should now move 10 revolutions. If it does not, check
your wiring. Also verify your configuration settings.
In addition, check the motor direction to insure it
meets your requirements. The motor direction can be
reversed in the System folder if necessary.

Note: Axisisthe desired axis you want to address.

9) WriteaBASIC Program. Now that you have made
a simple move, you are ready to write your Task in
the MCPI BASIC-like language. Refer to Section 7
for a complete description of all of the Program
Commands. You can start by opening your Task and
entering the commands. First, let’s enter the exact
same commands that you used in the Terminal HOST
mode. Enter speed(axis)=1<CR>, accel(axis)=
50<CR>, decel(axis)=50<CR>, and move(axis)=10
<CR> commands asyou did in step 8). If the axisisa
servo drive enter the WNDGS(axis)= 1<CR> com-
mand before the move command as you did in step
8). You must enter two more commands to tell the
unit that the program is done after it performs the
move. Type WAITDONE(axis)<CR> and
END<CR> as the last lines of the program. Since
your program has changed, you must compile and

download it into the unit again for the changes to take
effect. If you receive compilation errors, check your
spelling and syntax with the information in Section 7.

10

~

Execute the Program. From the Termina Host
Mode, click on the RUN button to make the motor
move 10 revolutions. If desired you can now add
lines to the program to perform more sophisticated
motion. For example, type x=10 <CR>. This assigns
the REAL variable “x” a value of 10. Change the
MOVE(axis)=10 line to MOVE(axis)=x. Now the
motor will move the designated axis whatever dis-
tance has been assigned to x. Recompile and down-
load your program, then run it. It should operate the
same as before, but now the program is now using x
asthe move distance in place of 10 as before. Change
the value of x to different distance values to verify
that it works correctly.

11) Expand the Program and Debug it. Now that you
have written a simple program, you can add more
complexity by adding more commands. You can do
complex looping, access 1/0, and motion functions as
required. It will be helpful now to use the DEBUG
feature of the MCPI environment. Again, refer to
Section 12 for a detailed description of the debug
mode. If you compile your program in Debug Mode,
you can enter the debug screen as your program runs
and step through your code to verify proper opera-
tion. Once the code is functioning correctly, you
should re-compile in Release Mode as this will speed
up program execution.

3.2.2 - Ingtallation into M echanical
System

Once you have tested everything out in a controlled envi-
ronment, you may complete the installation into your
system. This will require making all the necessary wiring
connections for limit switches, additional 1/0, analog n-
puts, encoder, etc. The first thing that must be done is to
retune your servo axes, repeat steps5to 7. Start simple!!
Just as you started with a simple move on the bench, you
should start simple here as well, slowly adding complex-
ity as you debug your code and gain more confidence in
programming. You may use the Debug Mode to help in
this process. See Section 12 Debug Environment for
more information.

Setup & Installation

3.3 - Installation

It is important to select a mounting location for you con-
troller that will meet the environmental specifications
listed in Section 5.2. Avoid locations that expose the unit
to extremes of temperature, humidity, dirt/dust, or vibra-
tion.

Also, it is best to avoid areas with high "electrical noise."
Thiswill help to prevent misoperation due to electromag-
netic interference. Please refer to Section 3.4.1 for gen-
eral guidelines on selecting a location for your controller
whereit will be less susceptible to EMI/RFI problems.

When mounting the unit near other apparatus, such as
inside an electrical cabinet or enclosure, please leave at
least 2 inches of space on all sides for proper cooling.
Mounting brackets are supplied to attach the controller to
avertical surface. The MX2000-8 can also be mounted in
a standard 19 inch rack configuration by removing the
mounting brackets and rotating them 18CE. Please refer
to section 5.12, 5.13, and 5.14 for overall dimensions and
mounting hole locations for the MX2000-2, -2A, -6, -6A,
and -8 respectively.

3.4-WIRING THE CONTROLLER
FOR OPERATION

Section 5 Specifications and Equivalent Circuits shows
how to wire up the individual connectors, depicts equiva-
lent circuits for each connector, describes connector b
bels, defines connector signal characteristics, defines AC
electrical ratings of the System, and defines mechanical
and environmental specifications. Be sure to observe the
listed electrical ratings of the ac input and the various I/O
circuits; thiswill ensure proper, reliable operation of your
controller.

3.4.1 — General Wiring Guidelines

SLO-SYN 2000 controls and drives use modern solid-
state digital electronics to provide the features needed for
advanced motion control applications. Some user equip-
ment may produce electromagnetic interference (EMI, or
electrical noise) that can cause inappropriate operation of
the digital logic used in the control, drive, or other com
puter-type equipment in the user =s system.

In general, any equipment that causes arcs or sparks or
that switches voltage or current at high frequencies can
cause interference. In addition, ac utility lines are often
polluted with electrical noise from sources outside a user-s
control (such as equipment in the factory next door).
Some of the more common causes of electrical interfer-
ence are:

Setup & Installation

e power from the utility ac line

* relays, contactorsand solenoids

e light dimmers

e arcwelders

* motorsand motor starters

e induction heaters

e radio controls or transmitters

* switch-mode power supplies

e computer-based egquipment

e high freguency lighting equipment
e dcservo and stepper motors and drives

The following wiring practices should be used to
reduce noise interference.

1) Solid grounding of the system is essential. Be sure
that there is a solid connection to the ac system earth
ground. Bond the drive case to the system enclosure.
Use a single-point grounding system for all related
components of a system (aAhub and spokes(arrange-
ment). Keep the ground connections short and direct.

2) Keep signal and power wiring well separated. If
possible, use separate conduit or ducts for each. If the
wires must cross, they should do so at right angles to
minimize coupling.

Note: Power wiring includes ac wiring, motor wires,
etc. Signal wiring isinputs and outputs (1/0), encoder
wiring, serial communications (RS232 lines), etc.

3) Use shielded, twisted-pair cables for the drive to
motor wiring. BE SURE TO GROUND THE
SHIELD AT THE DRIVE END.

4) Suppress all relays to prevent noise generation.
Typical suppressors are capacitors or MOV :s. (See
manufacturer =s literature for complete infomation).
Whenever possible, use solid-state relays instead of
mechanical contact types to minimize noise genera-
tion.

In some extreme cases of interference, it may be nec-
essary to add external filtering to the ac line(s)
feeding affected equipment, or to use isolation
transformers to supply their ac power.

NOTE: We make a wide range of ac
power line conditioners that can help solve electrical
interference problems. Contact 1-800-SUP-ELEC
(1-800-787-3532) for further assistance.

10

(This page intentionally left blank)

Setup & Installation

SECTION 4
OVERVIEW OF
SYSTEM OPERATION

4.1 — Features and Functions

The controller is based on the Texas Instruments
TMS320C31 32 bit, 33MHZ Digital Signal Processor
(DSP). It can control from 2 to 8 stepper or servo drives,
plus 350 I/O points. Each pair of axes is supervised by a
powerful Application Specific Integrated Circuit (ASIC) that
is custom programmed for the controller. This state-of-the-
art computer hardware gives the controller plenty of
processing power to coordinate motion and simultaneously
execute multi-tasks up to seven complex motion and input-
output (1/0) user tasks. The basic two-axis system consists
of three major circuit cards that communicate via a passive
back plane and are housed in a rugged enclosure.

M X2 or M X6 system
* 90to 265 VAC 50/60 Hz input.
Built-in AC linefilter and MOV'’s.
Power-on LED.
Built in 24-volt dc @ 750 ma. supply for /0.
50-pin header for interfacing to as many as 24 OPTO-
22 style 1/O, or up to 4 BCD switch banks.

M X2A or M X6A system
* 90to 265 VAC 50/60 Hz input.
* Built-in AC linefilter and MOV’s.
* Power-on LED.
* Built in 24-volt dc @ 750 ma. supply for 1/0O..

16 optically isolated inputs.
8 optically isolated outputs.

M X8 system

Dual Ac voltage range.

90 to 132 VAC 50/60 Hz inpuit.

175 to 264 VAC 50/60 Hz input.

Built-in AC linefilter and MOV’ s
Power-On LED

Built in 24-volt dc @ 750 ma. supply for /0.

DSP Controller Card
* 256 Kbytes of Flash memory available for user
program storage.
* Two serial ports configurable as an RS232 or R$485
device.

* 4 opticaly isolated inputs.

12

Dual AxisCard
» 2 analog outputs capable of a+10 volt DC swing.
* 4 analog inputs capable of a+10 volt DC swing.
» 8 dedicated optically isolated inputs for limits and
triggers.
* 2 servo or stepper drive interfaces.
* 2 encoder interfaces.

Digital 1/0 Card
» 24 optically isolated inputs.
» 16 optically isolated inputs.
* Removable connectors with screw terminals.
* 24 volt power supply access.

Expansion I/O Card
* 50-pin header for interface to as many as 48 OPTO-22
style 1/O, or up to 8 BCD switch banks.

Programmlng Features
» English language, BASIC-like coding.

* Full math capability, including trig functions, logs, and
sguare root.
Boolean logic functions (and, or, xor, not).
Complex motions (arc, path, line).
Simple Motions (move, jog).
Trigger motions (movehome, movereg).
Position Following.
Changing Velocity during motion.
Position Capture from atrigger.
Subroutines , nested up to 16 levels.
Multi-tasking of up to 7 concurrent tasks.
String manipulation (for message handling).
Program control functions (for-next, if-then-else if-
else, goto, do-while, etc).
* Macro substitution (#define) for user-friendly text

naming of 1/O, etc.
* Complex expressions (using parentheses).
e Multi dimension Arrays.
e 2 Timers per task.
» Complete error handling and warning messages.

Overview

4.2 - General Overview

The Programmable Motion Controller is a powerful, DSP-
based machine controller that is capable of far more than
simply moving motors. This section isintended to give the
user an overview of the controller's many capabilities
including all the functions and features users expect for
controlling motion. There are awide variety of inputs and
outputs and software features that, in many cases, allow the
controller to operate an entire sophisticated machine. Figure
4.1 shows atypical 2-axis application. Section 5 has details
on setting up and wiring the unit.

Of special note is the ease of communication with either
"intelligent" or "dumb" operator interfaces. The controller
does not require the use of any operator interface panel or
host computer to operate as a stand-alone system. Simple
switch interfaces via axis 1/0O or expansion 1/O will often
suffice for controlling a machine that does not need
extensive interaction with the operator for setup information
or message display. BCD switches are often used to enter
numeric datafor simple setup. However, using a panel with
a keypad and display gives more flexibility and sometimes
easier and more "user-friendly" machine operation.

4.2.1 - Serial Communications

Communication with the MX2000 controller is via two
seria ports on the DSP Card. These serial ports can be
operated as an RS232 or R$485 device. The Host port is
used for programming and operating the unit. The Auxiliary
Port is used to communicate with an external serial device
during program execution. Use of these portsis coveredin
more detail in Sections 5.6.1 and 5.6.2.

4.2.2 - Shutdown Input & Program
Select Inputs

The 32 bit DSP interface has four optically isolated inputs.
One of these inputsis used as a system shutdown or "motion
clear" input. The 3 remaining inputs allow selection of any
one of up to seven user programs that will be executed at
power-up or when a Reset command isissued. These inputs
can be sinking or sourcing. See Section 5.6.3 for more
details.

4.2.3 - Expansion 1/0O - BCD Port

An expansion 1/0O port is provided on the MX2 or MX6
Power Supply or optional Expansion I/O board. The l/O is
designed to interface to industry-standard "OPTO-22" style
high-power inputs and outputs.

Alternatively, this port can be used to read BCD switches

Overview

(seven digits plus sign per bank). We provide

standard switch banks for use with the controller. Users may
also combine BCD's and expansion 1/0O. See Sections 5.7
and 5.9 for more details.

4.2.4 - Digital 1/0

A digital 1/0O port is provided on the MX2A or MX6A
Power Supply or optional Digital 1/0 board. The 1/O is
designed to operate with switches and relays. These inputs
and outputs can be sinking or sourcing. See Sections 5.8 and
5.10 for more details.

4.2.5 - Stepper Interface

Standard pulse and direction signals are provided on the
Axis Card for controlling most types of stepper drives.
Signals are compatible with drives up to 50,000 pulses per
revolution (1/250 micro-stepping), since the maximum pulse
rate is 1.99 MHz. See Sections 5.5.1 and 5.5.5 for more
details.

It is important to note that the controller can be easily
programmed in user units, such as inches or revolutions,
based on the motor/drive resolution and the machine's
characteristics. Thisis possible because of the controller's
extensve math functions. See Section 7 Software
Reference Guide for more details.

4.2.6 — Analog Drive

The analog outputs can be used as the torque command for
aservo drive. In addition a pair of drive enable output and
drive ready inputs have been provided.

4.2.7 - Encoder Interface

Inputs from two incremental encoders are provided on the
Axis Card. The maximum count rate is 2 MHz. Thereis
5Vdc power available on this connector to power the
encoders. Wiring to this port is covered in Section 5.5.3.

4.2.8 - Axis1/O and Analog I/O

Inputs are provided on the Axis Card for two axes worth of
limit switches, home switches, and mark registration sensors.
(The latter two are connected to the "Event 1" and "Event
2" pins) These can be configured for sink or source
operation. Also, there are two sets of analog inputs that can
be read under program control. These inputs may be used
for reading various types of sensors (temperature, pressure,
etc.) and then controlling index distance or motor speed
based on the value read. See section 5.5.4 for more details.

13

4.3 - Use of the Serial Ports,
"HOST" and "AUXILIARY"

The controller has two serial ports, which are identified as
"HOST" and "AUXILIARY". The "HOST" port, asits name
implies, istypically connected to a host computer such asan
IBM PC or compatible. The"AUXILIARY" port isintended
for use with an operator interface panel.

The "HOST" port is used for downloading the user's
application program and for direct control of the controller.
When using the MCPI programmable Interface, all
communication with the controller isviathe "HOST" port.
In addition, al on-line debugging is accomplished using this
port. The "HOST" port aso has the capability to "DAISY
CHAIN" to other controllers; this requires only one serial
port on a user's host computer to communicate to multiple
controllers. While the user's program could use the "HOST"
port for communication with any device that has a serid
port, it is recommended that the "HOST" port be reserved
for debugging the user's program and for communication
with the host computer.

The "AUXILIARY" port, while intended for use with an
operator interface panel (O.1.P.), can in fact communicate
with any device that hasa seria port, such as counter units,
etc. The"AUXILIARY" port can send and receive standard
ASCIl characters. The user's application program can
transmit a prompt or message using the "PRINT" statement
and wait for aresponse using the "INPUT" statement.

14

Example:

PRINT #2," Enter 6 digit part number"
INPUT #2, PARTS$

A message is displayed on the OIP screen prompting the
machine operator to enter a part number. The string variable
PARTS$ can now be examined (by the controller program) to
determine what type of process to perform. The information
provided by the operator can then be used to control the
process flow, ie. move distance, velocity, dwell, etc., for the
desired part number that the machine is processing.

While the processisin operation, messages can also be sent
back to the OIP, telling the operator the status of the
process. For example,

PRINT #2, " Coarse grind"
PRINT #2, " Finish grind"

will display the indicated messages on the OI P regarding the
grinding operation that is occurring.

Overview

Figure4.1, General Application Overview

MX-2000 CONTROLLER

AXIS DSP P/S-1/0
. |
ENCODER
INPUTS <—————AC Input(90-265 Vac)
Limit Switches Operat
_ 123ABC|Yperator
Home Switches ﬁd)SSTS QgéT < RS-232 or > EEE Interface
Mark Registration RS-485 Panel
Sensor
HOST RS-232 or
¢ > Host Computer(PC
| PORT RS-485 puter(PC)
STEPPER Expansion
INTERF ACE /0 4 ggos
24 Opto-22 1/0
;f:szzrrztug:} ANALOG System Shutdown
Flow Sensors, etc /0 < | ("Motion Clear”)
' ' Switch and
Program Select Switches
Drive
)) B 1
Encoder Pulse + Direction (etc.)
f Lines
Drive
D
Encoder jm 2
2

Overview

15

This page left intentionally blank

16 Overview

Section 5
Specifications
And
Equivalent Circuits

5.1 — Mechanical Specification

MX2000-2
Size: 5.34" X 10.63” X 7.48"
135.6 mm X 270 mm X 190 mm
Weight: 8.25 |bs
3.75Kg
MX2000-6
Size: 9.34" X 10.63” X 7.48"
237.3mm X 270 mm X 190 mm
Weight: 11.01lbs
5.0Kg
MX2000-8
Size: 19.0” X 10.63" X 7.54"
482.6 mm X 270 mm X 191.6 mm
Weight: 12.01lbs
5.45Kg

5.2 — Environmental Specification

Operating Temperature: +32° Fto +122° F
0° Cto+50° C

Storage Temperature: -40° Fto +167° F
-40° Cto+75° C

Humidity: 95% max. non-condensing

Altitude; 10,000 feet maximum
3048 meters maximum

5.3 —Input Power

MX2000-2 or MX2000-2A
voltage: 90 to 265 VAC, 50/60 hz
current: <05Amps @ 115 VAc
fuse: 2 Amp (normal blow), 250VAC,
3AG type (2 required)
MX2000-6 or M X2000-6A
voltage: 90 to 265 VAC, 50/60 hz
current: <05Amps @ 115 VAc
fuse: 2 Amp (normal blow), 250VAC,
3AG type (2 required)
MX2000-8
voltage: 90 to 132 VAC, 50/60 hz
175to 254 VAC, 50/60 hz
current: <3Amps @ 115 VAc
fuse: 3 Amp (slow blow), 250VAC

18

5.4 —-MX2000 System

When ordering an MX2000 system a number of factors
must be taken into account. The number of axes, number
of 1/0 points and whether the 1/0 requires optical isola
tion. The MX-2 and MX-6 power supplies have 24 expan-
sion 1/O points that are not optically isolated but can be
interfaced to an OPTO-22 rack module. The MX-2A and
MX-6A power supply has 16 optically isolated inputs and
8 optically isolated outputs. The MX-8 power supply has
no I/O on it.

An Isolated 24 volt supply has been provided which has a
maximum current capability of 750 ma.

Another consideration for the 1/0 connections is the con-
nector style. The MX-2, MX-6 and any additional expan-
sion /O cards have 50 pin mass termination connections
and are not optically isolated. The MX-2A, MX-6A and
any additional digital 1/O card have plug-in screw termi-
nations and are optically isolated.

A System Block diagram with al the different combina-

tion to make up an MX2000 controller has been provided
on the next page.

Foecifications

MX 2000 Syqtpm

MX2000-8 Expansion

MX2000-2(A), -6(A), -8

MX2000-6(A) Expansion Base System
SLOT SLOT SLOT SLOT SLOT SLOT SLOT SLOT SLOT
8C 8A 8B | 7TA 7B | 6A 6B | 5A 5B | 4A 4B | 3A 3B 2 1
Contains: Contains: Contains: Contains: Contains: Contains: Contains: Contains: MX-2 and
1 of the 1 of the 1 of the 1 of the 1 of the 1 of the MX-6
following following following following following following 32 Bit DSP Contains:
Controller Power Supply
Dual-Axis Dual-Axis Dual-Axis Dual-Axis Board
Interface Interface Interface Interface Including
Board Board Board Board 1/0-BCD
Interface
Digital 1/0 Digital 1/0 Digital 1/0 Digital 1/0 Digital 1/0
Board Board Board Board Board
MX-2A &
Expansion Expansion Expansion Expansion Expansion Expansion MX-6A
1/0-BCD 1/0-BCD 1/0-BCD 1/0-BCD 1/0-BCD 1/0-BCD Contains:
Board Board Board Board Board Board Power
and 1inch and 1inch and 1inch and 1inch and 1inch and 1inch Supply Board
filler panel filler panel filler panel filler panel filler panel filler panel Including
Digital I/0
2 Expansion 2 Expansion 2 Expansion 2 Expansion 2 Expansion Interface
1/0-BCD 1/0-BCD 1/0-BCD 1/10-BCD 1/0-BCD
Boards Boards Boards Boards Boards
MX-8
1Inch 2 Inch 2Inch 2 Inch 2Inch Contains:
filler panel filler panel filler panel filler panel filler panel Power Supply
Notes:

2) Up to 4 Expansion

in the

3) Up to 4 Digital I/O Boards allowed in the System. This

includes the Digital 1/0 section on the Power Supply Board
in an MX-2A or MX-6A system.

222420-001

(2 axis stepper and or servo interface with dedicated 1/O)
Digital 1/0 board

(24 inputs, 16 outputs optically isolated)
Expansion 1/0-BCD board

(48 1/0 points non-optically isolated)

Foecifications

222421-001

222642-001

1) Up to 4 Dual Axis Interfaces Boards allowed in the System.

I/O-BCD Board allowed
System. This includes the Expansion I/O-BCD section

on the Power Supply Board in an MX-2 or MX-6 system.

A list of the part numbers for the discrete part of the system has been provided for your convenience.
Dual-Axis Interface board

19

5.5 -Dual AxisInterface Card

This card contains the interfaces necessary to connect 2
motor drives to the MX2000 controller. A stepper drive
or servo drive can be interfaced to the controller. In ad-
dition 4 dedicated inputs and up to 2 analog inputs can
be interfaced to each axis.

Up to four Axis cards can be plugged into an M X2000-8
back plane. Each axis card must be assigned a different
id (1-4) and id 1 must always be assigned to one of the
boards. The factory setting is board Id 1. For proper op-
eration, a Dual Axis board must always be plugged into

the MX2000 controller. The ID switches are located
behind the Analog output connector on the Dual Axis
card.

The 4 dedicated inputs for each axis are optically iso-
lated and can be either sinking or sourcing inputs. This
selection is made on the Dual Axis Interface card by
plugging the select jumper into the desired position. See
the card layout diagram to locate the jumper. The factory
setting is Sink.

Board | SW1 switch positions AXes MX?2000-2 MX2000-6 MX2000-8
Id C B A Assigned System System System
1 On On On 1&2 Yes Yes Yes
2 On On Off 3& 4 Not available Yes Yes
3 On Off On 5&6 Not available Yes Yes
4 On Off Off 788 Not available Not available Yes

Note: The“A” sideisthe odd axis connector and the“B” sideisthe even axis connector.

5.5.1 — Stepper Drive Connections

The stepper drive connections are made to the STEPPER
DRIVE connector. If an encoder is attached to the step-
per motor the Encoder connections are made to the EN-
CODER connector. An illustration of this is provided.
The signal descriptions and equivaent circuits of each
connector will be covered later on in this section.

Dual Axis Interface
Card

OPTO

PULSE

STEPPER DRIVE

NN N S S N S NN

E DRIVE | Stepper WNDGS
Drive

f
READY |

100 milliajnps maximum

Only Required For
Closed Loop Stepper

ENCODER

{) ENCODER

20

Stepper
Motor :l

5.5.2 — Servo Drive Connections

The servo drive connections are made to the ANALOG
DRIVE connector. The encoder connections from the
motor are made to the ENCODER connector. An illus-
tration of this is provided. The signal descriptions and
equivalent circuits of each connector will be covered
later on in this section.
| "Dual Axis Interface |

Card |

Scheme/Circuit :

\
‘ @_ ouT
- m_om Sensors
‘ E @ EN + [Servo Servo :I
| a @ i Drive Windings Motor
Q EN -
o1 g —
| = @ RDY + | Control
P4

| <

RDY - |
L |@ —

. Il imul
| 100m||a‘psmaxmm
‘ +5V
} % GND |
| @_ SHLD [A
| x A+ X
| 8 @ A i
~ {

| % % oe ‘ \) Encoder
| \

B-
\
| @ 1+ 1
o
| @ ‘
| !
\
T

|

: Customers | Thermal Switch +
| Control Thermal Switch*
| Thermal Switch -
|
|

* |f the Servo Motor has thermal switches included it is recom-
mended that these connections be made to a control circuit (Stop)
to indicate when a Motor Overtemp condition exists.

Foecifications

5.5.3 -Encoder Connectors

The Encoder connector provides a means to interface an
encoder or pulse and direction input to the controller.
There are two identical connectors provided, one for
each axis. The encoder 5 volt output is restricted to 100
milli-amps of current per axis. We highly recommend

the use of twisted-pair (approximately 6 twists per foot)
shielded cable for al encoder wiring to minimize inter-
ference problems. The following signal should be
twisted together A+ with A-, B+ with B-, I+ with I- and
+5V with GND.

Encoder Connector

Signal Name Description Electrical Specification
+5V +5 volts for the encoder 5 +0.2 volts @ 100 ma per encoder
GND Signal ground for encoder Not applicable
SHLD Connection to shield Not applicable
_ 7.3ma@ +5 volts
A+ Encoder channel A+ input 7.3ma @ 0 volts
_ 0 ma@ +5 volts
A- Encoder channel A- input 7.3ma@ 0 volts
_ 7.3ma@ +5 volts
B+ Encoder channel B+ input 7.3ma@ 0 volts
_ 0ma@ +5 volts
B- Encoder channel B- input 7.3ma@ 0 volts
_ 7.3ma@ +5 volts
[+ Encoder channel 1+ input 7.3ma@ 0 volts
_ 0 ma@ +5 volts
|- Encoder channel |- input 7.3ma@ 0 volts

Encoder Equivalent Circuit
Dual Axis Interface

+5V

GND

AN

1 of 6 identical circuits

|
B- |
-

L+ !
"
[

OO0V

|

Foecifications

SHLD ;
680 680 680
A+ % 75175
T L 2 @ +
A- |
B+ |

Encoder Configered as Pulse & Direction
Pulse and Direction Input

GND

Pulse

Dir

_———

/l\

-

21

5.5.4 — Axis /O Connectors

The Axis I/O connectors provides a means of interfacing
4 dedicated digital signals and an analog input for each
axis. The dedicated inputs are opto-isolated and can be
selected as sinking or sourcing on the axis card. The
dedicated inputs are labeled +LIM, -LIM, EVNT1 and
EVNT2. The two limit inputs can be configured as hard
limits or general purpose inputs. The two event inputs
are used for mechanical home and mark registration
triggers. The COM and 24V terminals have been pro-
vided as return paths for the optical isolator circuits. The
COM terminal is used for sinking and the +24V terminal

is used for sourcing. The analog input terminals, IN+
and IN-, can be configured as single ended or differen-
tial input. If configured as single ended these signal be-
come independent inputs with the AGND signal as a
signal common. The voltage range for the analog input
is +10 volts. The 10V, AGND and SHLD terminals are
intended to be used with the analog inputs. The 10V
terminal provides a +10 volt reference output signal for
the analog inputs.

Signal Name Description Electrical Specification
COM Return for input sinking mode. Not Applicable
24V Return for input sourcing mode. Not Applicable
SHLD Connection to Shield . Not applicable
Positive travel limit or general pur- Sink mode: 10.5 ma @ Ov, Ov to +3v on state, 24v off state.
+LIM pose input Source mode: 10.5 ma @ 24v, 4.5 ma@ 12v, +12v to +24v on
) state, Ov to +3v off state.
Negative travel limit or general Sink mode: 10.5 ma @ Ov, Ov to +3v on state, 24v off state.
-LIM UP0OSE I NDUL Source mode: 10.5 ma @ 24v, 4.5 ma @ 12v, +12v to +24v on
purp put. state, Ov to +3v off state.
Home, mark registration or general Sink mode: 10.5 ma @ Ov, Ov to +3v on state, 24v off state.
EVNT1 purpoée input Source mode: 10.5 ma @ 24v, 4.5 ma @ 12v, +12v to +24v on
) state, Ov to +3v off state.
Home, mark registration or general Sink mode: 10.5 ma @ Ov, Ov to +3v on state, 24v off state.
EVNT2 purpoée input Source mode: 10.5 ma @ 24v, 4.5 ma @ 12v, +12v to +24v on
' state, Ov to +3v off state.
10V +10 volt reference 10 £ .07 volt @ 20 ma maximum load.
AGND Analog Ground Not applicable
. . . . 12 bit resolution, 1950 samples/sec, + 10 volt range, 20K ohms
IN+ Analog non-inverting differential nout imoed +0.1 volt full scal +0.035 volt
or single ended input inp pedance, £0.1 volt full scale accuracy, 0. volt zero
input accuracy.
. . . . 12 bit resolution, 1950 samples/sec, + 10 volt range, 20K ohms
IN- Analog inverting differential or nout imoed +0.1 volt full scal +0.035 volt
single ended input input impedance, +0.1 volt full scale accuracy, *0. volt zero
input accuracy.

Axis I/0O Equivalent Circuit
Dual Axis Interface

|
|
¥ |

I

I

I

I

\ “ B .

| | o
+24V L8 24V COM I A !

| < 3 ! N |

=3 I

‘ 25 3 I o

| e [I |

I 24v com ‘

‘ + LIM @ @ +LIM 2k !

I r—-@) @)— I

| LY _@ @_ -LIM |
o tiM | I

‘ | EVNT1 EVNT1 | 1 of 8 identical circuits |
‘ 2 || D1—

I | EVNT2 _@ @_ EVNT? | }

‘ 10V AGND =

I oy 2%, |

| IN + IN + 15K « |

| ‘N D || &H 12 bit |

- @ AID

I SHLD @ ‘

| |7_‘@ A [

I I

‘ I

| I

| I

22

‘ This connection is only on the |
"A" connector side. This 24 volts This connection is only on the

I
| is used for both sides A and B. /j‘/”BH connector side. This common
f o4 com is used for both sides A and B
} @ +LIM !
+LIM
I LIM % @_ LIM
. .
I @
| EVNTL @ o @_ EVNT1 ‘ —
| ENT2 = EVNT2 |
| @ g AGND
ot |e :
IN + |
IN + O anAloc | ANALOG
ANALOG
‘ N % % IN - | INPUTS
Do \
SHLD
SHLD
|0 | ‘
| 110 set for Sinking Mode ‘
| (Factory setting) |
ouT ‘
|out @ @ ANALOG
T ANALOG
| aeND @ w @_ AGND OUTPUTS
L@ o
\ ©
EN - I
I EN @ S @‘ | Can Only Be Used If
| RDY+ @ < @_ RDY Axis is defined as a
< I Stepper Drive
erle] e
‘ \
‘ \
I

Foecifications

5.5.5 - Stepper Drive Connectors

The stepper drive connector provides a means of con-
necting the controller to a stepper drive. There are two

identical connectors provided for this means, one for 1%

axis (Side “A”) and one for the 2™ axis (Side “B”).

Signal Name Description Electrical Specification
OPTO 5 volt source for opto-isolators. 100 ma maximum load
PULSE 0 to 1.99 Mhz square wave when motion | Open drain output, +30v maximum high level voltage,
is commanded. +0.7v @ 40 malow level voltage.
DIR Motor direction control. ?8 (;r:/ déafoogt:% WJFI‘?;% n\:gﬁarggm high level voltage,
Reduce motor current by 50% at stand- . . .
RDCE still. A Low level output reduces the mo- ?8 %%aﬁoog:% Wﬁ?é%rcgﬁan;:m high level voltage,
tor current.))
Increase motor current by 50% when run- . . .
BOOST ning. A low level output increases motor 98 671\1/ %al foor;?fg Wj?é% T/?))I(tlarggm high level voltage,
current during motion. ' '
AWO Turns winding off when at standstill. A Open drain output, +30v maximum high level voltage,
low level output turns windings off. +0.7v @ 40 malow level voltage.
READY Indicates the status of drive. A highlevel | Input loading 10K ohms, low level voltage Ov to +0.9v,

input indicates a drive ready condition.

high level voltage +3.5v to +5.0v

+5V

Foecifications

Stepper Drive Equivalent Circuit
Dual Axis Interface

oK

I
I
I
I

OPTO
_% PULSE 70‘% :
@ DIR 7;% |
@ AWO 734% :

RDCE 740

% BOOST Z’% :
READY |
@ >7:1>H014 |
I
I

23

5.5.6 — Analog Drive Connector

The Analog drive connector provides a means of con-
necting a servo drive to the controller. There are two

identical connectors provided for this means, one for 1%
axis (Side “A”) and one for the 2™ axis (Side “B”).

Signal Name

Description

Electrical Specification

ouT

Analog output voltage that can be

aservo drive.

used as a torque command for a servo
drive or an analog output if axisis not

+0.11v.

+ 10v output @ 5 ma maximum (2K ohm load).
Output accuracy: Ov output +0.03v, Full scale error

AGND

Analog Ground.

Not applicable

EN+

conducting.

Collector output of an opticaly iso-
|ated device. When servo driveisen-
abled the opto-isolator transistor is

voltage .4v @ 15ma

Maximum Collector—Emitter voltage 70 volts, Saturation

EN-

the opto-isolator transistor is con-
ducting.

Emitter output of an optically isolated
device. When servo driveis enabled

voltage .4v @ 15ma

Maximum Collector—Emitter voltage 70 volts, Saturation

RDY+

driveisready when current flows
through opto-isolator.

+ side of an opto-isolated input. The

<40ua@ Oto 1.3 volts

On current 11.5 ma @ 24 volts (2 K ohm load), Off current

RDY -

driveisready when current flows
through opto-isolator.

- side of an opto-isolated input. The

<40ua@ Oto 1.3 volts

On current 11.5 ma @ 24 volts (2 K ohm load), Off current

24

Analog Drive Equivalent Circuit
Dual Axis Interface

L]

Servo Drive

Drive
Enable

v

Analog Drive Connector
Dual Axis Interface

ouT

AGND

EN+ e

Drive

Ready

¢

o

Foecifications

5.5.7 —Dual AxisInterface Card

SLO-SYN
2000

Dual Axis Interface

B
@ BU

ENCODER

0Y0Y0Y0Y0"0"0Y0'0)| Bk B

o'0’'0'0’'0'0'0'0'0

@]
O
O
O
O
O
O
O
(@)

Oo'0’'0'0'0'0'0'0"'0

AXIS I/O

STEPPER DRIVE

ANALOG DRIVE
OYOoYOYOoYoYo

2>
-3

User
AXxis Labels

Foecifications

JRN3

CHENt

3 |
]

BOARD

0S

B
=
2
K[

molrmo|lromo|lrmo|lrmo|rmo|rmo|s oo
]

*

k24
k23
R34

R

Ri3D

-

! D
03B -
H
£ N
5

€36
[R5 |
{rRe |

c37

R4

L Jw
028
w {F 1 T Fm

%

= v/

:
G

3 ?us
s { |
=
9 =3
ol & L
<= | 1

<17

C33

|

N "

T Sink/Source
Select Jumpers

Board ID
Dip Switches

25

5.6 —32 bit DSP Controller Card

This card contains the interfaces to serially communicate
with a host port and auxiliary port, and controls the en-

tire set of cards plugged into the MX 2000 system.

5.6.1 —Auxiliary Serial Port

This port can communicate serially with an external port
as an RS232 or R$485 seria device. The type of device
is jumper selectable (J10) on the board and the factory
setting is RS485. The serial protocol for this port can be
modified by the SETCOM command. The default setting
is 9600 baud, no parity, 8 bit and 1 stop bit. This port is
referred to as Port #2 when used in the user generated
program.

Signal Name Description
GND Signal Ground reference
RX+ Differential receiver non-inverting input.
RX- Differential receiver inverting input or RS232 receiver input.
TX+ Differential transmitter non-inverting output.
TX- Differential transmitter inverting output or RS232 transmitter output.
SHLD Connection to Shield
Auxiliary Port Equivalent Circuit HOST CONTROL PANEL RS485
+5v MX AUX PORT RS485
320K USER MX
CONTROL PANEL AUX PORT
RS485 RS485
%h 2.2k g:juacse N GNDO 1OGND
T><+O_ 2 RX+
UART Tx-C)_mﬁ3 RX_IZD

RS485

Device

SOOOO®

RS232
Device

26

ouT

RX _40TX+
5 ~TX-
RX O

50 sHLD

USER CONTROL PANEL RS232
MX AUX PORT RS232

USER MX

CONTROL PANEL AUX PORT
RS232 ~ 1R5232

enp O O GND
\ ZO RX+
™ O 30 Rx-
\ 40 TX+
rx O 20 Tx-
L—GOSHLD

NOTE: MX Aux Port

Pins 2 & 4 not used
NOTE: Please reference your User
Control Panel manual for pinout .

Foecifications

5.6.2—-Host Serial Port

This seria port is used to program the unit or communi-
cate with the host device. There are two serial interfaces
for the host port, RS232 and RS485. The RS232 inter-
face uses a 9-pin D female connector. The RS485 inter-
face connection is provided on a 6-position removable
terminal strip. The device that communicates with the
host computer can be either RS232 or RS485. This se-
lection is made with the 232/485 dip switch on the front
panel. MX2000 units can be daisy chained using the
R$485 interface. The Unit ID switch is used to set a

unique number for each unit for this purpose. This port
is referred to as Port #1 when used in a user generated
program.

The dataformat for serial communicationsis no parity, 8
data bits and 1 stop bit. The baud rate is switch select-
able for 4800, 9600, 19200 or 38400. The baud rate
switches and host device selection are only read on
power turn-on or when a RESET command is issued.

Dip switch Setting

232/485 9.6 19.2 38.4 Comments
switch switch switch switch
232 ON OFF OFF Host communicates RS232, Daisy chaining is RS485, 9600 baud
232 OFF ON OFF Host communicates RS232, Daisy chaining is RS485, 19200 baud
232 OFF OFF ON Host communicates RS232, Daisy chaining is RS485, 38400 baud
232 OFF OFF OFF Host communicates RS232, Daisy chaining is R$485, 4800 baud
485 ON OFF OFF Host communicates RS485, Daisy chaining is RS485, 9600 baud
485 OFF ON OFF Host communicates RS485, Daisy chaining is RS485, 19200 baud
485 OFF OFF ON Host communicates RS485, Daisy chaining is RS485, 38400 baud
485 OFF OFF OFF Host communicates RS485, Daisy chaining is RS485, 4800 baud
Host Serial Port Equivalent Circuit
RS485 Position selected
NDr;F+i——j
G | l 1
Host RS485 Connector S : otz oot
Signal Name Description 4 P
GND Signal Ground reference [UART
RX+ Differential receiver non-inverting input. Rx | 0:3— n
RX- Differential receiver inverting input. L—
TX+ Differential transmitter non-inverting output. @_%“
TX- Differential transmitter inverting output O
SHLD Connection to Shield 1 @_ RX-
2 GZ?_ TX+
TX-
H
@_ SHLD TXEN

Host RS232 Connector
Pin Signal Name Description
1 GND Signal Ground reference
2 TX MX2000 Transmitter terminal
3 RX MX 2000 Receiver terminal
4 GND Signal Ground reference
5 GND Signal Ground reference
6-9 NC No connection

Foecifications

Host Serial Port Equivalent Circuit
RS232 Position selected

1

E < T

.
o
c
c b
>
o
S

RS232
—
X

¥

RS485

POSOSE

27

Daisy Chaining M X2000 Controllers

HOST CONTROLLER RS232
MX CONTROLLERS (ID 1 RS232) (ID'S 2-9 RS485)

HOST MX
CONTROLLER HOST RS232
RS232 ID1
M I
9 Pin 'D"
L L
MX MX MX MX
HOST RS485 HOST RS485 HOSTRS485 ~ ~ ~ HOST RS485
ID 1 D 2 D 3 ID 9
GNDO GNDO GNDo_ ________ __G_leo
RX+O‘:CCCCJO':CCC:¢O'\)/‘)/‘)/’\)/’___R)(:O'_élzo
RX-(OH JO_ %’\‘\‘\“\————&O‘—'
g IDOOOT seaDOOOA e DT e
TX- TX-NLDN NN AL I
TX- O
HOST CONTROLLER RS485
MX CONTROLLERS ID 1-9 RS485
HOST MX MX MX MX
CONTROLLER HOST RS485 HOST RS485 HOST RS485 =~~~ HOST RS485
RS485 D1 ID 2 ID 3 ID 9
GND, GND GND GND GND
O O O O ———-—-—- -0
TX RX RX RX RX
O —RO — X0 O Sy TR0,
T»C}:(:(:X:X:__Jﬁ{}><:X:X:X:__Jﬁ{}><:X:X:X:__jk{},\/\,\/___E&CF}
R X+ TX+ TX+ TX+O
L Ty Xy O o~~~ =T
120

28

USER CONTROLLER RS232
MX CONTROLLER RS232

USER MX
CONTROLLER HOST RS232
RS232 ID1

N
RX O 2O TX

TX O \\ SO RX
oND O \ 50 GND
/

\

NOTE: Please reference your user
controller manual for pinout .

9 Pin 'D' Cable

Foecifications

5.6.3—DSP Card Inputs

There are four optically isolated inputs to the DSP card.
These inputs can either be sinking or sourcing and the
selection are controlled by a jumper (J11) on the DSP
board. The factory setting is sinking.

The CLR terminal is a fail safe input that will terminate
program execution and or motion if open circuited. This
input must be active to allow auto-execution to occur
on power turn-on or if a RESET command is issued.

The program that will be auto-executed is selected by
the input states of the SEL 4, SEL 2 and SEL 1 inputs.

Note: In Order for motion to occur, a CLR to COM
jumper isrequired.

Projects are loaded sequentially into the MX2000 con-
troller memory after an ERASE DIR command is issued
and are labeled projects 0 to 6.

Auto-Execute selection Chart
Project selected SEL 4 SEL 2 SEL 1
1% Project (Project 0) Inactive Inactive Inactive
2" Project (Project 1) Inactive Inactive Active
37 Project (Project 2) Inactive Active Inactive
4™ Project (Project 3) Inactive Active Active
5" Project (Project 4) Active Inactive Inactive
6" Project (Project 5) Active Inactive Active
7" Project (Project 6) Active Active Inactive
1% Project (Project 0) Active Active Active
Signal Name Description Electrical Specification
Sink mode: On state 0 to +12 volts, 3.2 ma @ +12v,
CLR Stop program execution and 6.8 ma @ Ov
motion if open circuited. Source mode: On state +12 to +24 volts, 3.2 ma @ +12v, 6.8 ma
@ +24v
Sink mode: On state 0 to +12 volts, 3.2 ma @ +12v,
6.8 ma @ Ov
SEL 4 Auto-execute program select Source mode: On state +12 to +24 volts, 3.2 ma @ +12v, 6.8 ma
@ +24v
Sink mode: On state 0 to +12 volts, 3.2 ma @ +12v,
6.8 ma@ Ov
SEL 2 Auto-exectte program select Source mode: On state +12 to +24 volts, 3.2 ma @ +12v, 6.8 ma
@ +24v
Sink mode: On state 0 to +12 volts, 3.2 ma @ +12v,
6.8 ma@ Ov
SEL1 Aito-execite program select Source mode: On state +12 to +24 volts, 3.2 ma @ +12v, 6.8 ma
@ +24v
+24 Return for input sourcing mode | Not applicable
COM Return for input sinking mode Not applicable

Foecifications

29

30

SLO-SYN

2000
32 bit DSP controller

@FAULT

AUXILIARY

HOST RS485

N
™
N
0
x
=
»
®]
T

DSP Card

Jumper in SOURCE Position

CLR

O——21sEL 4
O———SEL 2
O——sEL1

+24

COM

DSP Card
Jumper in SINK Position

O——cLRr

O——21sEL 4
O———SEL 2
O——|SEL1

+24

COM

DSP Input Equivalent Circuit

3.3K r————1
INPUT O AVAVAY, N i |
»—N— | | - |
+24V K B A4 |
K |
SINK L
+24v O

© Jumper
io| p

coMm O——e—O

SOURCE

+24V COM

OUTPUT

Foecifications

5.7 — Expansion I/O Board

The Expansion |/0O-BCD board has been designed to
interface to BCD switches and/or to an OPTO 22 mod-
ule rack. There are two ports on each board and each
port has 24 bi-direction 1/O points. The odd pins 1-47 on
the 50-pin header are signal pins. The even pins 2-50 are
signal grounds.

If the MX2000 controller is an MX2 or MX6 the first
expansion 1/O board is on the Power supply board and
there are only 24 1/O points available (100-124). Up to 4
boards can be interfaced to an MX2000-8 controller.
The ID for each board is selected using two dip
switches.

5.7.1 —EXIN/EXOUT assignments

The EXIN and EXOUT commands can be used to access
the expansion board 1/0. Up to 48 1/O pins can be ac-
cessed with these commands. The pin assignment and
connector assignment for each 1/0O point is depicted in
the following table.

/O | Pin | Connector I/0 | Pin Connector
BOO | 47 Top B24 | 47 Bottom
BO1 | 45 Top B25 | 45 Bottom
B02 | 43 Top B26 | 43 Bottom
B0O3 | 41 Top B27 | 41 Bottom
BO4 | 39 Top B28 | 39 Bottom
BO5 | 37 Top B29 | 37 Bottom
B0O6 | 35 Top B30 | 35 Bottom
BO7 | 33 Top B31 | 33 Bottom
B0O8 | 31 Top B32 | 31 Bottom
B09 | 29 Top B33 29 Bottom
B10 | 27 Top B34 | 27 Bottom
B11 | 25 Top B35 25 Bottom
B12 | 23 Top B36 23 Bottom
B13 | 21 Top B37 21 Bottom
B14 | 19 Top B38 19 Bottom
B15 | 17 Top B39 17 Bottom
B16 | 15 Top B40 15 Bottom
B17 | 13 Top B41 13 Bottom
B18 | 11 Top B42 11 Bottom
B19 9 Top B43 9 Bottom
B20 7 Top B44 7 Bottom
B21 5 Top B45 5 Bottom
B22 3 Top B46 3 Bottom
B23 1 Top B47 1 Bottom

Where: “B” isthe board number, 1 through 4.

Foecifications

Expansion I/O-BCD Connector PinOuts

—

Signal
Common

@ @
© @
@ ®
® @
@ ©@
@ ®
@ @
@ @
©@©
©®©
©®
@ @
@O
0)0)
©O
0J0)
®O

Not Used

[——» /0 00/24

| —— - |/O0 01/25

[——» 1/0 02/26

| ———— > |/O 03/27

| —— - |/O 04/28

| —— - |/O 05/29

| ————— - |/O 06/30

| ————» |/O 07/31

| ———— > |/O 08/32

[¢—— - 1/0 09/33

| ———» 1/O 10/34

| ———— > |/O 11/35

| ——— > |/O 12/36

| ¢—— - 1/O 13/37

| ———» |/O 14/38

| ———— > |/O 15/39

| —— - |/O 16/40

[—— P |/O 17/41

| ¢———» |/O 18/42

| —— - 1/0 19/43

[——» 1/0 20/44

| ¢———» |/O 21/45

| ———» 1/O 22/46

[—— P 1/0 23/47

31

SLO-SYN
——= 2000

I/l0 EXPANSION

BCD INTERFACE 1-14
I/O EXPANSION 1 - 24

c15 { }
-

u1s

[ooy

0000000000000 0O0O00O000OO00OOO0
0000000000000 0O0O00O000OO00OOO0

N -
R36]
ule

o4 L
ut4

q]

c13
u13

q]

>w|>w|>w|>®| POS

{_D_} c17
u17

BCD INTERFACE 5 -8
I/O EXPANSION 25 - 48

RI9 R21 R23 R20 L

Board ID DIP / / Board ID
Switch Setting Table DIP Switch

0000000000000 O00O0OO0O0O000O000
0000000000000 O00O0OO0O0O000O000

32 Foecifications

Expansion 1/0-BCD Port
Connection to OPTO-22 Module Rack

Controller OPTO-22
Expansion
1/0-BCD 50 conductor ribbon cable Module
Rack
Board
/O modules are available
for use with Logic supply
voltages 5, 15, and 24V.
The logic supply (-) terminal Logic
is connected to even pins Supply

2-50 which are ground.

5.7.2 - BCD assignments

The BCD commands can be used to access the expansion
board BCD switches. Each BCD switch can have up to 7
digits with a sign. Up to 8 sets of BCD switches can be

OPTO-22
Manufacturer Part Number
Crydom PB-24
Gordos PB-24
Grayhill 70ORCK 24, 7TOMRCQ24 series
Potter & Brumfield 21024, ZIOM 24 series
OPTO-22 PB-24, PB-24Q, PB-24HQ

accessed with these commands. The pin assignments and
connector assignment for each BCD switch are defined in
the following table.

BCD Pin Connector BCD Pin Connector
B04 47,45,43,41 Top B08 47,45,43,41 Bottom
B0O3 39,37,35,33 Top B0O7 39,37,35,33 Bottom
B02 31,29,27,25 Top B06 31,29,27,25 Bottom
BO1 23,21,19,17 Top B05 23,21,19,17 Bottom
B01-B04 15,13,11,9,7,5,3,1 Top B05-B08 15,13,11,9,7,5,3,1 Bottom

Where: “B” isthe board number, 1 through 4.

EXPANSION I/O - BCD PORT
CONNECTION TO BCD SWITCH BANKS

W.E P/N 221157-002

Foecifications

BCD BANK #
L| 7DIGITS + SIGN
Controller W.E. P/N 223263-001
] W.E P/N 221157-002
H BCD BANK #
B | | 7DIGITS + SIGN
BCD J
EﬁzﬁgggN 50 CONDUCTOR SWITCH L
BOARD RIBBON CABLE INTERFACE | [| WL.EPIN221157:00
= BCD BANK #
B L | 7DIGITS + SIGN

WLE P/N 221157-00

BCD BANK #
7 DIGITS + SIGN

14 CONDUCTOR

RIBBON CABLE

18 INCHES LONG
INCLUDED

33

EXPANSION 1/0-BCD PORT

CONNECTION TO BCD SWITCH BANKS
(USING USER SUPPLIED COMPONENTS)

EXPANSION 1/0-BCD

{,‘.:«:\nu-u—nl

25
27
23
3

33
35
37
39

41
43
45
47

CONNECTOR
Y T :
\ Dl: 1
D2, :
p3! 1
D4,y :
05:]
D6y :
D7: 1
1]
: SIGN 8 [4 |2 L 4 21 |IBl42[1 B4 21 [B42]1 184|218 4|2} :
1 1
(T ITTITT ’
: DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT :
! (/ st J 100K 10K 1000 100 10 1 :
: S4|S3(52 |1 :
! 1 1
' 1
: c c (D}(ﬂ;_ ™) |c c C F o o :
STROBE 4 1 DIGIT 7 p
STROBE 3 4 :
TROBE 2!
lSTROBEi- BCD BANK 1 E

— ol BCD BANK 2
o 02 * DIODES SMALL SIGNAL
\—“_94 SUCH AS 1IN914, IN4148, ETC.
— D5 |
— 06 |
o] BCD DIGIT CODING
TROBE
oL S4 s3 S2 St DIGIT
00 OPEN OPEN OPEN OPEN 0
| BCD BANK 3 OPEN OPEN OPEN CLOSE 1
': OPEN OPEN CLOSE OPEN 2
” OPEN OPEN CLOSE CLOSE 3
D OPEN CLOSE OPEN OPEN 4
. OPEN CLOSE OPEN CLOSE 5
TROBE 4 OPEN CLOSE CLOSE OPEN 6
TROBE OPEN CLOSE CLOSE CLOSE 7
v CLOSE OPEN OPEN OPEN 8
i CLOSE OPEN OPEN CLOSE 9
ui BCD BANK 4 SIGN DIGIT CODING
" S1 SIGN
D OPEN +
06 CLOSE -
D7
STROBE 4
STROBE 3
STROBE 2
STROBE 1

Foecifications

1/O Expansion Board
Pins Description Specification
Input: On state 0 to +1.5 volts, 1 ma @ QOv,
414345 47 BCD 4 or BCD 8 strobes Off state +2.9 to +C_-§0 volts. _
A EXIN/EXOUT B03/27 to B00/24 Output: open circuit +30 volt maximum,
saturation voltage +0.5 volts @ 15 ma.
Input: On state 0 to +1.5 volts, 1 ma @ Qv,
33.35.37.39 BCD 3 or BCD 7 strobes Off state +2.9 to +30 volts. _
T EXIN/EXOUT B07/31 to B04/28 Output: open circuit +30 volt maximum,
saturation voltage +0.5 volts @ 15 ma.
Input: On state 0 to +1.5 volts, 1 ma @ Ov,
25972931 BCD 2 or BCD 6 strobes Off state +2.9 to +30 volts. _
e EXIN/EXOUT B11/35 to B08/32 Output: open circuit +30 volt maximum,
saturation voltage +0.5 volts @ 15 ma.
Input: On state 0 to +1.5 volts, 1 ma @ Ov,
1719.21.23 BCD 1 or BCD 5 strobes Off state +2.9 to +$0 volts. _
e EXIN/EXOUT B15/39 to B12/36 Output: open circuit +30 volt maximum,
saturation voltage +0.5 volts @ 15 ma.
Input: On state 0 to +1.5 volts, 1 ma @ Qv,
13579111315 BCD 1-4 or BCD 5-8 data bus Off state +2.9 to +30 volts.
T EXIN/EXOUT B23/47 to B16/40 Output: open circuit +30 volt maximum,
saturation voltage +0.5 volts @ 15 ma.

Foecifications

/O POINT

Expansion I/O BCD Equivalent Circuit

+5V

4. 7K
INPUT

OUTPUT

35

5.8 - Digital I/O Board

The Digital 1/0-BCD board has been designed to inter-
face to switches and/or relays. There are 24 opticaly
isolated inputs and 16 optically isolated outputs per
board.

5.8.1 —Input Connector

This connector has 24 optically isolated inputs that can be
configured for current sinking or sourcing. The sink-
ing/sourcing selection is done on the digital 1/0 card us-
ing jumpers. The factory setting is sinking.

Note: The movement of both jumpers is required for
proper operation. If only one jumper is moved the
digital inputsand outputs modes will be different.

If the MX 2000 controller isan MX2A or MX6A the first
digital 1/0 board is the Power supply board and there are
16 inputs and 8 outputs available (101-116). Up to 4
boards can be interfaced to an MX2000-8 controller. The
ID for each board is selected via 2 dip switches located

on the board.

J7

Jumper Positions

for

/

J7

Header
/ Pins \

Jumpers /

- RN

O O

Jumper Positions

for

Sourcing I/O Sinking I/O
Inputs
Signal Name Description Electrical Specification
Sink Mode: On state 0 to +12 volts, On state current 2.3 ma @ +12v, 6.5 ma @ Ov.
B0O1to B24 IN (BO1-B24) Source Mode: On state +10 to +24 volts, On state current 2.3 ma @ +10 volts, 6.5 ma
@ +24 volts.

Where: B isthe board number, 1 through 4.

Sinking Mode

INPUTS
OoO—— 1,2,13,14

(@ — 3,4,15,16

O——— 5,6,17,18

O—— 7,8,19,20

O——— 9,10,21,22
O—

24V

24V

COM

QOO | |\ QDDDDD

COM

36

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11,12,23,24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4

Sourcing Mode

i
|

INPUTS i
»—(o— @ 1,2,13,14 i
1»—()/0— ® 3,4,15,16 |
o—O/O— ® 5,6,17,18 i
o—o/o— ® 7,8,19,20 i
0—O/O— @ 9,10,21,22 i
>—O/O— @ 11,12,23,24 i
|

l

® 24v i

® 24v !

@ com i

® com i

|

|

Foecifications

5.8.2 — Output Connector

This connector has 16 optically isolated outputs that can
be configured for current sinking or sourcing. The sink-
ing/sourcing selection is done on the digital 1/0 card us-
ing ajumper. The factory setting is sinking.

Note: The movement of both jumpers is required for
proper operation. If only one jumper is moved the

digital inputsand outputs modes will be different.

J7

Jumper Positions
for

Header
/ Pins \

TN TN Jumpers , ;
‘_," ‘_,’. ‘_,l' ‘_,ll

J7

/'

O O

Jumper Positions
for

Sourcing 1/0 Sinking I/O
Outputs
Signal Name Description Electrical Specification
Sink Mode: Voltage rating 24 volts, On state 0 to +2 volts @ 50 ma,
BOL to B16 OUT (B01-B16) Off state leakage 0.6 ma maximum @ +24v.

Source Mode: Voltage rating 24 volts, On state +20 to +24 volts @ 50 ma, Off state
leakage 0.6 ma maximum.

Where: B is the board number.

Foecifications

ouT

ouT

ouT

Sinking Mode

OUTPUTS

Signal

Common

1,2,9,10

3,4,11,12

5,6,13,14

7,8,15,16

24V

24V

COM

COM

| . |
| Sourcing Mode !
|

|
! OUTPUTS |
I I
:OUT ® 1,2,9,10 :
I I
Lour S| sa1r12 |
I I
:OUT . ® 5,6,13,14 :
I I
I — | 781516 |
|
| |
' |
' |
| Relay |
: Load coil |
| |
' |
' |
: o @ 24V |
: Signal ® oav :
: Common |

|
: — (g coMm |
I I
: S| con
| |
! |

37

5.8.3 —Internal Power Supply

This connector has 4 terminals for +24V @ .75 amps and
4 terminals for COM. These terminals are used as signal
returns for inputs and signal common for outputs.

Internal Power Supply

Mode Description

The COM terminals are used as the return source for the inputs and the signal common for the outputs.

The +24 terminals are used as the return source for the inputs and the signal common for the outputs.

38

Digital I/O Equivalent Circuit

1K

+24V

O+24V

—
vy

[|
|
|
|
|
|
|

Sink m (P Source

T

10K

O ouT

Foecifications

SLO-SYN
2000

Digital I/O

Foecifications

J o ™~
D34 D37 D42 psg U
R30 1 _[MD3] iy T
R29 -1D3 - 14 By
R28 113 -{lIo3 -4 o4
R27 T T H H
0 Ra D36 D40 D44 D48
Dig D22 D26 D30 —
R24 r r n r .
ras o o7 By 7
R o 02 02 R EE
R20 1 U 1 1l
RI9 2 D20 pg D24 g D28 D37 U9
Wl st Il
i Elg -7+ il -
D4 D8 D12 i
sz Dg6 DB
R42 Tr dr AL I
Re1 Jpet dpest pet pest
R40 Jpet B pett pes-
R39 O A F - I
R38 L 78 7
RSy D66 D70_° D74
R36 Wt i L
R3S 1 L i U2
R34 LY i
R33
D58
R32 D50 D54 D58
R31] &
2 D49 - - -
051 T N
O 052 50
) — i1 —
o ())
o) ()
° ar e 0
R3 R4
35
RO]

Q28
Q18

CNT
Q26 Q25

OO ="
OO ——O0

— T
Q27

N — N

Q24
[T RS
0l
7
o BDS
D&
B
"|A
77 8
an
B
5a
B
A

L TR

Cd
C6

C8

| —

€29
u10 o o4

Cc2 Cc3
T —

[TR
€23 o1
s <2 E E €22
[—
"H B39
c19
18
R17
[TIrie
c15
C
S —
C9 C12
10 cn

risCT]
034 €25
U R46
u1s 23
B |
026 L
U20 " puq c2g]
U221m
L — uodl
Cres2 {1
L C33 T L
u25

Sink/SourceA
Jumpers

L abe

LN
Board ID A

Setting Table

L Board ID
DIP Switch

39

BCD INTERFACE 1 -4

40

——= SLO-SYN
Power Supply

@ rower

AC INPUT

(oNe)
o O
O O
O O
O O
(oNe)
O O
O O
O O
O O
o O
O O
O O
O O
(oe)
o O
O O
O O
O O
(oNe)
o O
O O
O O
O O
[oe)

N

1/0 EXPANSION 25 - 48

5.9-MX2and M X6 Power Supply Board

This board contains the AC input terminals and interface for 24 non-isolated bi-directional
1/O. This board is assigned Expansion 1/O board #1, EXIN(100-123) and EXOUT(100,123) .
The range for the AC input is 90 to 265 VAC at 50/60 hz.

5.9.1—AC Input

The AC input is connected to aterminal strip.

Lead Color Lead Color
. — North America European
Terminal Description Standard Standard
L1 Line or Hot Black Brown
N Common or Neutral White Blue
@ Ground Green Green with Yellow Stripe

5.9.2 - EXIN/EXOUT assignments

The EXIN and EXOUT commands can be used to access the expansion board 1/O. Up to 24
1/0 pins can be accessed with these commands.

1/0 Pin 1/0 Pin
100 47 112 23
101 45 113 21
102 43 114 19
103 41 115 17
104 39 116 15
105 37 117 13
106 35 118 11
107 33 119 9
108 31 120 7
109 29 121 5
110 27 122 3
111 25 123 1

See Section 5.7.1 for more details.

5.9.3-BCD assignments

The BCD command can be used to access the expansion BCD switches. Each BCD switch
can have up to 7 digits with asign. Up to 4 sets of BCD switches can be accessed with this

command.
BCD Pin
104 47,45,43,41
103 39,37,35,33
102 31,29,27,25
101 23,21,19,17
101-104 15,13,11,9,7,5,3,1

See Section 5.7.2 for more details.

Foecifications

SLO-SYN

POWER SUPPLY

. POWER

AC INPUT

O
O
O
O

G & B o
(059%9)

Foecifications

5.10 - M X2A and M X6A Power Supply Board
This board contains the AC input terminals, interface for 16 optically isolated input and 8 op-

tically isolated outputs. This board is assigned digital 1/0O board #1, IN(101-116) and
OUT(101,108) . The range for the AC input is 90 to 265 VAC at 50/60 hz.

5.10.1-AC Input

The AC input is connected to aterminal strip.

Lead Color Lead Color
. — North America European
Terminal Description Standard Standard
L1 Line or Hot Black Brown
N Common or Neutral White Blue
@ Ground Green Green with Yellow Stripe

5.10.2 — Input Connector

This connector has 16 optically isolated inputs.

Inputs

Signal Name Description Electrical Specification

Sink Mode: On state 0 to +12 volts, On state current 2.3
ma@ +12v, 6.5 ma @ Ov.

Source Mode: On state +10 to +24 volts, On state cur-
rent 2.3 ma @ +10 volts, 6.5 ma @ +24 volts.

101to 116 IN (101-116)

See Section 5.8.1 for more details.

5.10.3 — Output Connector

This connector has 8 optically isolated outputs.

Outputs

Signal Name Description Electrical Specification

Sink Mode: Voltage rating 24 volts, On state 0 to +2
volts @ 50 ma,

101 to 108 OUT (101-108) | Off state leakage 0.6 ma maximum @ +24v.

Source Mode: Voltage rating 24 volts, On state +20 to
+24 volts @ 50 ma, Off state leakage 0.6 ma maximum.

See Section 5.8.2 for more details.

5.10.4 — Internal Power Supply

This connector has 4 terminals for +24V and 4 terminals for COM. These terminals are used as
signal returns for inputs and signal common for outputs.

Internal Power Supply

Mode Description

Sink The COM terminals are used as the return source for the inputs and the signal
common for the outputs.

The +24 terminals are used as the return source for the inputs and the signal com-

Source mon for the outputs.

See Section 5.8.3 for more details.

41

42

SLO-SYN
MX8 Power Supply

5.11 - M X8 Power Supply Board

This board contains the AC input terminals with no I/O connections. The input
voltage range is 90 to 132 VAC or 175 to 264 VAC 50/60 hz. The MX8 will not
operate correctly if the input voltage is not within the two ranges. No operator
action is required, the MX8 automatically senses the input voltage and config-
ures itself to operate at either AC input voltage range.

5.11.1-AC Input

The AC input is connected to aterminal strip.

Lead Color Lead Color
: _— North America European
Terminal Description Standard Standard
L1 Line or Hot Black Brown
N Common or Neutra White Blue
Green with
@ Ground Green Yellow Stripe

Foecifications

|

0.37 —

9.35

7.48
189.88

9.84
250.03
OVER CONNECTORS

A
10.63
269.88

[23.74]
12.00

POWER
AC INPUT

514 ———————————®

[130.58]

[82.55]

4— 3250 —— P t— <+
0.219
[5.56] TYP
L]

5.12-MX2 Outline

v 3 3 3NI¥Q ¥3dd3LS

|

[135.66]
OVER HARDWARE

43

Foecifications

5.13-MX6 Outline

L 9.14 -
[232.18] ! oae -~
| | ~
[4—————— 3250 —— Pe———— 5935 ————W I 250.03
} [82.55] } [74.541 ‘ OVER CONNECTORS
‘ e | . .
| : | 0.500 189.88
! TYP ! £ [12.70] ! 0.37 — |
| | ‘ 9.35
Oual Axis nter :
® Busy Y ® POWER !
I
[} o [[} [} ‘
o o o o o
o o o| Il 0 o AC INPUT !
(e} o N - o (e} ‘
0 o o| [0 0 !
O O O O O ‘
O o O 8- O O 1
0 o (s} s} 0 ‘
o (] o o o '
0 @ 0 w |2 M@ 0 !
o o o o o ‘
[} o] M e} [} '
) o o B)) | 10.63
&) o o o > : 269.88
o o o X i (o o ‘
O] O N O O '
O] O O O 12.00 ‘
[o ol B [o [304.80] |
s \
2 1
°
3
- BB |
[¢] 5188 '
® 4 B |
o = B I
o = B
]
° : BB ‘
o - B ‘
o il !
o
o
$ \
0 o :
o
o ° ‘
® 1
o \
O
= |
I
I
Y
9.34 L
r [237.26]
OVER HARDWARE
| 19.00 >
[482.6]
|« 183 .
- [465.1] o .28 x .53
‘ ! ‘ Mounting Hole
-t ————————— —_—»
- 16.99 - 8 places 7.54
‘ [431.5] ‘ [191.6]

& v —

099
o)

5%,
g2/

44 Foecifications

5.15-MX & SERVO AMPLIFIER CONNECTION DIAGRAM

[— 20mm —>

MX2000 AMPLIFIER POWER
SUPPLY
Dual Axis DSP | Power Supply ENCODER CURREIT Loy
Interface Board | Board Board CABLE 223553 | commano scaLe
BALANCE
CONTROL VOLTS |O
¥ ENABLE O
s DRIVE READY |O
2 FOLDBACK |O
w OVERTEMP |O
OVERCURRENT |O
QVERVOLTS |O pc.sus [O
AT 8 i
— BLOWNFUSE |O
:I c1
H RESOLVERICABLE | |, c1 115 VAC,
223547 (Note 1) D— 1 PHASE,
Ll [v — R 50/60 Hz
. |_ C3 LOGIC CABLE c2 |_ 223548 (Note 3)
E BUS+ @I BUs+ Q)
H BUS- (@ BUS- (@)
— — — Ma|Q) L@ 230 VAC,
1 —— — M| Lb|@) 3 PHASE,
/0 STANDARD CABLE L _w[Q L@ 50/60 Hz
223552 (Note 4) <] | </
FGND D @ SCNC

Foecifications

DC BUS/GND WIRE (Note 2)

= EARTH
* GROUND

45

This page left intentionally blank

46 Foecifications

SECTION 6
Motion Controller
Programming | nterface

6.1 - Programming

6.1.1 - General Description of
Programming

This section provides an overview to the process of pro-
gramming a Controller. Once the "logic" behind the vari-
ous commands are understood, programming your Con-
troller will be seen as a straightforward process.

Programming of any sort requires planning and fore-
thought. Programming your Controller is no exception.
This section will provide aids to facilitate your planning
process. Be patient! Allow time for mistakes, adjustments
("debugging"), and experimentation.

6.1.1.1 - What is Programming?

At its most basic level, a computer program is a means of
using electronic digital signals (ssmple ON and OFF) to
produce certain results from a machine. A line of code, or
"command string," is built up from the presence (On) or
absence (Off) of electrical signals. On or Off signals,
called "Bits," are bunched together to form "Bytes', or
groupings that are coded into what we recognize as a-
phabetical characters or numbers. (This character coding
isaccomplished viathe ASCII code - see Glossary Section
for further details.

A program is a list of discrete lines or command strings
that, taken together in sequence, provide the information
needed to get a machine to perform your predetermined
sequence of instructions. These instructions can, in the
case of a Programmable Motion Controller, cause the no-
tor to move at certain speeds and for given distances, read
various inputs or set outputs, or send and receive mes-
sages from an operator interface panel, all used to accom
plish different machine-related tasks.

6.1.1.2 —What'sin a Program?

A program consists of many individual linesorganizedin a
prescribed sequence. The Controller uses an English lan-
guage, BASIC-type conputer programming language
("SEBASIC"). This makes it easy and intuitive to
write and read machine control programs. The lan-
guage we have designed supports many higher-level-
language features, such as statement labels, subrou-
tines, for-next and do-while loops for program flow
control. This makes it easy to write concise, well-
organized, easly debugged programs. Also, there
are built-in mathematical, Boolean, array, and trigo-
nometry functions to perform complex calculations.

The rich string-handling functions alow easy data
input and message writing when using externa @-
erator interface panels. Findly, the motion, 1/0, and

48

timing commands are easy to understand, remember,
and apply.

In addition to program lines, the controller needs and
stores (separate from the commands) a series of set-up
parameters in a "header file". The MCPI compiler program
automatically createsthisfile.

6.1.1.3 - How isthe Controller
Programmed?

There are two primary ways to set up and program your
Controller. Both involve the use of a personal computer
(PC). One is a programming environment called "MCPI",
and is supplied on diskette with your unit. Section 6.3 of
this manual gives detailed instructions on installing and
using this tool to develop your application. A second way
isto create your program using any standard text editor or
word processor. Write the SEBASIC commands, save the
file asan ASCII format then use the MCPI to compile your
code and download it.

The types of commands your Controller can accept
are pre-set. Thus each command is assigned a
"name’. These commands are explained in detail in
the Software Reference Section of this Manual.

Commands are performed via the statement lines in your
program. The program is a sequence of conmands that
control the motor and motion-related events you want to
happen in aparticular period of time. Thus, the sequence
of commands is critical to the proper operation of your
system.

6.1.2 - What are" Host Commands" ?

There are aso "Host Commands" available for certain
programming needs. These commands go straight from
your input device (computer or terminal, for example), to
the Controller, and override the normal sequence of opera-
tion directed by your program. These are useful for manu-
ally controlling a machine that normally operates under
program control.

6.1.3—Memory Types and Usage

A program is stored in Memory. There are two kinds of
memory. RAM (Random Access Memory) is called "Vola-
tile Memory" because when power is removed from the
Controller, all the electrical signalsin that memory are lost,
and accordingly, the information stored in that memory is
lost. The Controller, for example, stores some transient
informationin RAM.

The second kind of memory is "Non-Volatile Memory",
such as Flash memory, EEPROM (Electrically Programma-

Motion Controller Programming Interface

ble Read-Only Memory), or a BBRAM (Battery Backed
RAM). The electrical codes stored in this type of memory
are not lost when external power is removed from the Con-
troller. The Controller uses a battery backed RAM for
storing NVR variables (1-2048). The controller stores the
operating system as well as user programs in Flash mem:
ory. Thismemory islocated on the DSP Controller card.

A program in your Controller can have hundreds, or
even thousands of program lines. Because of the
wide variety of program commands, and the variable
line lengths alowed, it is impossble to state how
many lines of code can be stored in the controller.
However, the user memory available is 2044 sectors
of 128 bytes per sector, for a total of 261,632 bytes
of program space. The FREE command may be
used to determine how much memory is available;
see Section 7 for details on using this.

6.1.4 - References

Newcomers to programming are encouraged to obtain a
copy of an elementary text on computer programming.
Since your Controller uses a modified form of the familiar
"BASIC" computer language, you may refer to a book on
using BASIC. There are a great number of such books
available in the technical or computer section of your local
library or bookstore. We have found that books by
SAM's, Microsoft Press particularly ARunning MS DOS
QBASIC,i by Michael

Haverson & David Rygmyr, and those by the Waite Group
are among the most helpful.

Section 6.2 - Multi-Tasking Oper ations

A single computer can only do one thing at atime. How-
ever, a complex motion control system needs to have
many tasks done, all at once. An effective way to do this
iswith avery fast microprocessor (or DSP), running a pre-
emptive multi-tasking operating system. This causes a
single computer to appear to be doing severa things s-
multaneously. The computer works on one program for a
while, then switches to another program for a while, and
after all programs have been serviced, goes back to the
first, and repeats the cycle.

With afast computer, the time slice for each program can
be small and the outward appearance is that a separate
computer is running each program.

The Controller uses this approach to give the user upto 7
"virtual" motion controllers in a single package. An addi-
tional advantage of multi-tasking is that information can
be easily shared among the 7 virtual controllers. The Con-
troller runs 1 system task and up to 7 user tasks. Task O is
asystem task, which always runs. It processes commands
received over the Host serial port. Upto 7 user, SEBASIC,
BASIC programs (Task 1 - Task 7) may be running in addi-
tion to Task O.

Every 256 microseconds, task execution is interrupted in
order to perform the time-critical functions associated with
motion control. Execution of the next task is resumed
upon completion of the interrupt routine. The execution
seguences for a 1-user-task system and for a 7-user-task
system are shown below.

If an application uses 7 tasks, then each task will be serv-
iced once every 2.048 ms. If fewer tasks are used, then the
service time decreases. A one-task system would be
serviced every 512 us. The service time can be calculated
by the following formula:

Tservice = (N + 1) X 256 microseconds
where n isthe number of user tasks.

Large, complicated applications typically consist of sev-
eral independent operations occurring simultaneously.
Multi-tasking allows the user to program the application
as a collection of several smaller and hence simpler appli-
cations.

A typical example of the use of tasks is to break up the
system functionsinto logical groups. For example, control
of alarge machine might assign functions to tasks as fol-
lows:

Task 1 - Motion on axes1 and 2

Task 2 - Handling all inputs and outputs

Task 3 - Communicating with operator interface panel
Using tasks and multi-tasking allows programs to be more

modular, hence they are easier to write, debug, and main-
tain.

/Igerr pt

Task O

I)er%)t I}grr t
Talko Task 1

ALALFLFLALAL AL

Mation Controller Programmﬁlﬂterfgé‘ék 1 Task2 Task3 Task4 Tasks Task6 Task7 49

6.2.1 — Multi-Tasking timing

The Tasks are switched by the interrupt routine every 256
micro-seconds. The number of tasks being switched is
dependent on the number of tasks that are loaded for the
user project and on project execution. If program execution
is not taking place only Task 0, Host command execution
is taking place. If program execution is taking place the
active user project tasks and Task O will be switched by
the interrupt every 256 micro-seconds. The diagrams on
the right illustrate the timing for no program execution,
single task program execution and a seven-task project
being executed. If atask is stopped during program execu-
tion, that task will no longer be serviced.

Whenit isrequired to poll 1/0 through out program execu-
tion, either dedicate a task to accomplish this or poll the
I/Oin aprogram loop.

6.3 - Motion Controller Program-
ming | nterface (M CPI)

6.3.1 - Software I nstallation

The Motion Controller Programming Interface (MCPI)
provides the means by which an application can be fully
developed and the controller can be operated using a per-
sonal computer (PC). The application can be written, com-
piled and downloaded to the controller, using the Motion
Controller Programming Interface. In addition, a ATerminal
Mode{ is provided for operating the controller from your
computer.

Installation Instructions

1) If Windows® is not already running, type WIN at the
DOS prompt, and pressENTER.

2) Insert the MCPI Program Disk into drive A: (or B:).

3) For Windows 3.1 Click on the FILE menu in the Pro-
gram Manager.

For Windows 95/98 Click on the Start button on the
desk top.

4) Select RUN... to display the Run Dialog box.

5) TypeA:setup (or B:setup) and click OK.

6) The installation program will display the MCPI File
Manager Setup screen. Follow the prompts on the
screen to complete the installation.

7) After the program files have been installed, the in-
stallation will create anew Windows group.

8) Remove the installation disk. This concludes the in-
stallation.

6.3.2 - Starting the MCPI
Environment
1) If Windows is not already running, type WIN at the
DOS prompt, and pressENTER.

2) Doubleclick onthe MCPI Icon.
3) Theopening screen will appear.

6.3.2.1 — The MCPI opening screen

Motion Controller
Programming Interface

Version 4.00

Open existing project

Create pew project
—
Continue

Open existing project opens up an existing project.

Create new proj ect creates a new project.

Continue enters the MCPI with no selection.

6.3.3 - Setting Communication
Parameters

The MCPI uses the computer serial port to communicate
with the Controller. The MCPI supports the use of four
serial ports, (Com 1, Com 2, Com 3 or Com 4). To commu-
nicate, an XON - XOFF protocol is used. This protocol
needs only three wires to establish a communication link
between the computer and the controller. These wires
should be connected to transmit (TX), receive (RX) and
common (V0) asfollows:

Computer Controller
TX RX
RX TX
VO VO

Note 1. The 9-conductor cable supplied in the Controller
accessory kit (shipped with your unit) should allow easy
connection to your PC’s serial port. A 25-t0-9 pin
adapter isrequired (user supplied) if the PC port isa 25
pin style.

Note 2: Consult your computer manual for the correct pin
out of it’sserial port.

The MCPI supports four-baud rates: 4800, 9600, 19200 and
38400. To set up the serial port, baud rate and Terminal
Emulation Mode used for communications, select the Con-
figure Com Port item under the System menu. The serial
word length, parity, and number of stop bits are fixed
a 8, none, 1 respectively. The baud rate for the
Controller can be set via switches on the front panel.

Both the Controller and the MCPI are set to default
to a baud rate of 9600 when shipped. The MCPI
will aso default to Com 1.

Motion Controller Programming Interface

Note 3: The Terminal Emulation Mode should be s&t to
TTY on the Configure Com Port screen.

Selecting the Terminal item under the Utility menu allows
testing of the serial communications to the Controller.
Simply click on the Software Revison command button
and the Controller will return the software revision infor-
mation, which will be displayed on the terminal screen.

6.3.4 — Creating a new project

To create anew project either click on the Create new pro-
ject command button on the Opening screen or the New
item on the Proj ect pull down menu.

Select New Project Name - use .PRJ extension
Eolders:

| *.prj | c:\mepi X

= ac\ |a |
Q@ mepi | | Cancel
= I~]
Save file as type: Drives:
| Project (*.PRJ) | | £ c:ms-dos_6 |

Enter the name of the project with a .prj extension. The
directory of the project can also be selected at this time.
To accept the name and directory click on the OK com+
mand button.

The controller type can now be selected by clicking on the
desired selection and then clicking on the OK command
button.

Select Controller Type X

M X - 2 axisser vao/steppear control

MX 2axisserva/steppeaer control
MX 4 axisserva/stepper control
MX 6 axissarvao/steppa control
MX 8axisserva/steppear control
DCs 2 axisserva/sepper control
MX-1C 2 axissar va/steppear control
TDC 1 axissarvo control
SS2000D61 1 axisstepper control
PDC 1 axisstepper control

Moation Controller Programming Interface

The controller type folder screen is now accessed. This
screen allows access to the project folders by clicking on
the desired folder tab.

Axis Configuration

(=] =]

]

] D

Save each folder that is changed by clicking on the Save
changes command button. After completing all the
changes to the configuration click on the Exit configura-
tion command button.

6.3.5-The Task Editor

The Project program is created and edited using the Task
Editor. To select the project to be edited click on the Task
menu and either the New or Open item. The New selection
allows a new task to be developed. The Open selection
allows apreviously developed task to be edited.

Task Menu Screen

ave Ctrl+S

Print Ctri+P

Task Editor Screen
| O) <]

< | |»

Clicking on the Edit menu and then clicking on the
desired item can access the Edit functions. The

51

Items and Actions for the Edit menu are listed be-
low.

Edit Menu
Undo Ctrl+Z
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Delete Del
Eind Ctrl+F
Find next F3
Replace Shift+F3
Insert
View line
Select All Ctrl+A

On the menu above:
Undo (Ctrl+Z) undoes the latest deletion

Cut (Ctrl+X) cuts the selected text and place it on the clip
board.

Copy (Ctrl+C) copies the selected text and place it on the
clip board.

Paste (Ctrl+V) pastes the contents of the clip board into
thefile.

Delete (Del) deletesthe selected text.

Find (Ctrl+F) finds the occurrence of the selected text in
thefile.

Find next (F3) finds the next occurrence of the selected
text in thefile,

Replace (shift+F3) replaces one set of text with another
set of text .

Insert Insert aselected fileat the current position.
View line go to the selected line number.

Select all (Ctrl+A) selectsall text.

52

6.3.5.1 — Document settings

Clicking on the System Menu and then selecting the
Document setting item can modify the document settings
for the task editor.

System |

Save source code

Key word checking

Terminal settings P

Document settings P Eonts and colors

Document format
Paragraph format
v/ Iab bar
\/Ruler
\/anh

Metric

Repaginate

Save sour ce code allows the users to save the project in
the MX2000 controller. When checked the user project
text will be compressed and sent to the controller during a
download project sequence. This text can now be e
trieved from the controller.

Keyword checking enables or disables Keyword checking.
If Enabled it Capitalizes keywords such as program com:
mands and uses the selected colors for keywords and
comments.

Fonts and colors selects the Font name, Font Style, Font
size, background color, foreground color, Keyword color
and Comment color. Some of these functions can be dupli-
cated on the Editor Tool Box.

Document format selects the document width, height,
margins and Tab spacing. Some of these settings can be
duplicated on the Editor Tool Box.

Paragraph format selects the document margins, Align-
ment, line spacing, Tabulator type and Tab spacing. These
settings can be duplicated on the Editor Tool Box.

Tab Bar displaysthe Tab bar when checked.
Ruler displaysthe ruler when checked.

Inch selects the inch ruler when checked.
Metric selects the metric ruler when checked.

Repaginate repaginates the current task.

Motion Controller Programming Interface

6.3.5.2 - Editor Tool Box

The Editor Tool Box can be used to modify the text on the
modified using the Editor Tool Box.

Font Size Sdlect
Font Size

Font Name Sdlect
Font Name _| _‘

T Courier New I |17 = l

Editor Screen. The Font, Type, line spacing and text color can be

Strike throug Superscript
Underlln | |7 Subscript

IBIIIUI#*BEIIxI*H_I—IZ %)

=

Left | ‘ 1 Line Spacing

Center 15 Line Spacing—

Right 2 Line Spashig———

Justified Color Pdette
6.3.6 — Terminal Emulation
Before entering the Terminal Emulation environment, set
up the communication port parameters by clicking on the
System menu, Terminal settings item and then the Com Button Configuration | X
port item. Choose the appropriate Com port, baud rate,
terminal emulation, echo mode and RTS control from the
Com Port Screen by clicking on one of the circles in each Button | 1-RUN |¢|

section.

Caption |RUN |

Com Port Settings & Terminal Emulation Mode

X

Text [rRUN |

add CR cntric []

— Com Port — Baud Rate —— — Emulation — — Echo

@ ComPort 1 O 4800 Baud » TTY @® Echo

O Com Port 2 @ 9600 Baud O ANSI 0 NoEcho

Q Com Port 3 O 19200 Baud D vT52

Com Port 4 38400 Baud VT100

o o Y c — RTS Control
Q Always On
0 Always Off
@ On during transmit

addesc [] cnurlAa [] | Qut

2) Click ondrop list arrow and select button number.

CAUTION: Some PC'swill support baud rates over 9600. Unless yours does, then use 9600;
otherwise, some characters may be lost during transmission.

3) Click on Caption text box and enter the button caption
text.

4) Click on Text box and enter the command line text,

6.3.6.1 — Configuring Buttons

To program the buttons on the Terminal Emulation screen,
Click onthe System Menu and then on the Terminal se-
tingsitem.

Save source code

Keyword checking

JTerminal settings Com port

Document settings } Buttons

Fonts and colors

1) Click ontheButtonsitem.
Moation Controller Programming Interface

command sent.

5) If motion and program execution isto be stopped after
the button’s command is executed, click on the Cntrl
Cor Cntrl A check box. See the Host Command sec-
tion of this manual for a more detailed description of
Cntrl A and Cntrl C.

6) If command isto be allowed during program execution
click on Add ESC check box.

7) Click on Add CR check box if not a Cntrl C or Cntrl A
command.

6.3.6.2 — Configuration Fonts & col-
ors

To select the Font and Colors for the Terminal Emulation
screen Click on the System Menu and then on the Termi-

53

nal settings item. Click on the Fonts and colors item. S-
lect the desired Font, Style, Font size, Background color
and Foreground color for the Terminal Emulation environ-
ment. When finished, click on the O.K. button.

Tedmisal bont and coboes

Sample Text |

) g

Fore: Ted style

iz

Dvag asd drop coboes
!

Ll
i

To enter the Terminal Emulation environment click on the
Terminal command button.

TTY Terminal com1: 9600,n,8,1 L]

System

6.3.7.1 — Controller Type Folder

This folder allows the controller type to be defined for the
user program. The choices are: MX 2 axis servo/stepper
control, MX 4 axis servo/stepper control, MX 6 axis
servo/stepper control, MX 8 axis servo/stepper control,
DCS 2 axis servo/stepper control, MX1C 2 axis
servo/stepper control, TDC 1 axis servo control, and
SS2000D6I 1 axis stepper control.

6.3.7.2 — System Folder

This folder defines the axis assignments for a task, Drive
type, motor direction for a + motion and the units per no-
tor revolution.

Motor Direction Units per motor

resolution

Task assignment Drive Type

Axis 1 c:\mcpnname.tsl_i_ open loop stepper |.i_ +=cw motor directii 10

[T

4

Axis 2| c\mcpilnametsk | open loop stepper +=cw motor direction| 1.0

1 I»

Run Program Directory Software Revision Error Message Stop Program

Reset

6.3.7 Configuration & Setup Folders

Clicking on the Configuration command button accesses
the folders for the configuration & setup screens. These
folders allow project setup conditions to be programmed.
Clicking on itsfolder tab can access a specific folder.

Note: Clicking on the Save changes command button
savesthe current folder data.

Clicking on the Exit Configuration command button can
be used on any folder to exit the Configuration setup. If
any of theitemsin the folder have been changed, a query
will occur which will givethe user the option of saving the
folder data.

Clicking on another folder tab will allow changes to the
newly sdected folder. The changes, which have already
been made, will not be affected. This allows you to click
between folders, set up the necessary parameters, and
save only once befor e exiting the configuration screen. A
description of each folder follows.

The Task assignment allows an axis to be assigned to a
project task.

The Drive Type defines the type of drive operation. The
choices are: open loop stepper, closed loop stepper and
servo. Open loop steppers do not have encoders.

The Motor Direction sets the motor direction for a +
move. The choices are: += cw motor direction or += ccw
motor direction. The motor direction is as viewed from the
rear of the motor.

The desired Units per motor revolution value

should be entered. A unit isthe method of measurement to
be used, i.einches, mm, degrees, etc. This sets the number
of user units for one motor revolution. Move distances
and position values are in units, Speeds are in
units/second and Acceleration and Deceleration values
arein units/second.

Example:

If amotor isdirectly coupled to alead screw, which hasa
0.8 pitch, the units per motor revolution should be set to
0.8. The user may now write his program with distancesin
inches.

Motion Controller Programming Interface

6.3.7.3 — Profile Folder

Thisfolder selects the motion profile, maximum accel era-
tion rate, maximum speed and Delay after motion. The
Speed, Acceleration and Deceleration item are program
execution default values that can be altered with basic
commands during program execution.

Profile

Motion profile Speed | Acceleration | Deceleration | Max. accel | Max. speed| Delay after
(unitsisec) | wnitsised) | units/sec?) |wnits/sec? | wnitsisec) | motionsec)

Axis1 | trapezoidal |.i. 200 100.0 100.0 200.0 124.0 005

Axis2 | trapezoidal 200 100.0 100.0 200.0 124.0 005

Motion Profile determines how the motor's speed
changes. Speed changes require a period of accelera-
tion/deceleration to increase/decrease the motor's speed.
The "Motion Profile" determines how this rate is applied.
There are 32 choices, and a profile setting of 1 resultsin a
"Trapezoidal" profile, this profile yields the minimum move
time. Settings2 - 32 yields"S-curve" profiles with varying
degrees of smoothing. The higher the profile setting, the
more"S" like the profile becomes. Move timeswith profile
settings 2 - 32 are from 2 to 62 ms longer respectively than
those executed with a setting of 1. The "S-curve" profiles
usualy results in smoother motion at the expense of
longer move times. Move times can be shortened, how-
ever, by raising the acceleration, deceleration, and/or
speed of the move.

Velpcity Response, s =16

decelerate motion to a stop when a fault such as a travel
limit occurs.

Max. Spead sets the maximum alowed target speed in
units/second. Speed, Acceleration and Deceleration val-
ues can be reset within a program as long as the value
used is less than or equal to the max speed and max accel
respectively.

Dday after motion sets the minimum time, in seconds,
between two moves.

6.3.7.4 — Analog | nputs Folder

This folder defines the analog input configuration and its
filter time constant for an axis.

Analog inputs
Input type Filter 1 time Filter 2 time
constant (sec) constant (sec)
Axis 1 | differential | 0005 0.005
Axis 2 | differential 0.005 0.005

Input type defines the analog input configuration of an
axis. The choices are differential or single ended.

Filter 1 time constant defines the filter time constant for
analog input 1 of the axis.

Filter 2 time constant defines the filter time constant for
analog input 2 of the axis.

6.3.7.5 — Encoder Folder

Velocity
(rev/
sec) 6l

This folder allows the Encoder for a Servo drive or closed
loop stepper drive. Thisfolder is described in further detail
in the Servo Drive and Stepper Drive sections of the man-
ual.

6.3.7.6 — Open Loop Stepper Folder

150 200 250 300
Samples (mS)

0 50 100 .
This folder sets up the parameters used by an open loop

stepper and is described in more detail in the Stepper
Drive section of this manual.

6.3.7.7 — Closed L oop Stepper Folder

Speed sets the non-coordinated speed of an axis in
units/sec.

Acceleration sets the acceleration rate of an axis in

units/sec?. This folder sets up the parameters used by a closed loop

stepper and is described in more detail in the Stepper
Drive section of this manual.

6.3.7.8 —Servo Drive Folder

Deceleration sets the deceleration rate of an axis in
units/sec’.

Max. accel sets the maximum allowed acceleration or de-
celeration rate in units/sec®. This value is also used to

Moation Controller Programming Interface 55

This folder sets up the parameters used by a servo drive
and is described in more detail in the Servo Drive section
of this manual.

56 Motion Controller Programming Interface

6.3.7.9 - Travel Limit Folder

The hardware limits and software limits are controlled from
thisfolder.

Travel limits

deceleration | limits limit (units) limit units)
(units/sec®

Hardware travel limits Hard limit Software travel | Positivesoftware | Negativesoftware

Axis 1 | active on switch closing i 0.0 disabled * 0.0 0.0

Axis 2 | active on switch closing 0.0 disabled 0.0 0.0

Hardware trave limits choices are disabled, active on
switch closing and active on switch opening. Hard limit
inputs are used to stop the motor before it runs into a
physical end of travel, thus avoiding damage to the ne-
chanical system.

Activating the +limit input stopsthe motor if it isrotating
in the + direction. Activating the —limit input stops the
motor if it isrotating in the — direction. A fault condition
isaresult of the hardware travel limit activation. See the
ERR command in Section 7 to create an error handling
routine.

Hard limit deceleration, if non-zero, specifies the axis de-
celeration if a hard limit is activated. If the value is zero
than the Maximum Acceleration value will be used to stop
the motor.

Softwaretrave limits can be enabled or disabled.

Positive software limit specifies the programmable posi-
tion limit for a positive motion. An error is generated when
this position is exceeded.

Negative softwar e limit specifies the programmable posi-
tion limit for a negative motion. An error is generated
when this position is exceeded.

6.3.7.10 — M echanical Home & Mark
Registration Folder

This folder specifies the trigger for the mechanical home
(MOVEHOME), mark registration cycle (MOVEREG) and
specifies the maximum distance allowed for a mark registra-
tion cycle.

Mechanical home

Mark registration

Mechanical home trigger | Mark registration trigger | Registration
travel limit
(Units)
Axis1 | eventlactive | 24| event2 active | +| o0
AXis 2 | eventl active | event2 active | 0.0

Mechanical Home trigger & Mark Registration trigger
specifies the trigger for the cycle. There are two trigger
inputs EVENT1 and EVENT2 that can be used as atrigger.

Moation Controller Programming Interface

The trigger combination for mechanical home and Mark
registration are: event 1 active, event 1 inactive, event 1
active & encoder marker, event 1 inactive & encoder
marker, encoder marker active, encoder marker inactive,
event 2 active and event 2 inactive.

Registration travel limit specifies the maximum distance,

in units, allowed for a mark registration cycle. If the value
iszero atravel limitisnot limited.

6.3.7.11—1/O Folder

Thisfolder allows an external input to generate a controller

system reset.
I

| e}

Input assignment

Reset | none |_L

Input assignment allows an external input to generate a
controller system reset. The choices are none, Expansion
board 1 —input 1 and Digital board 1 —input 1.

6.3.8 — Preparing User Project for
Execution

In order to execute a project program it must first be Com
piled and then Downloaded to the controller. The project
source code can be recovered from the controller as well if
the save source option is utilized.

6.3.8.1 — Project Source code

The Project Source Code is the English version of the user
:s program. If the user =s program needs to be uploaded
from the controller at any time, A Save Source Code (
must be enabled. The Source code of a project can be
saved in the controller. However, the source code uses up
program memory in the controller. The selection for source
code saving is accessed by clicking on the System menu.
Clicking on the Save source code item can toggle the Save
source code setting. A check mark will appear when the
source code isto be saved.

Note: Saving the source code in the controller requires a
lot of program memory. If the user =s program is &-
tremely long it may not be possible to save the source
code. Seethe FREEMEM command for moreinformation.

Save source code

Keyword checking

Terminal settings }

Document settings p

57

6.3.8.2 — Compiling a Proj ect

Whether the project is new, or changes have been made to
the task or configuration, it MUST be compiled BEFORE
DOWNLOADING for it to be stored and implemented in
the controller. Compiling converts the users task and con-
figuration to machine code that the controller can under-
stand. A project can be compiled by clicking on the Com-
pile Command button or on the Compile menu and then
the Compile project item.

6.3.8.3 — Downloading a Project

A project can be downloaded with or without its source
code by clicking on the Download command button or
clicking on the Download menu and then the Download
proj ect item.

6.3.8.4 — Uploading Sour ce Code

The projects source code can be uploaded from the con-
troller to the PC by selecting the Upload Source item from
the Download menu. A project can be uploaded from the
controller ONLY if it had previously been saved in the

controller. See section 6.3.8.1.

Download Project

Upload Source ...

Download Operating System

6.3.9 — Downloading an Operating
System

Although the unit comes with an operating system n-
stalled. Clicking on the Download menu and then the
Download Operating System item will download new op-
erating system software.

The operating system file, with an extension .bin, can now
be selected by clicking on the desired file name. To start
the operating system download procedure click on the OK
command button.

Note: The file names for the different controllers start with
the following letters: mx for the MX 2000 controller, dcs for
the DCS controller , tdc for the TDC controller and dxI for
the SS2000D6i contraller.

Download

Download Project

Upload Source ...

Download Operating System ...

Operating system download - use .BIN extension [0 A]
Ifllev name: Eolders: _OK
[*bin] c:\mepi
Vot oo & (e a
H mcpi H
4 h
List files oftype: Drives:
Operating system (*BIN) | [&k: =
A
0. LU —ULITEl IVIENTuS

The MCPI menus are pull down menus. Clicking on a
menu shows an itemized list of operations allowed for that
menu. The menus are Project, Task, Edit, Compile, Down-
load, Utility, System, Window and Help.

6.3.10.1 — Project Menu

This menu alows you to create a new project, open an
existing project, save a current project, add or remove a
task from a project, open the configuration & setup envi-
ronment, print the current project, or exit the MCPI pro-
gramming environment.

New

Open

Save

Save as ...

Remove task

Add task Ctrl+D

Configuration & setup

Print project

EXxport project

Import project

Exit

Newis used to create a new project.
Open is used to open up an existing Project.
Save is used to save the current project.

Save as is used to save the current project under a new
name.

Motion Controller Programming Interface

Remove task is used to remove a task file from an open

project.
Add task is used to add a file to a current project. Up to Configuration

Compile project

Download proje

seven tasks may be added to one project.

Configuration & setupisused to edit the Configuration &
setup folders.

Print project is used to print a current project’s informa-
tion.

Export project is used to export a current project to an-
other drive or directory.

Import project is used to import a selected project from
another drive or directory into the MCPI Environment.

Exit is used to exit the MCPI programming Envi-
ronment.

6.3.10.2 — Utility Menu

This menu allows reselection of terminal mode emulation,
datalogging, servo tuning, or program debugging.

Utility

Terminal ...

Servo Tuning ...

Logging ... ’

Debug ...

Terminal starts terminal emulation mode. This allows di-
rect communication with the controller.

Servo Tuning allows the tuning of aservo system.

L ogging allows datalogging of specific parameters by the
controller.

Debug starts program task debugging.
6.3.10.3 — Window Menu

This menu selects the windows format for the open win-
dows.

Cascade cascades the open windows.
TileHorizontal tilesthe open windows Horizontally.

TileVertical tilesthe open windows Verticaly.

Cascade
Tile Horizontal

Tile Vertical

Moation Controller Programming Interface

59

6.3.10.4 — Help Menu

This menu provides help on program commands, technical
assistance and displays the MCPI software version.

Contentslist the help topics.
Sear ch for help on liststhe help items and descriptions.

Obtaining technical support provides application assis-
tance telephone numbers.

Help on using helpprovides help on how to use Help.

About M CPI provides the MCPI version number.

Contents

Search for help on ...
Obtain technical support ...

Help on using help ...

About MCPI

6.3.11 — Project Command Buttons

The MCPI command buttons allow the selection of the
Configuration & Setup folders, compilation of a current
project, downloading of a current user project, selecting
the Terminal Emulation environment, selecting the servo
tuning environment, or selecting the program debugger
environment.

Configuration enters the configuration & setup environ-
ment.

Compile project compiles the current project.
Download project downloads the current project.
Terminal entersthe Terminal emulation environment.
Servo tuning alows the tuning of a servo motor.

Debug enters the Program Debugger Environment.

Motion Controller Programming Interface

Moation Controller Programming Interface

61

Section 7.0
Softwar e Reference
Guide

7.1 SEBASIC Conventions

A basic-like language conforms to most of the rules and
conventions of modern implementations of the BASIC
programming Language, such as “QuickBasic”, etc. Fol-
lowing is a summary of the considerations to be used in
writing your programs.

7.1.1 Arithmetic Operators

The SEBASIC arithmetic operators are listed in order of

precedence.
Operator Function
Negation.
* Multiplication and division.
+, - Addition and subtraction.

Parentheses changes the order in which arithmetic opera-
tions are performed. Operations within parentheses are
performed first. Inside parentheses, the usual order of op-
eration is maintained.

Note: Squaring and exponentiation are not supported; use
multiplication to perform these oper ations.

Example: to calculate X3, use X*X*X.

7.1.2 Logical Operators

Logical operators perform test on multiple relations, bit
manipulations or Boolean operations and return a “true”
(one) or “false” (zero) value used in making a decision.

These operators are used in Boolean expressions. The
logical operators in SEBASIC, listed in order of prece-
dence, are asfollows:

Operator Use

NOT NOT <term> afalseterm, resultsin the
Boolean expression being true.

AND <term AND <term> if both terms are true,
resultsin the Boolean expression being
true.

OR <term> OR <term> if either term istrue,
resultsin the Boolean expression being
true.

60

7.1.3 Relationship Operators

Rel ationship operators are used to compare two values.
Theresult of the comparison is either “true” (one) or
“false” (zero). Thisresult can then be used to make a deci-
sion regarding program flow.

Operator _Relation Expression

= Equality * X=Y
< Inequality X<>Y
< Lessthan X <Y
> Greater than X >Y
<= Lessthanorequalto X <=Y
>= Greater thanor equal to X >=Y

* Theequal sign (=) isalso used to assign avalueto a
variable.

7.1.4 Basic Data Types

Two basic data types exist: floating point values (REAL)
and string values. All values are assumed to be floating
point unless a$ suffix isused.

X x isafloating point variable.
x$ x$isastring variable.

Note: All variable namesand program labels must begin
with aletter A-Z.

7.1.5 Case Sengitivity in Statements
&
Commands
Some programming statements and commands are case-

sensitive; others are not. The following table defines case
sensitivity in SEBASIC:

Basic Language Case Max. Length

Element Sensitive? (characters)
Label No 80
Variable name No 80
String constant Yes 80
Basic Keyword No N/A

The Host commands are not case sensitive; that is, upper
and lower case letters can be used interchangeably .

Programming Commands

7.1.6 Program Limits

When writing an MX program please observe the follow-
ing maximum values; otherwise the project will not com-
pile.

Item Maximum Allowed
Linelabes 100 total per task
Loca Variables 100 total per task
Common Variables 100 total per project
Literd’ s 100 total per project
DATA Elements 100 total per task
Nested FOR loops 100 total per task
Nester DO loops 100 total per task

7.1.7 Numeric Formats and Range

Numeric data may be represented in standard format or in
scientific notion format. The following are illustration of
each type of format.

Standard format:
1234567
-1.234567
0.1234567
1234.567
etc

Scientific notation format

266 (2,000,000)
2045664 (20,456)

-3.14159€0 (-3.14159)
6.78e-2 (0.0678)
etc

The largest number that can be used is 3.4€38. The small-
est number that can be used is 2.9e-39. The numeric reso-
Iutionis 1 part in 8,388,608 or 1.2e-7.

7.1.8 Program Comments

An apostrophe (‘) in a program line prevents a line from
executing and allows program comments /documentation.
All text to theright of the* to the end of lineis not consid-
ered part of the command during execution.

Examples:
‘MOVE=10 The program will not execute thisline
MOVE=100 ‘The program will executethisline

7.1.9 Axis Related Command Syntax

The syntax for programming commands has numerous
choices. Some are I/O related and some are axis related.
The 1/O related syntax’s are covered in detail for that spe-
cific command. However, the axis related commands are so
numerous that they will be covered in this section of the
manual .

Programming Commands

7.1.9.1 Definitions Used in Syntax
Descriptions

COMMAND represents an arbitrary axis command.

Expression

One or more constants, variables or commands that return
data operated on by mathematical operators or mathemati-
cal functions. Expressions can be very simple (as in the
case of asingle constant or variable) or quite complex (as
shown in the last example below). The compiler will indi-
cate an error if an expression istoo complex. For all practi-
cal purposes it is not possible to write an expression that
istoo complex.

Thefollowing are all valid expressions:
52 (single constant)
X (single variable)
SPEED(2) (command)
X+3 (addition of variable and constant)
SIN(X-3) (sine function of the difference of a
variable and constant)
(X+3)*SIN(Y)/(Z+SQRT(X)) (complicated
expression)

axis
Specifies the axis on which the command is performed.
AXxis is specified as an expression that evaluates to the
desired axis number. If the expression evaluates to a non-
whole number, then the nearest whole number less than
the expression value is used. AXxis is most commonly
specified as a constant.

Example COMMAND(x+2)

with x = 1.5 is equivalent to COMMAND(3)

[text]
Denotes 0 or more occurrences of what is enclosed by the
brackets. The brackets are not part of the syntax.

7.1.9.2 Syntax Descriptions

COMMAND(axis) = expression
Execute the command, on the specified axis, using the data
supplied by the expression.

Syntax example:. MOVE(2) =10
performs an index motion of 10 unitson axis 2

COMMAND = expression list
Execute the command, on the 1 or more specified axes,
using the data supplied by the expression list.

expression list

1to N expressions. Commas follow each expression in the
list except for the last one. (N = number of axesin the con-
troller: 2,4,6 or 8) Thefirst expression in thelist isfor axis
1, the next for axis 2, etc. To skip an axis, simply enter a
comma for that axis. Although these examples use con-

61

stants any expression regardless of complexity can be
used.
Thefollowing are al valid expression lists:
53 no comma, since a comma does not
follow the last expression in thelist (axisl
valueis5.3)
mD.2,,6 1st comma- skip axis 1, 2nd comma—
skip axis 2, 3rd comma- skip axis 3, 4th
commafollows expression for axis 4, 5th
comma- skip axis5
(axis4 valueis 5.2, axis6 valueis 6)

syntax example:
ABSPOS=,0,0,0
sets ABSPOS of axes 2-4t0 0

COMMAND(Nn [,m]) = expression [, expression]
Execute the command, on the 1 or more specified axes,
using the data supplied by the 1 or more expressions.

n

AXxis number, which is a whole number constant in the
range 1 to N, where N is the number of axes in the con-
troller: 2,4,6 or 8.

[m]
0 or more occurrences of axis number preceded with a
comma.

[,expression] O or more occurrences of an expression pre-
ceded with acomma.

For each axis number there is a corresponding expression.

The 1st (left most) expression is associated with the low-
est axis number, the 2nd with the next lowest, etc.

62

COMMAND(2,3,7)=1.1,22,33 does the same as
COMMAND=,1.1,2.2,,,,3.3 but is less prone to errors since
thereis no need to put all those commasin the right place.

Syntax example:
ACCEL(3,4) = 100,200
sets ACCEL for axis 3to0 100 unitsand axis 4 to
200 units.

COMMAND(axis)
Execute the command on the specified axis. This command
syntax returns dataand isused in an expression.

Syntax example:
X =DECEL(1)
Sets X equal to the DECEL value of axis 1.

COMMAND(n [,m])
Execute the command, on the 1 or more specified axes.

n

axis number, which is a whole number constant in the
range 1 to N, where N is the number of axes in the con-
troller: 2,4,6 or 8.

[m]
0 or more occurrences of axis number preceded with a
comma.

Syntax examples:
WAITDONE(2,3)
waitsfor axis 2 and 3 to finish motion
STOP(1,3)
stopsmotiononaxes1 & 3

Programming Commands

7.2 Programming Commands Grouped By Functions

Bitwise Oper ator
&

AN

>>
<<

Boolean Operator
AND
NOT

137
OR
140

Following Par ameter
FOLACCDIST

FOLDCCDIST

FOLINPUT
FOLJOG
FOLMAXRATIO

FOLMINRATIO

FOLMOVE
FOLMOVEREG
FOLOFFSET

FOLOFFSETDIST

FOLRATIO
FOLRATIOINC
FOLSTARTDIST

FOLSYNC
FOLSYNCDIST

FOLTRIG

|/O Function
ANALOG
BCD

EXIN
EXOUT
GETCHAR

IN
INCHAR
INPUT

Programming Commands

Returns the bitwise AND of the expression.
Returns the bitwise inclusive OR of the expression.
Returns the bitwise exclusive OR of the expression.
Returns the bitwise shift right of the argument.
Returns the bitwise shift left of the argument.

The logical AND operator is used in Boolean expressions.
The logical NOT operator is used in Boolean expressions.

The logical OR operator is used in Boolean expressions.

Specifies the master distance traveled for the follower to catch the
master velocity after follower motion begins.

Specifies the master distance traveled for the follower to attain a
velocity of zero from the current velocity.

This command specifies the follower axes & the master velocity source.

Reguests a Following axis Jog cycle.
Sets or returns the maximum alowable following axis speed during
an offset advance cycle.

109
Sets or returns the minimum allowable following axis speed during
an offset recede cycle.
Request a Following axis move.
Request afollowing axis move regidtration cycle.
Defines afollowing incremental offset distance from the current
position.
Sets or returns the master distance traveled for a FOLOFFSET
command.
Sets or returns the ratio of the following axis to the master.

Specifies the acceleration rate for a FOLRATIO change during motion.

Specifies amaster distance which is used as a delay distance for
darting following motion.

Returns the following sync status of afollower axis.

Specifies a master distance for the follower to travel in synchronization
with the master when a FOLOFFSET command is issued.

Defines the follower starting trigger for motion.

Sets or returns a numeric value representation on the analog port.
Returns the BCD switches value connected to an Expansion 1/0 port.
Returns the state of the specified expansion 1/O inputs.

Sets or returns the state of the specified expansion /O outputs.

Waits for a character on the selected serial port and returns the ASCI|
code of the character.

Returns the state’s of the specified digital 1/0 inputs.

Returns the ASCII code of a character from the designated serial port.
Reads aline of data from the designated seria port.

Page
78

78
78
79
79

107

107
108
108

109
109
110

110
110
111
111

111
112

112
112

82

105
106

115
121
121

ouT Sets or returns the condition of a specified digital output. 141

64 Programming Commands

M athematical Function
ABS
ATN
ATN2
COs
LOG
MOD
SIGN
SIN
SQRT
TAN

Miscellaneous Command

CAPPOS

CAPTURE

COMMON
DATA

#DEFINE
DELTACAPPOS

DIM
END
ERR
ERRAXIS

ERRTRAP
FORMAT
#INCLUDE

LOF

NVR

NVRBIT
NVRBYTE
OPTION DECLARE

READ

REM *

RESET
RESTORE
SETCOM
SHIFT
TOLERANCE
WARNING

M otion Parameter
ARC
BOOST

BUSY
DONE
DRVREADY

Programming Commands

Returns the absolute value of an expression.

Returns the angle (in radians) whose tangent is x.
Returns the angle (in radians) whose tangent is y/x.
Returns the cosine of the angle x, where x isin radians.
Returns the natural logarithm of a numeric expression.
Returns the remainder of a number divided by the base.
Returns the sign of the expression.

Returns the sine of the angle X, where x isin radians.
Returns the square root of the expression.

Returns the tangent of the angle x, where x isin radians.

Returns the last captured absolute position of an axis from a
MOVEHOME, MOVEREG or CAPTURE cycle.

Sets the position capture trigger condition or returns the position
capture status.

Allows variables to be shared by other tasks.

Stores the numeric constants used by the READ statement.
Defines a symbolic name to be a particular string of characters.
Returns the difference between the current captured position and the
previoudy captured position.

Declares an array variable and allocated storage space.
Signifies the end of a program.

Returns the MX controller error/warning number for a task.

Returns the MX controller axis number which created the error/warning

for atask.

Sets an error trap in the defined task.

Enables or disables the formatting of the STR$ returned string.
Includes a file name with define statements in a user task.

Returns the number of character in the designated serial port buffer.
The NVR array is used for non-volatile variable storage.

Stores or returns the bit value in NVR memory.

Stores or returns the byte value in NVR memory.

This option requires that al local variables be declared as REAL or
STRING variables.

Reads numbers from data statements and assigns them to a variable.
Allows source code comments to be inserted in the program.

Resets the system.

Allows DATA statements to be read again.

Sets the baud rate and data format for the Auxiliary serial port.
Shifts the elements of a single-dimension numeric array up or down.
Sets a tolerance on a numeric comparison.

Returns the warning number of atask.

Initiates a coordinated motion to move in an arc.

Enables or Disables the Boost current feature or returns the boost enable

status of an axis.

Returns the motion status of an axis.

Returns the motion status of an axis.

Enables or disables the checking of the drive (READY) signa on the
axis card.

%aaag
D

129
131
155
155
160
161

87

89
91

92
93

100

102
102
113

129
137
138
139

139
151
153
153
153
154
155
163
166

84
86
86
95

9%

M otion Parameter continued

ENCBAND

ENCFOL
ENCMODE
EVENT1

EVENT2

FOLERR
JOG

JOY STICK
LINE

MOVE
MOVEHOME

MOVEREG

PATH ... PATH CLOSE
POINT

POSMODE

RADIUS

REDUCE

STOP
STOPERR

WAITDONE
WNDGS

Over Trave Limit
HARDLIMIT

HARDLIMNEG
HARDLIMPOS
REGLIMIT

SOFTLIMIT
SOFTLIMNEG
SOFTLIMPOS

Program Flow Command

DO ... LOOP

FOR ... NEXT ... STEP
GOSUB ... RETURN
GOTO

Sets or returns the maximum position error alowed when motion is
stopped.

Sets or returns the maximum position error alowed during motion.

Sets or returns the operating mode of a closed loop stepper axis.
Returns the state of the trigger input labeled EVNT1 or sets the trigger
polarity and enable , which are used in a MOVEHOME, MOV EREG or
FOLMOVREG cycle.

Returns the state of the trigger input labeled EVNT2 or sets the trigger
polarity and enable , which are used in aMOVEHOME, MOVEREG or
FOLMOVREG cycle.

Sets or returns the maximum position error allowed during motion.

Runs the motor continuoudly in the specified direction.

Enables Joystick motion.

Initiates a coordinated linear move involving up to 8 axes.

Initiates a non-coordinated move.

Runs the motor until the home input is activated, captures and records
the position of the switch activation as home.

Runs the motor until the mark registration input is activated; then moves
the motor the desired registration distance.

.. PATH END Specifies a continuous motion path.

Specifies coordinates, which the motors will move through in a path.
Sets or returns the position mode of an axis.

Sets or returns the arc radius for path blending.

Enable/disable the reduce current feature or return the enable/disable
status.

Stops any motion with a control stop.

Sets or returns the maximum position error alowed when motion is
stopped.

Waits for motion to be done for the specified axes.

Enables or disables a motor drive.

Enable or disables Hard Limit switches or reads the current Hard Limit
enable/disable state of an axis.

Returns the - Limit hardware state of an axis.

Returns the + Limit hardware state of an axis.

Sets or returns the distance to be moved during a MOV EREG cycle,
while awaiting a trigger. 152
Enables/disables or returns the SOFTLIMIT enable state of an axis.
Sets or return the - direction software travel limit.

Sets or return the + direction software trave limit.

Repeats a block of statements while a condition istrue

or until a condition becomes true.

Repesats a block of statements a specified number of times.
Branches to, and returns from, a subroutine.

Branches unconditionally to the specified label.

IF... THEN ... ELSEIF ... ELSE ... END IF Allows conditional execution based on the

evauation of a Boolean condition.

Programming Commands

Page

97
97
98

103

104
108
124
125
128
132

133

135
143
144
145
151

152
160

160
165
166

117
118
118

156
157
158

114
115
116

120

Servo Parameter
INTLIM

IXT

KAFF

KD

Kl

KP

KVFF
OUTLIMIT

String M anipulation
ASC

CHR$

HEX$

HVAL

INSTR

LCASES$
LEFT$

LEN

MID$

PRINT

PRINT USING

RIGHTS
STR$
STRING$
UCASE$
VAL

Time Function
TIMER
TIMER2
WAIT

Trajectory Parameter

ABSPOS
ACCEL
ACTSPD
DECEL
DIST
ENCERR
ENCPOS
ENCSPD
FEEDRATE
LOWSPD
MAXSPD
MOTIONSTATE
POSERR
PROFILE
SPEED
VELOCITY

Programming Commands

Setsthe integral limit for a servo axis.

Sets or returns the Excessive Duty Cycle Shutdown time in seconds
Sets or returns the acceleration feed forward gain of a servo axis.
Sets or returns the derivative gain of a servo axis.

Sets or returns the integral gain of a servo axis.

Sets or returns the proportiona gain of a servo axis.

Sets or returns the velocity feed forward gain of a servo axis.

Sets or returns the servo axis command limit voltage.

Returns the ASCII code for the first character in a string.

Returns a one character string whose ASCII code is the argument.
Returns the hex string equivalent of an argument.

Returns the decimal value of a hexadecimal string.

Returns the character position of the first occurrence of a specified string

in another string.

Converts and returns a string with lower case etters.

Returns the leftmost characters of a string.

Returns the number of characters in the designated string.

Returns the designated middle number of character of a string.
Transmits designated data via the designated serial port.

Transmits string characters or formatted number via the designated
seria port.

Returns the rightmost characters of a string.

Returns a string representation of a numeric expression.

Returns a string of characters.

Returns a string with all letter converted to upper case.

Returns the floating point vaue of the designated string variable. 164

Sets or reads the timer value in seconds.

Sets or reads the timer 2 value in seconds.

Waits for the period of time (expressed in seconds) to expire before
continuing.

Sets or returns the commanded absol ute position of an axis.

Sets or returns the acceleration value of the motor.

Returns the current commanded velocity of an axis in Units/seconds.
Sets or returns the deceleration vaue of an axis.

Returns the distance moved from the start of the last motion.
Returns the positional error of the designated axis.

Returns the encoder position of an axis.

Returns the current encoder speed in Units/second.

Sets afeed rate override during Path execution.

Sets or returns the Low Speed (starting speed) of a stepping motor axis.

Sets or returns the maximum allowed speed of an axis.

Returns the motion state of an axis.

Returns the positional error of the designated axis.

Determines how the motor’s speed changes.

Sets or returns the target velocity of an axis.

Sets or returns the path speed to be used for coordinated motion.

Page
123
123
126
126
126
126
127
142

84
89
118
119

123
127
127
127
130
146

147
154
161
161
163

162
162

164

80
81
81
0
93
97
98
98
107
129
130
131
144
150
159
164

67

7.3 Programming Command Summary (alphabetical list)

ABS
ABSPOS
ACCEL
ACTSPD
ANALOG
AND
ARC
ASC
ATN
ATN2

B
BCD
BOOST

BUSY

C
CAPPOS

CAPTURE

CHR$
COMMON
COS

D

DATA

DECEL
#DEFINE
DELTACAPPOS

DIM
DIST
DO ... LOOP

DONE
DRVREADY

Page
Returns the bitwise AND of the expression. 78
Returns the bitwise inclusive OR of the expression. 78
Returns the bitwise exclusive OR of the expression. 78
Returns the bitwise shift right of the argument. 79
Returns the bitwise shift left of the argument. 79
Returns the absolute value of an expression. 79
Sets or returns the commanded absol ute position of an axis. 80
Sets or returns the acceleration vaue of the motor. 81

=

Returns the current commanded velocity of an axis in Units/seconds. 8
Sets or returns a numeric value representation on the analog port.
The logical AND operator is used in Boolean expressions.
Initiates a coordinated motion to move in an arc.

Returns the ASCII code for the first character in a string.
Returns the angle (in radians) whose tangent is x.

Returns the angle (in radians) whose tangent is y/x.

RIS

&

Returns the BCD switches value connected to an Expansion 1/0 port.
Enables or Disables the Boost current feature or returns the boost enable
status of an axis.

Returns the motion status of an axis.

83

Returns the last captured absolute position of an axis from a MOVEHOME,

MOVEREG or CAPTURE cycle. 87
Sets the position capture trigger condition or returns the position capture

status. 88
Returns a one character string whose ASCII code is the argument. 89
Allows variables to be shared by other tasks. 89
Returns the cosine of the angle x, where x isin radians. 89

Stores the numeric constants used by the READ statement. 0
Sets or returns the deceleration value of an axis. 90
Defines a symbolic name to be a particular string of characters. 91
Returns the difference between the current captured position and the
previoudy captured position. 92
Declares an array variable and allocated storage space. 93
Returns the distance moved from the start of the last motion. 93
Repeats a block of statements while a condition is true or until a condition
becomes true. A
Returns the motion status of an axis. 95
Enables or disables the checking of the drive (READY') signal on the axis
card. 9%

Programming Commands

E
ENCBAND Sets or returns the maximum position error alowed when motion is

stopped. Same as STOPERR command. 97
ENCERR Returns the positional error of the designated axis. 97
ENCFOL Sets or returns the maximum position error alowed during Motion.

Same as FOLERR command. 97
ENCMODE Sets or returns the operating mode of a closed loop stepper axis. 98
ENCPOS Returns the encoder position of an axis. 93
ENCSPD Returns the current encoder speed in Units/second. 93
END Signifies the end of a program. 9
ERR Returns the MX controller error/warning number for a task. 100
ERRAXIS Returns the MX controller axis number which created the error/warning

for atask. 102
ERRTRAP Sets an error trap in the defined task. 102
EVENT1 Returns the state of the trigger input labeled EVNT1 or sets the trigger

polarity and enable , which are used in aMOVEHOME, MOVEREG or

FOLMOVREG cycle. 103
EVENT2 Returns the state of the trigger input labeled EVNT2 or sets the trigger

polarity and enable , which are used inaMOVEHOME, MOVEREG or

FOLMOVREG cycle. 104
EXIN Returns the state of the specified expansion 1/O inputs. 105
EXOUT Sets or returns the state of the specified expansion 1/0 outputs. 106
F
FEEDRATE Sets afeed rate override during Path execution. 107
FOLACCDIST Specifies the master distance traveled for the follower to catch the master

velocity after follower motion begins. 107
FOLDCCDIST Specifies the master distance traveled for the follower to a attain a

velocity of zero from the current velocity. 107
FOLERR Sets or returns the maximum position error alowed during motion. 108
FOLINPUT Specifies the follower axes and the master velocity source. 108
FOLJOG Requests a Following axis Jog cycle. 108
FOLMAXRATIO Sets or returns the maximum alowable following axis speed during an

offset advance cycle. 109
FOLMINRATIO Sets or returns the minimum alowable following axis speed during an

offset recede cycle. 109
FOLMOVE Request a Following axis move. 109
FOLMOVEREG Request a following axis move registration cycle. 110
FOLOFFSET Defines afollowing incremental offset distance. 110
FOLOFFSETDIST Sets or returns the master distance traveled for a FOLOFFSET

command. 110
FOLRATIO Sets or returns the ratio of the following axis to the master. 111
FOLRATIOINC Specifies the acceleration rate for a FOLRATIO change during motion. 111
FOLSTARTDIST Specifies a master distance which is used as a delay distance for starting

following motion. 111
FOLSYNC Returns the following sync status of a follower axis. 112
FOLSYNCDIST Specifies a master distance for the follower to travel in synchronization

with the master when a FOLOFFSET command is issued. 112
FOLTRIG Defines the follower starting trigger for motion. 112
FORMAT Enables or disables the formatting of the STR$ returned string. 113
FOR ... NEXT ... STEP Repesats a block of statements a specified number of times. 114

Programming Commands

G
GETCHAR

GOSUB ... RETURN
GOTO

H
HARDLIMIT

HARDLIMNEG
HARDLIMPOS
HEX$
HVAL

I
IF... THEN ... ELSEIF
.. ELSE ...END IF

IN
INCHAR
#INCLUDE
INPUT
INSTR

INTLIM
IXT

J
JOG
JOY STICK

K
KAFF
KD
Kl
KP
KVFF

L
LCASES$
LEFT$
LEN
LINE
LOF

LOG
LOWSPD

70

Waits for a character on the selected seria port and returns the ASCI|
code of the character.

Branches to, and returns from, a subroutine.

Branches unconditionally to the specified labdl.

Enable or disables Hard Limit switches or reads the current Hard Limit
enable/disable state of an axis.

Returns the - Limit hardware state of an axis.

Returns the + Limit hardware state of an axis.

Returns the hex string equivalent of an argument.

Returns the decimal value of a hexadecimal string.

Allows conditional execution based on the evauation
of a Boolean condition.
Returns the state’ s of the specified digital 1/O inputs.
Returns the ASCII code of a character from the designated seria port.
Includes a file name with define statements in a user task.
Reads a line of data from the designated seria port.
Returns the character position of the first occurrence of a specified
gtring in another string.
Sets the integral limit for a servo axis.
Sets or returns the Excessive Duty Cycle Shutdown time in seconds

Runs the motor continuoudly in the specified direction.
Enables Joystick motion.

Sets or returns the acceleration feed forward gain of a servo axis.
Sets or returns the derivative gain of a servo axis.

Sets or returns the integral gain of a servo axis.

Sets or returns the proportiona gain of a servo axis.

Sets or returns the velocity feed forward gain of a servo axis.

Converts and returns a string with lower case |etters.

Returns the leftmost characters of a string.

Returns the number of characters in the designated string.

Initiates a coordinated linear move involving up to 8 axes.

Returns the number of character in the designated serial port buffer.
Returns the natural logarithm of a numeric expression.

Sets or returns the Low Speed (starting speed) value of a stepping motor

axIS.

Programming Commands

115
115
116

117
118
118
118
119

120

SRER

123
123

124
125

126
126
126
126
127

127
127
127
128
129
129

129

M

MAXSPD

MID$

MOD
MOTIONSTATE
MOVE
MOVEHOME

MOVEREG

N

NOT

NVR
NVRBIT
NVRBYTE

@)
OPTION DECLARE

OR
ouT
OUTLIMIT

P

Sets or returns the maximum allowed speed of an axis.

Returns the designated middle number of character of a string.
Returns the remainder of a number divided by the base.

Returns the motion state of an axis.

Initiates a non-coordinated move.

Runs the motor until the home input is activated, captures and records
the position of the switch activation as home.

Runs the motor until the mark registration input is activated; then moves

the motor the desired registration distance.

The logical NOT operator is used in Boolean expressions.
The NVR array is used for non-volatile variable storage.
Stores or returns the bit value in NVR memory.

Stores or returns the byte value in NVR memory.

This option requires that al local variables be declared as REAL or
STRING variables.

The logical OR operator is used in Boolean expressions.

Sets or returns the condition of a specified digital output. 141
Sets or returns the servo axis command limit voltage.

PATH ... PATH CLOSE ... PATH END Specifies a continuous motion path.

POINT
POSERR
POSMODE
PRINT

PRINT USING

PROFILE

R
RADIUS
READ
REDUCE

REGLIMIT
REM
RESET

RESTORE
RIGHT$

Programming Commands

Specifies coordinates, which the motors will move through in a path.
Returns the positional error of the designated axis.

Sets or returns the position mode of an axis.

Transmits designated data via the designated serial port.

Transmits string characters or formatted number via the designated
seria port.

Determines how the motor’s speed changes.

Sets or returns the arc radius for path blending.

Reads numbers from data statements and assigns them to a variable.
Enable/disable the reduce current feature or return the enable/disable
Status of an axis.

Sets or returns the distance to be moved during a MOV EREG cycle,
while awaiting a trigger. 152
Allows source code comments to be inserted in the program.

Resets the system.

Allows DATA statements to be read again.

Returns the rightmost characters of a string.

Page

130
130
131
131
132

133

135

137
137
138
139

139
140

142

143
144
144
145
146

147
150

151
151

152

153
153
153
154

71

S

SETCOM
SHIFT

SIGN

SIN
SOFTLIMIT
SOFTLIMNEG
SOFTLIMPOS
SPEED

SQRT

STOP
STOPERR

STR$
STRING$

T
TAN

TIMER
TIMER2
TOLERANCE

U
UCASE$

\%
VAL
VELOCITY

W
WAIT

WAITDONE

WARNING
WNDGS

72

Sets the baud rate and data format for the Auxiliary serid port.
Shifts the elements of a single-dimension numeric array up or down.
Returns the sign of the expression.

Returns the sine of the angle x, where x isin radians.
Enableg/disables or returns the SOFTLIMIT enable state of an axis.
Sets or return the - direction software travel limit.

Sets or return the + direction software travel limit.

Sets or returns the target velocity of an axis.

Returns the square root of the expression.

Stops any motion with a control stop.

Sets or returns the maximum position error alowed when motion is
stopped.

Returns a string representation of a numeric expression.

Returns a string of characters.

Returns the tangent of the angle x, where x isin radians.
Sets or reads the timer value in seconds.

Sets or reads the timer2 value in seconds.

Sets a tolerance on a numeric comparison.

Returns a string with all letter converted to upper case.

Returns the floating point value of the designated string variable. 164
Sets or returns the path speed to be used for coordinated motion.

Waits for the period of time (expressed in seconds) to expire before
continuing.

Waits for motion to be done for the specified axes.

Returns the warning number of a task.

Enables or disables a motor drive.

Programming Commands

Page

154
155
155
155
156
157
158
159
160
160

160
161
161

161
162
162
163

163

164

164
165
166
166

7.4 Alphabetical List of Programming Commands with Syntax and Examples

&

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLES:

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLES:

VAN

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLES:

Programming Commands

Bitwise Oper ator

Returns the bitwise AND of the expressions
result=expressonl & expresson2
A 24 bit binary AND is performed on the two arguments.

X=10& 2
0000 0000 0000 0000 0000 1010 (10)
0000 0000 0000 0000 0000 0010 (2)
0000 0000 0000 0000 0000 0010 (result=2)
refurnsa2to X.

Bitwise Oper ator
Returns the bitwise inclusive OR of the expressons.
result=expressionl | expresson2
A 24 bit binary OR is performed on the two arguments.

X=10| 4
0000 0000 0000 0000 0000 1010 (10)
0000 0000 0000 0000 0000 0100 (4)
0000 0000 0000 0000 0000 1110 (result=14)
returnsal4to X.

Bitwise Oper ator
Returns the bitwise eXclusive OR of the expresson
result=expressionl " expresson2
A 24 hit binary eXclusve OR is performed on the two arguments.

If a binary bit in expresson2 is a 1 the resulting bit will be inverted in
expressionl.

X=10"6
0000 0000 0000 0000 0000 1010 (10)
0000 0000 0000 0000 0000 0110 (6)
0000 0000 0000 0000 0000 1100 (result=12)
refurnsal2to X.

73

>>

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLES:

<<

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLES:

ABS

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLES:

74

Bitwise Oper ator
Returns the bitwise shift right of the argument.
result= expression >> expressonl

expression is shifted right by the vaue in expressonl and the resulting
vaueisreturned.

A 24 bit binary shift right is performed on the argument. O's are shifted
in garting a the MSB hit.

X=10
X=X>>1
0000 0000 0000 0000 0000 1010 (10)
0000 0000 0000 0000 0000 0101 (result=5)
returnsaSto X.

Bitwise Oper ator
Returns the bitwise shift left of the argument.
result= expression << expressonl

expression is shifted Ieft by the value in expressionl and the resulting
vaueisreturned.

A 24 bit binary shift Ieft is performed on the argument. 0's are shifted in
darting a the LSB hit.

X=10
X=X<<1
0000 0000 0000 0000 0000 1010 (10)
0000 0000 0000 0000 0001 0100 (result= 20)
refurnsa 20 to X.

Mathematics Function
Returns the absolute vaue of an expresson.
ABS(expresson) - used in an expression
The absolute vaue is the unsigned magnitude of the expression.

X =-575
A=ABY(X) ‘returnsa57.5t0 A

Programming Commands

Programming Commands

75

ABSPOS

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLES:

76

Trajectory Parameter
Sets or returns the commanded absolute position of an axis.

ABSPOS(axis)=expression

ABSPOS=expressionl, ..., expression8
ABSPOS(axis, ... , axis)=expression, ... , expresson
ABSPOS(axis) - used in an expression

The axis gpecifies the number of the axis (1-8).
The expression specifies the absolute position in units.

ABSPOS represents the commanded motor position, and can only be
set while no motion is occurring. Setting ABSPOS during mation,
causes the program to be trapped at the ABSPOS ingtruction until the
motion is completed. Setting ABSPOS aso sets ENCPOS (encoder
position) to the same value. ABSPOS and ENCPOS areinitidlized to O
at power up or system reset. ABSPOS is set equal to ENCPOS when
the servo drive is enabled by the WNDGS command. ABSPOS is dso
st at the end of aMOVEHOME command. Reading ABSPOS returns
the actua commanded position in user units.

WARNING! Care should be taken when setting ABSPOS during
program execution on a servo axis. Because the encoder postion,
ENCPOS, is st to ABSPOS when the command is executed, any po-
gtion error a that time will be logt. If done repeatedly this may cause
an inadvertent accumulative error over time. To prevent this error, only
set ABSPOS once in the program, and make sure it is not included in a
loop of statements. Incrementa moves will increment ABSPOS, and
there is no need to be concerned about rollover of the position counter,
since the counter will wraparound and continue operating without loss
of pogtion.

ABSPOS(3)=2
sets the absolute pogition of axis 3 to 2 units.

ABSPOS=1,,3
sets the absolute position of axis 1 to 1 unit, axis 2 no change and axis 3
to 3 units.

ABSPOS(1,3)=1,3
sets the absolute position of axis 1to 1 unit and axis 3 to 3 units.

Programming Commands

ACCEL

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLES:

ACTSPD

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLES:

Programming Commands

Trajectory Parameter
Sets or returns the accel eration vaue of the motor.

ACCEL (axis)=expression

ACCEL=expressoni, ..., expression8

ACCEL (axis, ... , axis)=expression, ... , expression
ACCEL (axis) - used in an expression

The axis gpecifies the number of the axis (1-8).
The expression is the accleration rate in units/'sec’.

The rate a which the motor speed is increased. Specifying a vaue
greater than “Max Accd” st in the system Configuration and Setup
will result in ACCEL being st to the “Max Accd”. ACCEL can be st
during mation, but the new setting will not be used until the next motion.
Reading ACCEL returns the most recent setting.

ACCEL(3)=200
sets the accderation of axis 3 to 200 units/sec?.

ACCEL=100,,200
sats the acceleration rate of axis 1 to 100 units/sec® and axis 3 to 200
units/sec?.

ACCEL(1,3)=100,200
sets the accdleration rate of axis 1 to 100 units/sec? and axis 3 to 200
units/sec?.

Trajectory Parameter
Returns the current commanded velocity of an axis in Units/second.
ACTSPD(axis) - used in an expression

This command can be used in conjunction with a FOLINPUT com-
mand to specify the master source. It can dso be used to monitor the
current commanded velocity of an axis.

FOLINPUT(1,3)=ACTSPD(2)
Sets the current commanded velocity of axis 2 as the master source.
Axis 1 and axis 3 are follower axes.

axspd=ACTSPD(2)
Sets variable axspd to the current commanded velocity of axis 2.

ANALOG

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLES:

78

/O Function

Sets or returns a numeric vaue representation of the voltage on the s
lected analog port.

ANALOG(bOn) - used in an expression
ANALOG(bOn)=expression

The b specifies the axis board number (1-4).

The n specifies the analog input (1-4) or output(1-2).

ANALOG(bOn)
Returns the present vaue of the specified anadog input. The range is
+10.0 volts to -10.0 volts.

ANALOG(bOn)=expresson
Sets the andlog output voltage equa to the expression. The range is
+10.0 volts to -10.0 volts.

Board Andlog Configuration

bOn A input differential Ainput singleended | A input differential A input singleended
value | Binput differential B input differential B input single ended B input single ended
101 board 1 A+ & A- board 1 A+ board 1 A+ & A- board 1 A+

102 board 1 B+ & B- board 1 B+ & B- board 1 B+ board 1 B+

103 board 1 A- board 1 A-

104 board 1 B- board 1 B-

201 board 2 A+ & A- board 2 A+ board 2 A+ & A- board 2 A+

202 board 2 B+ & B- board 2 B+ & B- board 2 B+ board 2 B+

203 board 2 A- board 2 A-

204 board 2 B- board 2 B-

301 board 3 A+ & A- board 3 A+ board 3 A+ & A- board 3 A+

302 board 3B+ & B- board 3 B+ & B- board 3 B+ board 3 B+

303 board 3 A- board 3 A-

304 board 3 B- board 3 B-

401 board 4 A+ & A- board 4 A+ board 4 A+ & A- board 4 A+

402 board 4 B+ & B- board 4 B+ & B- board 4 B+ board 4 B+

403 board 4 A- board 4 A-

404 board 4 B- board 4 B-

X=ANALOG(102)
Returns the current voltage on axis board 1 input 2.

ANALOG(102)=2.5
Sets the voltage on axis board 1 output 2 to +2.5 volts.

Programming Commands

AND

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

Programming Commands

Thelogical AND operator is used in Boolean expressons.

expressonl AND expression 2

Boolean Operator

The AND operator usesthis “truth table’.

expressonl | expresson2 | Condition Result
True True True
True Fase Fase
Fase True Fase
Fase Fase Fase

The result istrueif both expressons are true.

IF (x>2) AND (y<3) THEN GOTO INDEX
The controller checks to see if x>2 and y<3. If both conditions are true
the program goesto alabed called INDEX.

I

ARC

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

M otion Par ameter

Initiates a coordinated motion to movein an arc.

ARC=x, y, xcenter, ycenter, tangle (normd)
ARC=xcenter, ycenter, £angle (inapath)

The x specifies the axis number for one of the coordinated axes, and the
y specifies the axis number for the other axis. The lower numbered axis
is consdered the master and its parameters SPEED, ACCEL, DECEL
and PROFILE are used. The SPEED of the master axis can be used to
control the speed of the ARC during mation.

Note: x and y are not required in a path, since the PATH com-
mand defines the axes used.

The xcenter specifies the x axis coordinate of the arc center, and the
ycenter specifiesthey axis coordinate of the arc center.

The angle specifies the direction of rotation as well as the arc angle to
be executed. The angle is specified in degrees and Clockwise rotation is
indicated by apostive Sgn.

ARC=1,2,3,0,+180
‘Initiates a 180° clockwise arc rotation, using axis 1 and 2, with a 3 unit
radius.

0,0 3,0 6,0
PATH=1,2
ARC=3,0,+180
Satements
PATH END

‘Initiates a 180° clockwise arc rotation, usng axis 1 and 2, with a 3 unit
radius when the PATH END command is executed.

In both examplestheradiusis 3 if:

The contraller is in Incrementa positioning mode or in Absolute pos-
tioning mode and the present position is 0,0.

Programming Commands

ASC

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

ATN

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

ATNZ2

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

Programming Commands

String Manipulation
Returns the ASCII code for the first character in astring.
ASC(n$)

The ASCII code returned is for the first character in the string variable
n$. If the string isanull then a0 will be returned.

ab="part#’
X=ASC(a$) ‘setsx=112 ‘p’

M athematics Function
Returns the angle (in radians) whaose tangent is x.
ATN(X) - used in an expression

The arctangent returns an angle in the range -p/2 to p/2 radians. p/2
radians equas 90 degrees.

To convert values from degrees to radians, multiply the angle (in de-
grees) by p/180 (or 0.017453).

To convert a radian vaue to degrees, multiply it by 180/p (or
57.295779).

X=ATN(1) ‘ returns .785398 radians, which is 45 degrees.

M athematics Function
Returns the angle (in radians) whose tangent is y/x.
ATN2(y,X) - used in an expression

The arctangent returns an angle in the range -p to p radians. p radians
equals 180 degrees.

To convert vaues from degrees to radians, multiply the angle (in de-
grees) time p/180 (or .017453).

To convert a radian value to degrees, multiply it by 180/p (or
57.295779).

X=ATN2(25,3) ‘ returns.694727 radianswhich is 39.8 degrees

81

BCD

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

BOOST

ACTION:

PROGRAM SYNTAX:

REMARK:

BUSY

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

82

/O Function

Returns the value of the BCD switches connected to an Expansion 1/O
port.

BCD(bOn) - used in an expresson
The b specifies the Expangon I/O board number (1-4).
The n specifies the BCD switch bank number (1-8).

BCD(bOn)
Evduates and returns the number set on the BCD board switch bank
“n”, connected to Expansion I/O board “b”.

X=BCD(101)
Sets X equd to the value read on board 1, BCD switch bank 1.

X=BCD(405)
Sets X equd to the value read on board 4, BCD switch bank 5.
Motion Parameter

Enables or disables the Boost Current feature or returns the boost en-
able datus for the specified axis. When endbled the stepper drive
BOOST output turns on during motion. This causes the stepper drive
to boost the motor current by 50%.

BOOST (axis)=expression

BOOST=expressionl, ... , expresson8

BOOST (axis, ... , axis)=expression, ... , expresson
BOOST (axis) - used in an expresson

For more detail refer to Section 10 Stepper Drive of thismanud.

M otion Par ameter

Returns the motion status of the specified axis. An axisis busy if motion
istaking place.

BUSY (axis) - usedin an expresson
The axis specifies the number of the axis (1-8).

If the commanded motion isincomplete atrue (+1) is return otherwise a
fdse (0) isreturned. BUSY isthe complement of command DONE.

DO
Statements
LOOP UNTIL BUSY(1)=0

Programming Commands

CAPPOS

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

Programming Commands

M iscellaneous Command

Returns the last captured absolute podtion of an axis from a
MOVEHOME, MOVEREG or CAPTURE cycle.

CAPPOS(axis) - used in an expression
The axis gpecifies the number of the axis (1-8).

This command can be used in conjunction with a MOVEHOME,
MOVEREG or CAPTURE command to specify the last captured &b-
solute position in Units. The captured position is the postion where the
trigger occurred during a MOVEHOME, MOVEREG or CAPTURE
cycle.

POSMODE(1)=1 ‘set absolute position mode
ABSPOS(1)=0 ‘set absolute position to zero
CAPTURE(2)=0 ‘st cgpture trigger to Event 1 active
JOG(1)=1 ‘gart Jog cycle

DO

LOOP UNTIL CAPTURE(1)=1" wait for capture to occur
STOP(1) ‘stop Jog cycle
WAITDONE(2) ‘wait for motion to stop
MOVE=CAPPOS(1) ‘move to capture position
WAITDONE(2) ‘wait for motion to stop
END

CAPTURE M iscellaneous Command

ACTION: Sets the position capture trigger condition or returns the position cap-
ture satus.
PROGRAM SYNTAX: CAPTURE(axis)=expression

CAPTURE=expressonl, ... , expresson8
CAPTURE(axis, ... , axis)=expression, ... , expresson
CAPTURE(axis) — used in an expression

REMARK: The axis specifies the number of the axis (1-8).
The expression selects the trigger condition (0-7).

Setting the capture condition arms the position capture function. When
the trigger condition is met the position capture occurs. The captured
position can be read via the CAPPOS function. If the axis is configured
as an open loop device the Absolute Position is captured. If the axis is
configured as a closed loop device the Encoder Postion is captured.
The following trigger conditions can be set:

Trigger value | Trigger description

Event 1 active

Event 1 inactive

Event 1 active & encoder marker
Event 1 inactive & encoder marker
Encoder marker active

Encoder marker inactive

Event 2 active

Event 2 inactive

N[O IWIN[(FR|O

When reading the CAPTURE satus a zero indicates o capture has
occurred. While a 1 indicates that a capture has occurred.

EXAMPLE: POSMODE(1)=1 ‘et absolute position mode
ABSPOS(1)=0 ‘st absolute position to zero
CAPTURE(1)=0 ‘set capture trigger to Event 1 active
JOG(1)=1 ‘sart Jog cycle
DO
LOOP UNTIL CAPTURE(1)=1" wait for capture to occur
STOP(1) ‘stop Jog cycle
WAITDONE(1) ‘wait for motion to stop
MOV E=CAPPOS(1) ‘move to capture position
WAITDONE(1) ‘wait for motion to stop
END

84 Programming Commands

CHR$

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

COMMON

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

COS

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

Programming Commands

String Manipulation
Returns a one character string whose ASCII code is the argument.
CHR$(code)
CHR$ is commonly used to send a speciad character to the serid port.

PRINT#1,” Input Accel” ,CHR$(27)
Transmits“Input Accd <ESC>* to the host serid port.

M iscellaneous Command
Allows variables to be shared by other tasks.
COMMON variable] variable][variable]

If avariable defined in one task is to be used in another task, the vari-
able name must be declared by the COMMON statements in both
tasks, COMMON statements should be placed at the start of the task.

COMMON X ‘shared variable

COMMON X ‘chared variable

M athematics Function
Returns the cogine of the angle x, where x isin radians.
COS(x) - used in an expression

To convert values from degrees to radians, multiply the angle (in de-
grees) by p/180 (or 0.017453).

To convert a radian value to degrees, multiply it by 180/p (or
57.295779).

P1=3.141593
A=COS(PI/3) ‘ sets A=0.5, which isthe cosine of 60°

DATA

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

DECEL

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

Miscellaneous Command
Stores the numeric constants used by the READ statement.
DATA congtant, constant, etc
The congtant is a numeric congtant.

DATA 1,2,34,5,6
Also see the example for the READ command.

Trajectory Parameter
Sets or returns the deceleration value of an axis.

DECEL (axis)=expresson

DECEL =expressionl, ... ,expresson8

DECEL (axis, ... ,axis)=expression, ... , expresson
DECAL (axis) - used in an expresson

The axis specifies the number of the axis (1-8).

The expression defines the decdleration rate is in units'sec’.

The rate a which the motor speed is decreased. Specifying a vaue
greater than "Max Accd” (set in Configuration and Setup) will result
in DECEL being sat to "Max Accd". DECEL can be set during mation,
but the new setting will not be used until the next move. Reading
DECEL returns the most recent setting.

DECEL (2)=50
Sets the decdleration rate for axis 2 to 50 units/sec’.

DECEL=50,,75
Sets the decderation rate for axis 1 to 50 units/sec? and axis 3 to 75
units/sec?.

DECEL (1,3)=50,75
Sets the decdleration rate for axis 1 to 50 units/sec? and axis 3 to 75
units'sec’.

Programming Commands

#DEFINE

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

Programming Commands

Miscellaneous Command
Defines asymbolic name to be a particular string of characters.

#DEFINE name@1, ... , @10 replacement text
#DEFINE replacement text

The name has the same form as a variable name: a sequence of |etters
and digits that begins with a letter. The name is case sengitive. Typicaly
upper caseis used for the name.

The @1, ... , @10 are the program command substitution arguments
for the replacement text.

The replacement text can be any sequence of |etters or characters.

Any occurrence of the name in the program, not in quotes and not as
part of another name, will be replaced by the corresponding replace-
ment text when the program is compiled.

#DEFINE TRUE 1
Subgtitutes a 1 when the name TRUE is encountered.

#DEFINE FALSE O
Substitutes a 0 when the name FAL SE is encountered.

#DEFINE SENDPOS @1,@2 PRINT#@1,ABSPOS(@2)
Sends the absol ute position of axis @2 via port @1.

SENDPOS 1,2
Sends the absolute position of axis 2 via port #1. The 1 is substituted
for the @1 argument and 2 is substituted for @2 argument.

#DEFINE CLR PRINT#2,CHR$(12);
#DEFINE LOCATE @1,@2 PRINT#@,CHR$(27);"[@1;@2H";

CLR ‘ clear digplay
LOCATE 1,2 ‘ locate cursor at row 1 column 2

87

DELTACAPPOS

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

M iscellaneous Command

Returns the difference between the current captured postion and the
previoudy captured position.

DELTACAPPOS(axis) — used in an expression
The axis gpecifies the number of the axis (1-8).

The current captured position can be read with the CAPPOS function.
The vaue returned by DELTACAPPOS is not vdid until at least two
captures have occurred.

POSMODE(1)=1 ‘set absolute position mode
ABSPOS(1)=0 ‘set absolute position to zero
CAPTURE(2)=0 ‘ set trigger to EVENT 1 active
JOG(1)=1 ‘gart Jog cycle

DO

LOOP UNTIL CAPTURE(1)=1 ‘wait for capture trigger
STOP(1) ‘stop Jog cycle

WAITDONE(2) ‘wait for motion to be completed
CAPTURE(2)=0 ‘ set trigger to EVENT 1 active
JOG(1)=1 ‘gart Jog cycle

DO

LOOP UNTIL CAPTURE(1)=1 ‘wait for capture trigger
STOP(1) ‘stop Jog cycle

WAITDONE(2) ‘wait for motion to be completed

PRINT#1,” Delta capture position”, DELTACAPPOS(1)
‘print the difference between captured positions
END

Programming Commands

DIM

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

Programming Commands

Miscellaneous Command
Declares an array variable and allocates storage space.

DIM variable(dimension,dimensg on,&tc)
DIM variable$(dimenson,dimens on,etc)

The “option base zero” for array notation is used, in which the first ele-
ment of each array dimension is annotated as dement “0”. Therefore,
the totd number of dements in the aray is (dimensonl +
1)*(dimenson2 + 1) * ... *(dimengon n +1).

Example notation for atwo-dimensond array:

Yo | Y1 | Y2 |® |Y,
Xo ®
X1 ®
X2 ®
———T1=1= .« =
Xn ®

DIM x(10,10,10)
The variable x is three-dimensiond array with 11*11*11 , or 1331
eements.

DIM a$(3,3,3)
The variable gtring a$ is a three-dimensiond array with 4*4*4, or 64
elements.

DIM A(3,3,3) “4* 4* 4 0r 64 elements
A (31,2=5.0

0,00 (00,1 | 0,0,2 | 0,03 | 0,20 0,2,1 | 0,1,2 | 0,1,3

0,20 | 0,21 | 0,22 | 0,23 | 0,30 | 0,32 | 0,32 | 0,3,3

1,00 101 | 102|103 (| 120|111 | 1,12 | 1,1,3

1,20 | 121 | 122|123 | 13,0 | 131 | 1,32 | 1,3,3

200|201 | 202|203] 210 | 211 | 212 | 21,3

220 (221222223 | 230 231]| 232 | 233

3,00 ({ 30,1 | 30,2 | 303|310 311]| 312 | 3,13
5.0

3,20 | 321322 323|330 331 332 | 333

DIST

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

DO ...LOOP

ACTION:

PROGRAM SYNTAX1:

PROGRAM SYNTAX2:

PROGRAM SYNTAXS:

REMARK:

EXAMPLE:

Trajectory Parameter

Returns the distance moved from the sart of the last commanded no-
tion.

DIST(axis) - used in an expression
The axis gpecifies the number of the axis (1-8).
Returns a positive number, regardless of the move direction.

x=DIST(2)
Returns the last incrementa disance moved in axis 2.

Program Flow Command

Repests a block of statement while a condition is true or until a condi-
tion becomes true.

DO {UNTIL | WHILE} [condition]
[statement block]
[EXIT DOJ
[statement block]

LOOP

DO
[statement block]
[EXIT DOJ
[statement block]
LOOP {UNTIL | WHILE} [condition]

DO
[statement block]
[EXIT DO
[statement block]
{UNTIL | WHILE} [condition]

Syntax1 alows the condition to be tested at the top of the loop. Syntax
2 and 3 dlows the condition to be tested at the bottom of the loop
therefore the loop will dways execute & least once.

EXIT DO isan dternate exit from aDO ... LOOP.

EXIT DO trandfers control to the statement below the above syntax’s
and can only be used ina DO ... LOOP gatement.

DO
Satements
WHILE EVENT1(1) <>1 ‘continue the loop while eventl does not
equa 1

Programming Commands

Programming Commands

91

DONE

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

92

M otion Par ameter

Returns the motion status of the designated axis. DONE means motion
is completed.

DONE(axis) - usedin an expresson
The axis gpecifies the number of the axis (1-8).

If the commanded motion of an axis is complete a True (1) is returned
otherwise a Fs(0) is returned. DONE is the complement of BUSY .

X=DONE(1)
The motion gtatus of axis 1 is returned to variable X.

DO

Satements

UNTIL DONE(2) ‘ execute do loop statements until axis 1 com+
manded motion is completed.

Programming Commands

DRVREADY

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

Programming Commands

M otion Par ameter

Enables or disables the checking of the drive (READY) sgnd on the
axis card.

DRVREADY (axis)=expresson

DRVREADY =expressionl, ... , expresson8
DRVREADY (axis, ... ,axis)=expression, ... , expresson
DRVREADY (axis) - usedin an expresson

Axis specifies the number of the axis (1-8).

The expression sets the enable/disable checking of the Drive READY
sggnd. A 0 enables checking of the axis Drive Ready sgnd and a1 dis-
ablesthe sgnd checking.

Each axis has a hardware Drive Ready input and a software
DRVREADY flag. The software flag is cleared during the process of
running a project. If motion is commanded and the Drive READY input
is not active or the DRVREADY flag is not set then an error will be Sg-
naled.

The DRVREADY flag is st usng the DRVREADY command, once
st the date of the Drive Ready input doesn’t matter. The DRVREADY
command aso returns the DRVREADY gatus which is the logical OR
of the Drive Reedy input and the DRVREADY flag.

DRVREADY (3)=1
Bypasses the Drive Ready signal checking for axis 3.

DRVREADY=1,1
Bypasses the Drive Ready signal checking for axis 1 and axis 3.

DRVREADY(1,3)=1,1
Bypasses the Drive Ready sgnd checking for axis 1 and axis3.

ENCBAND

ACTION:

COMMAND SYNTAX:

REMARKS:

ENCERR

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

ENCFOL

ACTION:

COMMAND SYNTAX:

REMARKS:

M otion Par ameter

Sets or returns the maximum position error dlowed when motion is
stopped, referred to herein as "position error band.”

ENCBAND(axis) =expression
ENCBAND=expressionl, ... , expresson8
ENCBAND(axis, ... , axis)=expression, ... , expresson
ENCBAND(axis) - Usedin an expresson

Note: STOPERR can be substituted for ENCBAND.
STOPERR is a stepper drive and servo drive parameter.

STOPERR is defined in detall in both Section 9 Servo Drive and Sec-
tion 10 Stepper Drive.

Trajectory Parameter

Returns the positiond error of the designated axis.
ENCERR(axis) — used in an expression.

Note: POSERR can be used in place of ENCERR
Axis specifies the number of the axig(1-8).

Postion error is the difference between the absolute position and the
encoder position. (ABSPOS — ENCPOYS)

X=ENCERR(1)
IFX>10 THEN
PRINT#1,” Large Error”
END IF

M otion Parameter

Sets or returns the maximum postiond error (“following error”) a-
lowed during motion.

ENCFOL (axis) =expression

ENCFOL=expressionl, ... , expresson8

ENCFOL (axis, ... , axis)=expression, ... , expresson
ENCFOL (axis) - Used in an expression

Note FOLERR can be substituted for ENCFOL.

FOLERR is a stepper drive and servo drive parameter.

Programming Commands

ENCMODE

ACTION:

PROGRAM SYNTAX:

REMARK:

ENCPOS

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

ENCSPD

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

Programming Commands

FOLERR is described in detail in both Section 9 Servo Drive and Sec-
tion 10 Stepper Drive.

M otion Par ameter

Sets or returns the operating mode of a closed loop stepper axis.

ENCMODE(axis)=expression
ENCMODE=expressionl, ... , expresson8
ENCMODE(axis, ... ,axis)=expression, expresson
ENCMODE(axis) - used in an expresson

ENCMODE is defined in detal in the Stepper Drive Section of this
manudl.

Trajectory Parameter
Returns the encoder position of an axis.
ENCPOS(axis) - usedin an expresson
The axis specifies the number of the axis (1-8).

The actud pogition of the motor. Reading the ENCPOS returns the ac-
tual pogtion in user units. ENCPOS s initidized to O at power up. Set-
ting ABSPOS sets ENCPOS to the same value.

X=ENCPOS(1) ‘returns the encoder value of axis 1.
Trajectory Parameter

Returns the current encoder speed in units/'second.

ENCSPD(axis) - used in an expresson

The axis pecifies the number of the axis (1-8).

The encoder speed is monitored at the sample rate selected for the axis.
This results in an encoder count/sample time value that is converted to
units'second. Since this valueis digitd and not afiltered velocity, devia-
tionswill result.

X=ENCSPD(2)

Setsvariable X to the current encoder speed of axis 2.

outputspd=0 “initid vaue

FORx=1TO 10 ‘ number of samples
outputspd=outputspd+ENCSPD(1) ‘ sample update
wait=.001 ‘ sampletime

NEXT x

9

outputspd=outputspd/10 * filtered vdue

Programming Commands

END

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

Programming Commands

M iscellaneous Command

Sonifiesthe end of a program.

END

If motion is occurring when this command is encountered the controller

will set aWARNING number and stop motion on the gpplicable axis.

statements

END

97

ERR

ACTION:

PROGRAM SYNTAX:

REMARKS:

M iscellaneous Command

Returns the MX controller error/warning number for this task.

ERR=error number,severity
ERR - used in an expresson

If an error occurs while the program is running, the program jumps to
labedl ERROR_HANDLER if it is present, otherwise it ends. The fault
LED blinks the ERROR code or WARNING code.

If an error or warning has occurred, the axis which caused the error can
be obtained by issuing an ERRA XIS command.

The predefined error codes are:

Axis +Limit Input activated while moving in the + direction.
Axis -Limit Input activated while moving in the - direction.
Axis Soft Limit exceeded while moving in the + direction.
Axis Soft Limit exceeded while moving in the - direction.
Closed Loop Correction attempts exceeded.

Position Error exceeded during mation.

Distance after Movereg Trigger is insufficient to decelerate.
Motion was attempted when the Drive is not ready.

Servo axis motion attempted with the Drive disabled.
Program Area out of memory

Excessive Duty Cycle Shutdown (IXT error)

27-99 User defined

BRBowo~v~oonhwN R

Notes: The error trap is only enabled if the error code is 0. This
can be accomplished by programming an ERR=0 statement in the
ERROR_HANDLER routine. Theerror code is set to 0 when the
program is started by a RUN command or auto started on power
on.

The predefined Warning codes are:
11 Command axisis not in task group.
12 Anaog I/O selected is out of range.
13 BCD sdlected is out of range.
14 Expansion Input selected is out of range.
15 Expansion Output selected is out of range.
16 Digita Input selected is out of range.
17 Digita Output selected is out of range.
18 LOG command argument is zero or negative
19 SOQRT command argument is negative.
20 NVR dementisout of range.
21 READ command isout of data arguments.
22 MAXSPD command is out of range.
23 Motion occurring a program end.
24 RS232 Configuration Error.
25 Servo Parameter is out of range.

ERR - usedinan expression
Returns the last task error/warning number.

Programming Commands

Programming Commands

ERR continued

EXAMPLES:

ERROR HANDLING:

EXAMPLES:

ERROR_HANDLER:

100

If an error or warning occurs during program execution the fault LED
will blink the error code. If the error code is >= 10 the fault LED blinks
on 0.25 seconds and off 0.5 seconds for each ten's digit. The LED goes
off for 1.25 seconds. If the LSB digit is 0 the LED stays on for 1 second
and then goes off for 2.5 seconds. Otherwise, the fault LED blinks on
0.25 seconds and off 0.5 seconds for each unit digit then goes off for 2.5
seconds.

ERR=error number,severity
Used as a user defined error to set an error number and severity of the
error. If the error number isa 0 the fault LED will be turned off. The s-
verity levels are:

1 Stop motorsin task at the maximum Deceleration rate.

2 Stop motorsin task at the deceleration rate of each axis.

4 Stop motorsin task at the maximum Deceleration rate.

16 Create an Error Trap if no other error is set.

X =ERR
sets variable x equa to the present error number or warning number for
this task.

ERR=0,0
clears the error number and enables the error trap.

ERR =nn,1
sets the error number at "nn" and stops al motorsin task at the maximum
deceleration rate.

ERR =nn,2
sets the error number at "nn" and stops all motors in task at the decelera-
tion rate of each axis.

The MX2000 Controller will handle errors in one of two ways. The first
method is to stop execution of the task in which the error occurred; dl
remaining tasks continue executing. This is the default method of handling
errors. The second method of handling errors is for the user to write an
eror handler routine. The routine must wuse the labd
ERROR_HANDLER. This routine will be caled whenever an error
occurs. The user may then evaluate the condition that invoked the error
handling routine. To re-arm the error trap requires the error to be set to 0
(ERR=0,0).

ERR=26,17

When this line of code is executed, an error trap condition is created. If
an eror handling routine has been written execution will resume at the
ERROR_HANDLER routine. The error number is set to 26 and dl
motorsin this task will stop a the maximum deceleration rate.

This labd defines the sart of the code that is to be executed if an error
occurs. The last statement in the ERROR_HANDLER code should
bean END or GOTO labd.

Programming Commands

ERRAXIS

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLE:

ERRTRAP

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLE:

Programming Commands

M iscellaneous Command

Returns the controller axis number which crested the error/warning for
the task.

ERRAXIS - used in an expression

If azero is returned then the error was not axis related or there is no
actual error.

To determine the error/warning use the ERR command.

ERROR_HANDLER:
Axis= ERRAXIS ‘ returns the axis number which created the

error trap.
Error = ERR * sets error to error trap number
Satements
ERR=0,0 * clears error number

GOTO ERROR_EXIT

M iscellaneous Command

Sets an Error Trap in the designated task.
ERRTRAP ="Task name’, Error number

Task name specifies the task to error trap in. The task name must be
enclosed in quotes. Only the name of the task is required; the complete
path and file extenson is not required.

Error number setsthe error number in the designated task.

errorflag=0

ERRORCHECK:

If IN(101)=1 AND errorflag=0 THEN ‘error condition occurred
ERRTRAP="Motion” 55
‘ eror trap task “Motion” and set error code 55 in Task
“Motion”.
errorflag=1

ELSE IF IN(101)=0 THEN
errorflag=0

END IF

GOTO ERRORCHECK

101

EVENT1

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

102

M otion Par ameter

Returns the state of the trigger input labeled EVNT1 for the selected axis
or sets the trigger polarity and enable, which are used in MOVEHOME,
MOVEREG and FOLMOVEREG cycles.

EVENT1(axis)=expression
EVENT1=expressonl, ..., expresson 8
EVENT1(axis, ... , axis)=expression, expresson
EVENT1(axis) - used in an expression

Axis specifies the number of the axis (1-8).

The EVENT1 command is used to sdect the effects of the hardware
ggnd a the EVNT1 input on the axiscard. Thisinput is typicaly wired
to a switch or sensor. It may be used as a home positioning trigger dur-
ing aMOVEHOME cycle. It may aso be used as a position mark reg-
igtration trigger during aMOVEREG or FOLMOVEREG cycle. When
used for mark regidration, a trigger on EVNTL will initiste the index
portion of the MOVEREG or FOLMOVEREG cycle.

The EVENT1 triggering for a MOVEHOME or MOVEREG cycle
may be combined with an encoder index pulse input, and is assigned in
the user program Configuration and Setup.

For a MOVEHOME cycle, the EVENT1 command may be used to
set the polarity of the move home trigger. If the expression of the com+
mand is positive the home trigger occurs when the EVNTL input ke-
comes active. If the expression of the command is negative the home
trigger occurs when the EVNT1 input becomes inactive. A Home cycle
trigger EVENT1 cannot be disabled using this command.

For aMOVEREG cycle, the EVENT1 command may be used to set
the polarity of the regidtration trigger. If the expresson of the command
is positive the regidration trigger occurs when the EVNTL input be-
comes active. If the expresson of the command is negative the regis-
tration trigger occurs when the EVNT1 input becomesinactive.

The EVENTL trigger for aregidration cycle may be disabled by setting
EVENT1=0. A regidration trigger may be enabled to ether polarity
during amove. It may not, however, be disabled once the cycle has be-

gun.
EVENT1(2)=0 ‘disables Eventl asa MOVEREG trigger on axis 2.
EVENT1(2=1 ‘enablesEventlasan activeinput trigger on axis 2.

EVENT1(2)=-1 ‘enablesEventl asan inactive input trigger on axis 2.

Programming Commands

EVENT?2

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

M otion Par ameter

Returns the state of the trigger input labeled EVNT2 for the selected axis
or sets the trigger polarity and enable, which are used in MOVEHOME,
MOVEREG and FOLMOVEREG cycles.

EVENT2(axis)=expresson
EVENT2=expressionl, ..., expresson 8
EVENT2(axis, ... , axis)=expresson, expression
EVENT?2(axis) - used in an expression

Axis specifies the number of the axis (1-8).

The EVENT2 command is used to sdect the effects of the hardware
Sgnd at the EVNT2 input on the axis card. Thisinput is typicaly wired
to a switch or sensor. It may be used as a home positioning trigger dur-
ingaMOVEHOME cycle. It aso may be used as a position mark reg-
igration trigger during a MOV EREG or FOLMOVEREG cycle. When
used for mark regidration, a trigger on EVNT2 will initiste the index
portion of the MOV EREG or FOLMOVEREG cycle.

The EVENT?2 triggering for a MOVEHOME or MOVEREG cycle
may be combined with an encoder index pulse input, and is assigned in
the user program Configuration and Setup.

For a MOVEHOME cycle, the EVENT2 command may be used to
et the polarity of the move home trigger. If the of the command is posi-
tive the home trigger occurs when the EVNTZ input becomes active. If
the expresson of the command is negative the home trigger occurs
when the EVNT2 input becomes inactive. An EVENT2 home trigger
cannot be disabled using this command.

For aMOVEREG cycle, the EVENT2 command may be used to set
the polarity of the regidtration trigger. If the expresson of the command
is pogitive the regidtration trigger occurs when the EVNTZ2 input ke
comes active. If the expression of the command is negative the regis-
tration trigger occurs when the EVNT2 input becomes inactive.

The EVENT2 trigger for aregidration cycle may be disabled by setting
EVENT2=0. A regidration trigger may be enabled to ether polarity
during amove. It may not, however, be disabled once the cycle has be-

gun.
EVENT2(2)=0 ‘disables Event2 as a MOVEREG trigger on axis 2.
EVENT2(2)=1 ‘enables Event2 as an active input trigger on axis 2.

EVENT2(2)=-1 ‘enables Event2 as an inactive input trigger on axis 2.

103

EXIN

ACTION:

PROGRAM SYNTAX:

REMARKS:

SINGLE INPUT SYNTAX:

EXAMPLE:

MULTIPLE INPUT SYNTAX:

EXAMPLES:

104

|/O Function
Returns the state of the specified expansion I/O inputs.

EXIN(nnn) - used in expression
EXIN(nnn,len) - used in expresson

Thennnisthe /O termind point.

boardl board2 board3 board4
nnn= (100-147) or (200-247) or (300-347) or (400-447)

len is the number of 1/O points. len rangeis 1-24.

EXIN(nnn)
returns the state (1 or 0) of the designated inpuit.

x=EXIN(207) 'returnsthe state of board 2 input 7

EXIN(nnn,len)

returns a number corresponding to the states of multiple inputs cacu
lated from the binary weighting of inputs nnn to (nnn+Hen-1) nnn is the
fird input and the len is the number of inputs.

EXIN(nnn,len) is equivaent to:
EXIN(nnn),+2*EXIN(nNn+1) + 4*EXIN(nnn+2) + , ..
"EXIN(nnn+Hen-1)

+2Ien-l

EXIN(207,3) is equivaent to:

EXIN(207) + 2*EXIN(208) + 4*EXIN(209) depending on the state
of inputs 207-209 (EXIN(207,3) will return a number between 0 and
7. S0, if the inputs are: 207=0ff, 208=on and 209=on. The resulting
value returned would be 6. EXIN(207,3)= 110(binary)

Programming Commands

EXOUT

ACTION:

PROGRAM SYNTAX:

REMARKS:

SET SINGLE
OUTPUT SYNTAX:

EXAMPLES:

READ SINGLE
OUTPUT SYNTAX:

EXAMPLES:

SET MULTIPLE

OUTPUTSSYNTAX:

EXAMPLES:

READ MULTIPLE

OUTPUTS SYNTAX:

EXAMPLES:

Programming Commands

/O Function

Sets or returns the state of the specified expansion /O outputs.

EXOUT(nnn) - used in expression
EXOUT(nnn,len) - used in expresson
EXOUT(nnn)=expresson
EXOUT(nnn,len)=expression

Thennnisthe /O termind point.
boardl board? board3 board4
nnn= (100-147) or (200-247) or (300-347) or (400-447)

len is the number of 1/0O points. len rangeis 1-24.

EXOUT(nnn)=expression
"expresson” turns output NN on (expresson is non-zero) or off (ex-
pression=0).

EXOUT(207)=-3 ‘turns output 7 on board 2 on
EXOUT(207)=0 ‘turns output 7 on board 2 off

EXOUT(nNn) - used in expression
returns the last output commanded (1 or 0) for this1/O pin.
Note: thisis different from the state of the /O pin.

EXOUT(207)=1 'board 2 output 7 isturned on.
A=EXOUT(207) 'Aissat to 1 (last commanded output for 207).

EXOUT(nnn,len)=expression

The expression is evaluated and converted to an integer vaue. The least
ggnificant "len” bits of the binary representation are then used to st
outputs "nnNN" to "nnn+Hen-1" respectively.

EXOUT(207,3)=6.2 'setsoutputs 207-209
6.2 is converted to integer 6, the binary representation of 6 is 110. Thus
output 207=0ff, output 208=0n and output 209=0on.

EXOUT(nnn,len) - used in an expression

Evauates to a number corresponding to the last outputs commanded
(1or Q) for these I/O pins. The number is the binary weighted sum of the
last commanded outputs nnn to (Nnn+en-1). Note: this is different from
the state of the 1/0 pins.

EXOUT(207,3)=4 'output 209=0n, output 208=0ff and output
207=0ff.

A=EXOUT(208,2) 'A=2 since output 209=0on and output 208=0ff.

105

FEEDRATE

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLE:

FOLACCDIST

ACTION:

PROGRAM SYNTAX:

REMARKS:

FOLDCCDIST

ACTION:

PROGRAM SYNTAX:

REMARKS:

106

Trajectory Parameter
Sets afeed rate override during Path execution.
FEEDRATE = expression

The expresson range is .01 to 10.0 (1% to 1000%). This value scales
the commanded velocity to obtain atarget velocity.

This command is only honored during PATH or ARC execution.

PATH 1,2
FEEDRATE=.5
LINE=expressonl,expresson2
satements

PATH END

Following Parameter

Specifies the master distance traveled for the follower to catch the
master velocity after follower motion begins.

FOLACCDIST (axis)=expression
FOLACCDIST=expressoni, ... , expressond
FOLACCDIST (axis, ... ,axis)=expression, ... , eXxpression
FOLACCDIST(axis) - used in an expression

This command is defined in more detail in Section 8 Following.

Following Parameter

Specifies the master distance traveled for the follower to attain a veloc-
ity of zero from the current velocity.

FOLDCCDI ST (axis)=expression
FOLDCCDIST=expressonl, ... , expressond
FOLACCDIST (axis, ... ,axis)=expression, ... , eXxpression
FOLDCCDIST(axis) - used in an expression

This command is defined in more detall in Section 8 Following.

Programming Commands

FOLERR

ACTION:

COMMAND SYNTAX:

REMARKS:

FOLINPUT

ACTION:

PROGRAM SYNTAX:
REMARKS:

FOLJOG

ACTION:

PROGRAM SYNTAX:

REMARKS:

Programming Commands

M otion Par ameter

Sets or returns the maximum position error alowed during motion,
herein referred to as "following error.”

FOLERR(axis)=expresson

FOLERR=expressionl, number2, . . ., number8
FOLERR(axis, ... , axis)=expression, ... , expresson
FOLERR (axis) - Used in an expresson

Note: ENCFOL can be substituted for FOLERR.

This command is defined in more detail in Section 9 Servo Drive and
Section 10 Stepper Drive.

Following Parameter

This command specifies the follower axes and the master veocity
source.

FOLINPUT (axis, ... ,axis)= expression
This command is defined in more detall in Section 8 Following.

Following Parameter
Requests a Following axis jog cycle.

FOL JOG(axis)=expresson
FOLJOG=expressionl, ..., expresson8
FOLJOG(axis, ... , axis)= expression, ... , expresson

This command is defined in more detail in Section 8 Following.

107

FOLMAXRATIO

ACTION:

PROGRAM SYNTAX:

REMARKS:

FOLMINRATIO

ACTION:

PROGRAM SYNTAX:

REMARKS:

FOLMOVE

ACTION:

PROGRAM SYNTAX:

REMARKS:

108

Following Parameter

Sets or returns the maximum alowable following axis speed during an
offset advance cycle.

FOLMAXRATIO(axis)=expression
FOLMAXRATIO=expressonl, ..., expresson8
FOLMAXRATIO(axis, ... ,axis)=expression, ... , expresson
FOLMAXRATIO(axis) - used in an expresson

This command is defined in more detall in Section 8 Following.

Following Parameter

Sets or returns the minimum alowable following axis speed during are-
cede offset cycle.

FOLMINRATIO(axis)=expression
FOLMINRATIO=expressionl, ..., expressond
FOLMINRATIO(axis, ... ,axis)=expression, ... , expresson
FOLMINRATIO(axis) - used in an expression

This command is defined in more detall in Section 8 Following.

Following Parameter
Reguest a Following axis move.

FOLMOV E(axis)=expression
FOLMOVE=expressonl, ..., expresson8
FOLMOVE(axis, ... , axis)=expression, ... ,expresson

This command is defined in more detail in Section 8 Following.

Programming Commands

FOLMOVEREG

ACTION:

PROGRAM SYNTAX:

REMARKS:

FOLOFFSET

ACTION:

PROGRAM SYNTAX:

REMARKS:

FOLOFFSETDIST

ACTION:

PROGRAM SYNTAX:

REMARKS:

Programming Commands

Following Parameter
Request a Following axis move regigration cycle.

FOLMOVEREG(axis)=expression
FOLMOVEREG=expressonl, ... , expresson8
FOLMOVEREG(axis, ... , axis)=expression, ... , expression

This command is defined in more detall in Section 8 Following.

Following Parameter

Defines a following incrementd offset distance to advance or kecede
from the master .

FOLOFFSET (axis)=expression
FOLOFFSET=expressionl, ... , expression8

This command is defined in more detail in Section 8 Following.

Following Parameter

Sets or returns the master distance traveled for a FOLOFFSET com-
mand.

FOLOFFSETDIST (axis)=expression
FOLOFFSETDIST=expressionl, ..., expresson8
FOLOFFSETDIST (axis, ... , axis)=expression, ... , expresson
FOLOFFSETDIST(axis) - used in an expression

This command is defined in more detall in Section 8 Following.

109

FOLRATIO

ACTION:

PROGRAM SYNTAX:

REMARKS:

FOLRATIOINC

ACTION:

PROGRAM SYNTAX:

REMARKS:

FOLSTARTDIST

ACTION:

PROGRAM SYNTAX:

REMARKS:

110

Following Parameter

Setstheratio of the following axis to the master. A vaue of 1 represents
100% of the master.

FOLRATIO(axis)=expression
FOLRATIO=expressionl, ... , expresson8
FOLRATIO(axis, ... ,axis)=expression, ... , expresson
FOLRATIO(axis) - used in an expresson

This command is defined in more detall in Section 8 Following.

Following Parameter

Specifies the accderation rate for afolratio change during motion in ra-
tio increment per second.

FOLRATIOINC(axis)=expression
FOLRATIOINC=expressionl, ... , expresson8
FOLRATIOINC(axis, ... , axis)=expression, ... , expression
FOLRATIOINC(axis) - used in an expression

This command is defined in more detall in Section 8 Following.

Following Parameter

Specifies amagter distance which is used as a dday distance for Sarting
motion. The disance delay starts when the specified starting trigger of a
FOLTRIG command occurs.

FOLSTARTDIST (axis)=expresson
FOLSTARTDIST=expressionl, ..., expressond
FOLSTARTDIST (axis) - used in an expression
FOLSTARTDIST(axis,axis)=expression, ..., expresson

This command is defined in more detall in Section 8 Following.

Programming Commands

FOLSYNC

ACTION:
PROGRAM SYNTAX:

REMARKS:

FOLSYNCDIST

ACTION:

PROGRAM SYNTAX:

REMARKS:

FOLTRIG

ACTION:

PROGRAM SYNTAX:

REMARKS:

Programming Commands

Following Parameter

Returns the following sync status of the specified axis.
FOLSYNC(axis) - used in an expression

This command is defined in more detail in Section 8 Following.

Following Parameter

Specifies amaster distance to travel when a FOLOFFSET command is
issued. This digance will be travded before execution of the
FOLOFFSET command .

FOLSY NCDI ST (axis)=expression

FOLSYNCDIST (axis)=expressionl, ... , expresson8
FOLSYNCDIST (axis) - used in an expression
FOLSYNCDIST (axis, ... ,axis)=expression, ... ,expression

This command is defined in more detall in Section 8 Following.

Following Parameter
Defines the follower starting trigger for maotion.

FOLTRIG(axis)=expression
FOLTRIG=expressionl, ..., expressond
FOLTRIG(axis, ... ,axis)=expression, ... , eXpression
FOLTRIG(axis) - used in an expresson

This command is defined in more detall in Section 8 Following.

m

FORMAT

ACTION:
PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

112

Miscellaneous Command
Enables or disables the formatting of the STR$ returned string.
FORMAT=m,n,d

This command is used in conjunction with the STR$ command to set the
format of the returned string.

The m specifies the format mode.
0 dissbleformat
1 leading and trailing O=swill be returned in the string.
2 dgnfollowed by leading spaces and trailing O's will be returned in
the dring.

The n specifies the number of whole digits to be returned in the gring.
This number does not include the Sgn of the returned sring. If thedgniis
positive a space will be inserted in place of the Sgn. If thisvaueis 0 the
whole number vaue will beignored.

The d specifies the number of decimd digits to be returned in the tring.
If thisvaueis 0 no decimd point will be returned and the fractiond por-
tion of the variable will be ignored.

FORMAT=0,n,d
Disables the format mode. No leading or trailing characters are inserted
in the gring.

If the number converted is outsde the whole number digit the returned
gring will have* subgtitutions for the numbers,

FORMAT=1,4,2 > 9gn leading & trailing 0S
ABSPOS(1)=-200.254

A$=STR$(ABSPOS(1)) > A$ =A-0200.25"
FORMAT=2,4,4 > 9gn leading space tralling O's

ABSPOS(1)= -200.254
A$=STR$(ABSPOS(1)) > A$ =A- 200.2540"

FORMAT=1,2,4 >Sign leading & trailing O's
ABSPOS(1)=-200.254
A$:STR$(ABSPOS(1)) > A$ SA-K K Kkkk

FORMAT=0,1,1 >Dissble formatting

Programming Commands

FOR ... NEXT ... STEP Program Flow Control

ACTION: Repeats ablock of statements a specified number of times.

PROGRAM SYNTAX: FOR counter=start# TO end# [STEP increment]
Satements
[EXIT FOR]
Satements
NEXT [counter]

REMARKS: Counter isavariable used as the loop counter.
Sart#istheinitid vaue of the counter.
End# isthe end vaue of the counter.

Increment is the amount the counter is changed each time through the
loop. If STEP is not specified, increment defaults to one.

If end# is greater than start# then increment must be postive. If start#
is greater than end# then increment must be negative. If these condi-
tions are not met the loop will not execute, control is transferred to the
next satement following the NEXT daement. If start# equas end#
then the loop will execute once regardless of theincrement vaue. If in-
crement equas zero the loop will execute indefinitely.

EXIT FOR isan dternate exit from a FOR ... NEXT loop.

EXIT FOR transfers control to the statement following the NEXT
gatement. When used within nested FOR ... NEXT gtatements, EXIT
FOR transfers out of the immediate enclosing loop. EXIT FOR can be
used only inaFOR ... NEXT statement.

EXAMPLES: FORXx=1TO8STEP1
satements
NEXT x

A=24
FORX =1to A STEP1
Statements
NEXT X * Thisloop will execute 2 times (X=1 & X=2)

Programming Commands 113

GETCHAR

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

GOSUB ... RETURN

ACTION:
PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

114

/O Command

Waits for a character on the selected seria port and returns the ASCI|
code of the character.

GETCHAR(N) - usedinan expresson

The n specifies the seria port number (1 or 2). Port 1 is the Host Port
and Port 2 isthe Auxiliary Port.

Program execution is suspended while GETCHAR waits for a character
to be received by the designated port. If a character is aready in the re-
ceiver buffer the ASCII code of the character is returned immediately.

a=GETCHAR(1) * sets ato the ASCII code of Host Port character
b=GETCHAR(2) ‘ setsbtothe ASCII code of Aux Port character
a$=a$+ CHR$(@ * add Host character to a$

b$=b$ + CHR$(b) * add Auxiliary character to b$

Program Flow Control
Branches to, and returns from, a subroutine.
GOSUB linelabd

Y ou can call a subroutine any number of times in a program. Y ou can cdl
a subroutine from within another subroutine, this is caled nesting.

How deeply you can nest is limited only by the available stack area. Sub-
routines that call themselves (recursive subroutines) can easily run out of
stack space.

The execution of the RETURN statement cause program execution to
continue with the line immediately following the line that caled the sub-
routine.

Subroutines can appear anywhere in the program, but it is good pro-
gramming practice to make them readily distinguishable from the main
program.

GOSUB GET_CHAR
statements
END

GET_CHAR:
Satements
RETURN

Programming Commands

GOTO Program Flow Control

ACTION: Branches Unconditiondly to the specified labdl.

PROGRAM SYNTAX: GOTO labd

REMARKS: The GOTO gatement provides a mean for branching unconditiondly to
another labdl.

It is good programming practice to use subroutines or structured control
statements (DO ... UNTIL, FOR ... NEXT, IF ... THEN ... ELSE IF
... ELSE) ingead of GOTO statements, because a program with many
GOTO gatements can be difficult to read and debug. Try to avoid
using GOTO!

EXAMPLES: IFx=1THEN GOTO COOLANT_OFF
statements

COOLANT_OFF:;
Satements

Programming Commands 115

HARDLIMIT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

116

Over Trave Limit

Enables or Disables Hard Limit Switches or returns the current Hard
limit Enable/disable state of an axis.

HARDLIMIT (axis)=expresson
HARDLIMIT=expressonl, ..., expresson8
HARDLIMIT(axis, ... ,axis)=expression, ... , expresson
HARDLIMIT(axis) - usedin an expression

The axis specifies the axis (1-8)

Hard limit inputs are used to stop the motor before it runs into a physi-
cd end of traved, thus avoiding damage to the mechanica system. A
Separate hard limit input is provided for + and - motor rotation on each
axis Activating the trigger levd of the + limit input stops the motor if itis
traveing in the + direction. Activating the trigger level of the - limit input
gops the motor if it istraveling in the - direction.

A True(l) isreturned is the axis HARDLIMIT isenabled. A FAs(0) is
returned isthe axis HARDLIMIT is disabled.

HARDLIMIT(2)=1
Enables the hard limits for axis 2.

HARDLIMIT=1,,0
Enables the hard limits on axis 1 and disables the hard limits on axis 3.

HARDLIMIT(1,3)=1,0
Enables the hard limits on axis 1 and disables the hard limits on axis 3.

Programming Commands

HARDLIMNEG
ACTION:
PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

HARDLIMPOS
ACTION:
PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

HEX$

ACTION:

PROGRAM SYNTAX:
REMARKS:

EXAMPLES:

Programming Commands

Over Travel Limit
Returnsthe - Limit hardware state for the selected axis.
HARDLIMNEG(axis) - used in an expresson
The axisis the specified axis (1-8).

A fds9(0) isreturned if the designated axis - limit input is inactive. Oth-
ewise, atrug(1) will be returned which indicates that the - Limit input is
active.
IFHARDLIMNEG(1)=1 THEN * execute statementsif - limit
active
gatements
END IF

Over Travel Limit
Returnsthe + Limit hardware state for the selected axis.
HARDLIMPOS(axis) - usedin an expresson
The axisis the specified axis (1-8).

A fds9(0) isreturned if the designated axis + limit input isinactive. Oth-
ewise, atrue(1) will be returned which indicates that the + Limit input is
active.
IFHARDLIMPOS(1)=1 THEN * execute satementsif + limit
active
Satements
END IF

String Manipulating
Returns the hex string equivaent of an argument.
HEX$(expression) - used with agtring array
The expresson must be an integer vaue.

a$=HEX$(255) * a$="FF

117

HVAL

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

118

String Manipulation
Returns the decimal vaue of a hexadecima giring.
HVAL(A%) - usedinan expresson

A$ is the desgnated dring variable or gring literdl. The dring variable
format is. “OXHH” or “HH”. Where H isan ASCII 0-9 or a.

The converted value is returned as adecima value,

x=HVAL(“OXFF") ‘ X isset to 255.
A$="1F
x=HVAL(A%) ‘Xisstto 3l

Programming Commands

|F.. THEN...ELSE IF...
ELSE..END IF

ACTION:

PROGRAM SYNTAX 1:

PROGRAM SYNTAX 2:

REMARKS:

EXAMPLES:

Programming Commands

Program Flow Command

Allows conditiona execution based on the evduation of a Boolean con-
dition.

| F condition THEN thenpart [EL SE el separt]

| F condition THEN
statement block 1
[ELSE IF condition THEN] EL SE IF and statement block 2
are optiona
statement block 2
[ELSE] ELSE and statement block 3
are optiona
satement block 3
END IF

The argument condition is an expresson tha is evauaed as true
(nonzero) or false (zero).

The argument tatement block includes any number of statements on
one or morelines.

The argument thenpart includes the statement or branches performed
when the conditionis true.

The argument elsepart includes the statement or branch performed
when the conditionis fase. If the ELSE IF or ELSE clause is not pres-
ent, control passes to the next statement in the program following the
END IF.

Start:
IF BCD(101)=0 THEN
GOTO programO
ELSE IF BCD(101)=1 THEN
GOTO programl
ELSE IF BCD(101)=2 THEN
GOTO program?2
ELSE
GOTO Start
END IF
program0:
Satements
END
programl.:
Satements
END
program2:

119

satements
END

Programming Commands

IN

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

INCHAR

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

/O Function
Returnsthe gtate' s of the specified digital 1/0 inputs.

IN(bnn) - used in an expresson
IN(bnn,len) - used in an expression

bnn specifiesthe 1/0 point termind.
board1l board?2 board3 board4
101-124 201-224 302-324 401-424

len isthe number of 1/0 pointsto return (1-24).

A true (1) isreturned if the state of the input is active. Otherwise, afdse
(O) isreturned.

IN(bnn) - usedin an expresson
Returns asingle input date.

IN(bnn,len) - used in an expression

Returns a number corresponding to the states of multiple inputs, binary
weighting of inputs bnn to (bnnHen-1). IN(bnn,len) is equivaent to:
IN(bnn) + (2* (bnn+1) + (4* (bnn+2) + ... +(2°"* (bnnHen-1)

x=IN(207)
The state of board 2 input 7 is returned to variable x.

x=IN(207,3)
The sum of the input states from board 2 inputs 7-9 is returned to Xx.
The value returned will be: IN(207) + (2¥IN(208) + (4* IN(209).

/O Function

Return the ASCII code of a character from the designated seria port.
INCHAR(N) - used in an expression

The n specifies the sexia port (1 or 2). Port 1 is the Host port and Port
2 isthe Auxiliary port.

If no character has been received by the designated serid port a O is
returned. Otherwise, the ASCII code value equivalent is returned.

DO

x=INCHAR(2)
LOOPUNTIL x>0 “ wait for Auxiliary port character.
A$=AS+chr$(x) ‘ add character to A$

121

#INCLUDE

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

INPUT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Miscellaneous Command
Includes afile name with define satementsin auser task.
#INCLUDE drive\subdin...\subdir\filename.inc
Driveisthe root directory of the drive.
Subdir isthe path required to find thefile.
Filename is the include filename with extenson .inc.

The include file must be a series of #DEFINE statements only and can
be used in any project task file.

The iwsinc fileis included in the MCPI software. This file can be used
to control a IWS-127-SE, IWS-30-SE or IWS-120-
SE interface pand.

#INCLUDE c\mx2000\iws.inc “ indudefileiwsinc

#INCLUDE c¢:\mx2000\iws30.inc “ include fileiws30.inc

/O Command

Reads a Line of data from the desgnated seria port into a string vari-
able.

INPUT#1,N$
INPUT#L,N$,varl$[var29][, ..] [,var_n$]
INPUT#2,N$
INPUT#2,N$,varl$[,var29][, ..] [,var_n$]

This command accepts input characters until a carriage return or line-
feed is received by the designated port.

Multiple arguments strings can be entered on one input line and are
Separated by a comma.

INPUT#1 designates the Host port and INPUT#2 designates the Aux-
iliary port asthe serid receiver port.

PRINT#2, “enter accel vaue, decel value, speed vaue’

INPUT#2,acc$,dcc$,spd$ “ input varigble vaues
FORXx=1TO3 * axis numbers 1-3
ACCEL (X)=VAL (acc$) * load ACCEL value
DECEL (x)=VAL(dccs) * load DECEL vaue
SPEED(X)=VAL (spd$) ‘ load SPEED vaue
NEXT x

Programming Commands

INSTR

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

INTLIM

ACTION:

PROGRAM SYNTAX:

REMARKS:

| XT

ACTION:

PROGRAM SYNTAX:

REMARKS:

Programming Commands

String Manipulation

Returns the character position of the first occurrence of a specified
dring in another gtring.

INSTR(string1$,string2$) - used in an expresson

Returns the starting position that string2$ matches in string1$. The
comparison is case sendtive and returns a0 if no match isfound.

a$="WE part#215629"
x=INSTR(a$,” part#") ‘ X is st to 4 which is the Sarting position
of part#.

Servo Parameter

Sats the Integrd limit for the controller. Thisis the limit of the contribu-
tion to the servo output from the integra of the position error.

INTLIM (axis)=expression
INTLIM=expressionl, ..., expresson8
INTLIM(axis, ... ,axis)=expression, ... ,expresson
INTLIM (axis) - usedin an expresson

This command is defined in more detail in Section 9 Sarvo Drive.

Servo Parameter

Sets or returns the Excessive Duty Cycle Shutdown time in seconds.

IXT(axis) = expression

IXT = expresson, ..., expression

IXT(axis, ... ,axis)=expression, ... ,expression
IXT(axis) - usedin an expresson

This command is defined in more detail in Section 9 Sarvo Drive.

JOG

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

124

M otion Par ameter

Runs the motor continuoudy in aspecified direction.
JOG(axis)=expresson

JOG=expressionl, ... ,expression8

JOG(axis, ... ,axis)=expresson, ... , EXpresson
note: JOGSTART can be substituted for JOG.
The axis pecifies the number of the axis (1-8).

The expressons sign determines the motion direction . If the expresson
is positive or O, jogging will be in the positive direction. If the expression
IS negdtive, jogging isin the negative direction.

Use the STOP command for stopping the motor.

Note: A JOG cycle will be stopped if an ARC, LINE, MOVE,
MOVEHOME or MOVEREG moation command isissued for the
same axisduring a JOG command.

JOG CYCLE

STOP
SPEED ¢

ACCEL
DECEL

140G

s

BUSY=0 BUSY=0

SPEED=0

BUSY=1 -

BUSY=0

Note: The underlined text is the command required to
generate the velocity profile. The remaining text are related
commands.

JOG(2)=-1 ‘jog axis 2 in the negative direction.
DO : LOOP UNTIL EXIN(101)=1 ‘Execute Loop until the Expansion
[/Oinput 1isactive.

STOP(2)

WAITDONE(2) ‘Allow axis 2 to stabilize at zero gpeed prior to
executing the next command

JOG=1,,-1 ‘jogaxis1in+dir. and jog axis 3in-dir.

DO : LOOP UNTIL EXIN(101)=1

STOP(1,3)

WAITDONE(1,3)
JOG(1,3)=1,-1 ‘jogaxislin+dir.andjogaxis3in-dia
DO : LOOP UNTIL EXIN(101)=1

Programming Commands

Programming Commands

STOP(1,3)
WAITDONE(1,3)

125

JOYSTICK

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

126

M otion Par ameter
Enables Joystick motion.

JOYSTICK=ax1, ... ,ax8
JOYSTICK(ax1, ..., ax8)

The JOY STICK command sets up to eight axes, ax1 to ax8, to move
in response to the voltage applied to their respective andog inputs. Each
axis will run at a speed proportiond to the input voltage and in the d-
rection determined by the polarity of the input voltage. Thereisa+0./25
dead band.

The axiswill run in the negetive direction when the input voltage rangeis
-100 to -025 wvolts The gpeed it will atan is
((Vint+0.25)/10)* SPEED. The axis will run in the pogtive direction
when the input voltage range is +0.25 to +10.0 volts. The speed it will
atainis ((Vin-0.25)/10)* SPEED.

The JOY STICK mode isterminated by a STOP command.

SPEED(1,2)=10,10 * set speed for axes

JOYSTICK=1,2 ‘ enable joystick mode axis 1 and 2

DO: LOOP UNTIL EXIN(100)=1" stay in joystick mode until
input=1

STOP(1,2)

JOYSTICK(1,2) ‘ enable joystick mode axis 1 and 2

DO: LOOP UNTIL EXIN(100)=1" stay in joystick mode until
input=1

STOP(1,2)

Programming Commands

KAFF

ACTION:

PROGRAM SYNTAX:

REMARKS:

KD

ACTION:

PROGRAM SYNTAX:

REMARKS:

Kl

ACTION:

PROGRAM SYNTAX:

REMARKS:

KP

ACTION:

PROGRAM SYNTAX:

REMARKS:

Programming Commands

Servo Parameter
Sets or returns the acceleration feed forward gain for a servo axis.

KAFF(axis)=expression

KAFF=expressionl, ... , expresson8
KAFF(axis, ... ,axis)=expresson, ... ,expression
KAFF(axis) - used in an expresson

This command is defined in more detail in Section 9 Sarvo Drive.

Servo Parameter

Sets or returns the derivative gain for the servo axis.

KD(axis)=expresson

KD=expressonl, ... , expressond

KD(axis, ... ,axis)=expression, ... ,expression
KD(axis) - usedinan expresson

This command is defined in more detail in Section 9 Servo Drive.

Servo Parameter

Setsor returnsthe integrd gain of a servo axis.

Kl(axis)=expression

Kl=expressonl, ..., expresson8

Kl(axis, ... ,axis)=expression, ... ,expresson
Kl(axis) - usedinan expresson

This command is defined in more detail in Section 9 Servo Drive.

Servo Parameter

Sets or returns the proportiond gain of the servo axis.

K P(axis)=expression

KP=expressionl, ... , expresson8

KP(axis, ... ,axis)=expression, ... ,expresson
KP(axis) - used in an expresson

This command is defined in more detail in Section 9 Servo Drive.

127

KVFF

ACTION:

PROGRAM SYNTAX:

REMARKS:

L CASES

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

LEFTS$

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

LEN

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

128

Servo Parameter
Sets or returns the velocity feed forward gain for the servo axis.

KV FF(axis)=expression

KVFF=expressionl, ... , expresson8
KVFFaxis, ... ,axis)=expresson, ... ,expression
KVFF(axis) - used in an expresson

This command is defined in more detail in Section 9 Sarvo Drive.

String Manipulation
Converts and returns a string with lower case letters.
string1$=L CA SE$(string2%)

String2$ is copied and dl upper case |etters are converted to lower
cae |etters and the resulting string is returned to stringl$.

a$="HELLO"
b$=L CASE$(ad)

* sets b$="hello”

String Manipulation
Returns the leftmost characters of a string.
string2$=L EFT$(string1$,n)

The n isthe number of leftmost charactersto return. If nis greeter than
the length of string1$ then the entire string is returned to string2$.

b$=“Hdlo World”

a$=L EFT$(b$,7) ' sets a$="Hello W”

String Manipulation
Returns the number of charactersin the designated string.
LEN(string$) - used in an expresson
If theinput string isanull string a0 is returned.

A=LEN(*ABCD”) ‘setsA=4

Programming Commands

LINE

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

M otion Par ameter

Initiates a coordinated linear move involving up to 8 axes.

LINE=expressioni, ... , expression8
LINE(axis, ... , axis)=expression, ... ,expresson
LINE=expressonl,expresson2 (syntax for PATH command)

The axis gpecifies the number of the axis (1-8).

The expresson represents the move distance. All defined axes will sart
and end & the sametime.

The lower numbered axis is consdered the master and its parameters.
SPEED, ACCEL,.DECEL, and PROFILE are used.

LINE COMMAND CYCLE
LINE = 4,2

SPEED(1)

ACCEL(1) DECEL(1)

BUSY=0 BUSY=0

Note: The underlined text is the command required to
generate the velocity profile. The remaining text are related
commands.

The individud axis velocity, accderation and decderation caculations
are based on the move distance in units. The velocity, acceleration and
deceleration vaes for each axis will be a ratio of the master distance
(axis 1) to the individud axis distances, (ratio=axis distance / master
distance)

LINE=1.0,,-2.0 ‘Linear interpolated axis 1 and 3. Axis 1 moves
+1.0 units and axis 3 moves -2.0 units.
WAITDONE(1,3)

LINE(1,3)=1.0,-2.0 ‘Linear interpolated axis 1 and 3. Axis 1 moves
+1.0 units and axis 3 moves -2.0 units.
WAITDONE(1,3)

PATH=1,2
LINE=1,-2.0 * linear interpolates axis 1 and axis 2

130

satements
PATH END

Programming Commands

L OF

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

LOG

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

LOWSPD

ACTION:

PROGRAM SYNTAX:

REMARKS:

Programming Commands

Miscellaneous Command

Returns the number of character in the designated RS232 port.
LOF(port) - used in an expression.

Port is the designated seria port (1 or 2). Port 1 is the Host port and
port 2 isthe Auxiliary port.

DO : LOOPUNTIL LOF(2)>=10 >wait for 10 characters in auxil-
iary port
AS=(A 'Clear A$
cnt=0
DO
A$=A$+CHRS(INCHAR(2)) > load characters
LOOP UNTIL LOF(2)=0

M athematics Function
Returns the natura logarithm of a numeric expression.
LOG(expression) - used in an expresson

The argument expresson must be greater than zero. The naturd loga-
rithm is the logarithm to the base e. The condant e is approximatey
equal to 2.718282.

You can cdculate base 10 logarithm as follows LOG 10(x)=
LOG(x)*.4342945

x=LOG(2.718282) * setsx=1

Trajectory Parameter

Sets or returns the Low Speed (starting speed) value of a stepping no-
tor axis.

LOWSPD(axis)=expression
LOWSPD=expressionl, ... ,expresson 8
LOWSPD(axis, ... ,axis)=expression, ... ,expresson
LOWSPD(axis) - used in an expression

This command is defined in more detail in Section 10 Stepper Drive.

131

MAXSPD

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

MID$

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

132

Trajectory Parameter
Sets or returns the maximum allowed speed of the specified axis.

MAXSPD(axis)=expression
MAXSPD=expressoni, ... , expresson 8
MAXSPD(axis, ... ,axis)=expression, ... , expression
MAXSPD(axis) - usedin an expresson

The axis gpecifies the number of the axis (1-8).
The expresson pecifies the maximum speed dlowed for an axis.

Moation will not be performed at speeds higher than this value, even if an
axisis programmed or commanded to do so.

MAXSPD(3)=50
Sets the maximum speed for axis 3 to 50 units/second.

MAXSPD=50,,60
Sets the maximum speed for axis 1 to 50 units/second and axis 3 to 60
units/second.

MAXSPD(1,3)=50,60
Sets the maximum speed for axis 1 to 50 units/second and axis 3 to 60
units/second.

String Manipulation
Returns the designated middle number of characters of astring.
string1$=MID$(string2$,start,number)
The start specifies the sarting postion of the input string string2$.

The number specifies the number of characters to return. If the number
is greater than the (Iength of the string - start position) the string returned
isfrom starting position to the end of the string.

If the gtring is null then a*” (no characters) will be returned.

a$="PIN 123AC’
b$=MID$(a$,53) * setsb$="123"
c$=MID$(a$59) * setsc$="123AC’

Programming Commands

MOD

ACTION:
PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

MOTIONSTATE

ACTION:
PROGRAM SYNTAX:

REMARKS:

Programming Commands

M athematics Function
Returns the remainder of a number divided by the base.
y=x MOD base
They isthe returned remainder.
The x isthe number that is divided by the base.
The base isthe divisor.

y=31MOD 16 ‘ y issat to 15 which is the remainder.

Trajectory Parameter

Returns the follower motion state for an axis.
MOTIONSTATE(axis) - used in an expresson.

This command is defined in more detail in Section 8 Following.

133

MOVE

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

134

M otion Par ameter

Initiates a non-coordinated move.

MOV E(axis)=expresson
MOVE=expressoni, ..., expresson 8
MOVE(axis, ... ,axis)=expression, ... , expresson

The axis specifies the number of the axis (1-8).

The expresson represents the incremental distance or absolute position
to be moved to. The POSMODE command setting of an axis deter-
mines whether an incrementd distance or absolute postion is com-
manded. If the incrementd distance, POSMODE(axis)=0, is used the
ggn of the expresson determines the direction (pogtive or negative) of
motion for the move. Incrementa position mode is the defaullt.

MOVE CYCLE

SPEED

DECEL

I: | =I< BUSY=1

Note: The underlined text is the command required to
generate the velocity profile. The remaining text are related
commands.

POSMODE(1,3)=0,0 ‘incrementa postion mode for axis1 & 2
MOVE(3)=-2 ‘axis 3 moves -2 units
WAITDONE(3)

MOVE=1,3 ‘axis 1 moves +1 units and axis 3 moves +3
units.

WAITDONE(Z,3)

MOVE(1,3)=1,3 ‘axis 1 moves +1 units and axis 3 moves +3
units.

Programming Commands

Programming Commands

WAITDONE(1,3)

135

MOVEHOME

ACTION:

PROGRAM SYNTAX:

REMARKS:

136

M otion Par ameter

Runs the motor until the home input is activated, captures and records the
position of the switch activation as home (electrica zero), then deceler-
ates the motor to a stop.

MOV EHOM E(axis)=expression
MOVEHOME=expressionl, ..., expression 8
MOVEHOME(axis, ... ,axis)=expression, ... , expression

The axis specifies the number of the axis (1-8).

The sign of the expression determines the direction (positive or negative)
of the motion for the home cycle. The non-zero vaue of the number is
not significant. The commanded speed of the axis is determined by the
last SPEED command that was executed.

The MOVEHOME trigger can be EVENT1 input, EVENT2 input and/or
Encoder marker state. This trigger is defined by the user program Con-
figuration and Setup, and also by the EVENT1 or EVENT2 commands
if they have been executed prior to the MOVEHOME.

Prior to starting a MOVEHOME motion, the appropriate trigger input
(EVENT1 or EVENT2) is checked to see if it has aready been trig-
gered. If the trigger is aready enabled the ABSPOS and ENCPOS are
set to zero and no motion occurs. Otherwise, the motor accelerates at the
ACCEL rate to the commanded SPEED and continues at this speed until
the home trigger condition is met. The capture position is recorded when
the home trigger occurs. The motor decelerates to a stop at the DECEL
rate. Once at a stop, the distance traveled from the trigger becomes the
new ABSPOS and ENCPOS value. The exact position that the motor
was at when the trigger occurred becomes the zero position, or home.
The captured absolute position can be monitored by the CAPPOS com-
mand.
MOVEHOME CYCLE

Home Switch

ACCEL J
X DECEL
MOVEHOMEj Note 2
I
PT><— BUSY:l———P‘d—rb‘
BUSY=0 BUSY=0

Note 1: The Home switch activates and the current position
is captured.

Note 2: Motion is completed and the Absolute and Encoder
positions are set to the difference between the
captured position and the ending position.

Note: The underlined text is the command required to
generate the velocity profile. The remaining text are related
commands.

Programming Commands

MOVEHOME continued

EXAMPLES:

Programming Commands

MOVEHOME(3)=1 ‘Axis 3 executes a home cycle in the positive

direction.
WAITDONE(3) ‘Wait for motion to stop.
POSMODE(3)=1 ‘Activates Absolute Mode for axis 3.
MOVE(3)=0 move axis 3 to the captured home position

WAITDONE(3)

MOVEHOME=-2,3 ‘Axis 1 executes a home cycle in the negative
direction and axis 3 executes a home cyclein
the pogitive direction.

WAITDONE(1,3)

POSMODE(1,3)=1,1 ‘activates Absolute position mode for axis1 & 3

MOVE(1,3)=0,0 “ move axis 1 & 3 to the captured home position

WAITDONE(1,3)

MOVEHOME(1,3)=-1,1 *Axis 1 executes a home cycle in the negative
direction and axis 3 executes a home cyclein
the positive direction.

WAITDONE(1,3)

POSMODE(1,3)=1,1

MOVE(1,3)=0,0 “move axis 1 & 3 to the captured home position

WAITDONE(1,3)

137

MOVEREG M otion Parameter

ACTION: Runs the motor until the mark registration input is activated; then moves
the motor the desired registration distance.

PROGRAM SYNTAX: MOV EREG(axis)=expression
MOVEREG=expressionl, ..., expression 8
MOVEREG(axis, ... ,axis)=expression, ... , expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression represents the incremental distance to move after a reg-
istration trigger has occurred. The sign of the expression determines the
direction (positive or negative) of motion for the registration cycle.

The registration trigger can be the EVENTL input, EVENT2 input and/or
Encoder marker state. This trigger is defined in the user program Con-
figuration and Setup, and aso by the EVENT1 or EVENT2 command
if they have been executed prior to the MOV EREG.

The Regidration Travel Limit, which is set by command REGLIMIT,
limits the distance that the motor will rotate if no trigger occurs. A
REGLIMIT setting of 0, sets no limit for motor rotation while awaiting a
trigger. THIS IS THE CONDITION AFTER POWER UP OR
RESET. The motor speed during a MOVEREG move is set by the
SPEED command. When the registration trigger occurs, the registration
distance is checked to determine if the motion can be stopped in the given
distance. If it can not, then the motion will be stopped using the project's
Configuration and Setup setting for Max. ACCEL, and an error code 7
is set. This error can be eiminated by increasing the registration dis-
tance, decreasing the speed or increasing the deceleration.

The captured absolute position can be monitored by the CAPPOS com-
mand.

Prior to starting a MOVEREG motion the appropriate trigger input
(EVENTL1 or EVENT2) is checked to see if it has aready been trig-
gered. If the trigger has aready occurred, an incremental move of the
distance specified by the expression to the right of the MOVEREG wiill
occur.

A MOVEREG can be started with its trigger disabled (except for the
two encoder index marker selections). The registration trigger may then
be enabled later by an EVENT1 or EVENT2 command.

138 Programming Commands

MOVEREG Continued

EXAMPLE:

Programming Commands

MOVEREG CYCLE

Trigger switch

SPEED

} Note 1
ACCEL j
} DECEL
MOVEREG ? Note 2
y,
[M—BUSY=0P4¢— BUSY=1 BUSY=0"
i REGLIMIT >

Note 1: The registration input triggers. The distance
specified by the command begins to be counted
down.

Note 2: Motion is completed. The distance traveled from
the registration trigger is the command distance.

Note: The underlined text is the command required to
generate the velocity profile. The remaining text are related
commands.

A labe isto be put down on top of the materid passng by. A sensor
connected to Eventl on axis 3 detects when the materid leading edge
occurs. The labd is put down on the materid as soon as axis 3 sarts
motion. When the trailing edge of the labe is detected the regidration
distance is traveled, 5 units. The cycle repeats until input 1 on Digitd
1/0O board 1 is activated.

REGLIMIT(3)=10 ‘st regigration limit of axis 3 to 10 units
ACCEL(3)=500 ‘accel rate of axis 3 set to 500
units/sec®
StI;)I%CEL(3)=500 “accel rate of axis 3 set to 500 units/sec?

art:
DO

DO
SPEED(3)=ENCSPD(1) ‘set speed of axis 3 equal to the speed
of material

LOOP UNTIL EVENT1(3)=1"* wait for leading edge of material
MOVEREG(3)=2 ‘start laying down label
WAITDONE(3) ‘walit for motion to stop on labd rall
LOOP UNTIL IN(101)=1 ‘repest cycleif Input 1 on board 1 isinactive
END

ERROR_HANDLER:

ERR=0,0 * if an error occurs restart cycle
GOTO dtart

139

NOT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

NVR

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

140

Boolean Operator
Thelogical NOT operator is used in Boolean expressons.
NOT expression

The NOT operator uses the truth table: The result is TRUE if the ex-
pressionis FALSE.

expresson | condition result
TRUE FALSE
FALSE TRUE

DO
satements
WHILE NOT(DONE(axis))
The contraller will continue to execute the loop until the axis is done
with the motion.

Miscellaneous Command
The NVR aray is used for non-volatile varigble storage.

NV R(number)
NV R(number)=expression

The number is the NVR dement number being addressed (1-2048). In
the MX2000-2-32, (1-32768) NV R elements can be stored.

The expresson is the vaue that will be stored a the specified NVR
element.

The NVR aray has 2048 dements (1-2048) and is accessible by dl
program tasks.

To st the NVR dement to a default setting use the Host Command
SNVR.

A=NVR(2)
Returns the NVR dement 2 vaueto variable A.

NVR(2048)=10.5
Sets the NVR dement 2048 to avalue Of 10.5.

NVR(3)=A
Satsthe NVR dement 3 to the value of variable A.

Programming Commands

NVRBIT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

M iscellaneous Command

Store or return the bit vaue in NVR memory.

NVRBIT (bit)= expresson
NVRBIT(bit) - usedin an expresson

The bit value range is 1 - 65536. The expresson must be a vaue of O
orl.

When using this command care must be taken not to dter eements used
by the NVR and NVRBY TE commands.

The NVR aray is used for non-volatile storage. The array consst of
2048 dements, 8192 Bytes or 65536 Bits. Thus, there are 32 hits in
each word.

The bit assignments for each 32 bit word is as follows:
8 76 54 3 21 (Word Mogt Significant Byte)
16 15 14 13 12 11 10 9
24 23 22 21 20 19 18 17
32 31 30 29 28 27 26 25 (Word Least Significant Byte)

The array element (word) and bit number being addressed is calculated
asfollows

element number = ((int) (bit number + 31) / 32)

bit number = mod (bit number / 32)

NVRBIT(65505)=1 'setsBit1of dement 2048=1
NVRBIT(65536)=0 'setsBit 32 of dement 2048 =0

141

NVRBYTE M iscellaneous Command

ACTION: Stores or returns the byte vaue in NVR memory.

PROGRAM SYNTAX: NVRBY TE(byte)= expression
NVRBY TE(byte) - used in an expresson

REMARKS: The byte vdue range is 1 - 8192. The expresson must be a value be-
tween 0 and 255.

When using this command care must be taken not to dter eements used
by the NVR and NVRBIT commands.

The NVR aray is used for non-volatile storage. The array consst of
2048 elements, 8192 Bytes or 65536 Bits. Thus, there are 4 bytes in
each word.

The array ement (word) being addressed is calculated as follows. de-
ment= ((int) (number + 3) / 4)
examples: Byte 1 addresses (element 1 Byte 1) MSB

Byte 2 addresses (dlement 1 Byte 2)

Byte 3 addresses (dlement 1 Byte 3)

Byte 4 addresses (element 1 Byte 4) LSB

Byte 5 addresses (element 2 Byte 1) MSB

EXAMPLES: NVRBY TE(8192)=255
sets MSB byte = 255 in lement 2048

NVRBY TE(8189)=0
Sets L SB byte= 0 in eement 2048

OPTION DECLARE M iscellaneous Command

ACTION: This option requires that dl loca variable be declared as REAL or
STRING varigbles.

PROGRAM SYNTAX: OPTION DECLARE

Arrays are not required to be declared since the DIM statement declare
them as REALS or STRINGS.

If this option is not used the non-arrayed local variables are not required
to be declared but smply used in the program.

EXAMPLES: OPTION DECLARE
REAL ab,cd.ef ‘ variables are declared
STRING a$,b$,c$,d$,e3,f$ * variable strings are declared

142 Programming Commands

OR

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Thelogical OR operator is used in Boolean expressions.

expressonl OR expresson2

Boolean Operator

The OR operator uses this truth Table: The result is TRUE, if dther ex-

presson is TRUE.

Expressonl | Expresson2 | Condition Result
FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE FALSE TRUE
TRUE TRUE TRUE
DO
gatements

LOOP UNTIL (A>5 OR X=0)

‘ The controller continues to do the loop Until variable A>5 or varigble

X=0

143

OouT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

144

/O Function

Sets or returns the condition of a specified digital output.

OUT (bnn)=expression

OUT (bnn,len)=expression

OUT(bnn) - used in an expression
OUT(bnn,len) - used in an expression
bnn is the board and Output number.

board1l board?2 board3 board4
101-124 201-224 301-324 401-424

The expression specifies the output Sate's,

The len specifies the number of Output points (1-24) involved in the in-
druction.

Outputs b01-b16 are physica outputs and b17-b24 are internd flags
which can be set or cleared and can be read just like the physical out-
puts.

OUT (bnn)=expression
Specifies one output state. If the expression is non-zero the output is on.
If the expression is zero the output Sate is off.

OUT (bnn,len)=expression

Specifies multiple output states (len) and the starting output point (bnn).
The expression is evaluated and converted to an integer vaue. The least
ggnificant len bits of the binary representation are then used to set ou-
puts bnn to (bnn+Hen-1) respectively.

OUT(bnn) - usedin an expresson
Return the gtate of the specified output point (bnn).

OUT(bnn,len) - used in an expression

Return the gtate of the designated outputs (bnn to (bnn+len-1)). Evalu-
ates to a number corresponding to the last output commanded (0 or 1)
for these output pins. The returned number is the binary weighted sum
of the commanded outputs (bnn to(bnn+len-1)) respectively.

OuUT(107)=1
Digital 1/0 board 1 output 7 isset toa 1.

OUT(101,6)=48
digital 1/0 board 1 outputs 1-4 are set to a0 and outputs 5 and 6 are
settoal.

x=0UT(107)
A lisreturned to variable x sSince output 7 issettoa 1.

x=OUT(101,7)

Programming Commands

A 112 is returned to variable x since outputs 1-4 are 0 and output 5-7
are 1.

Programming Commands 145

OUTLIMIT Servo Parameter

ACTION: Sets or returns the servo command voltage limit.
PROGRAM SYNTAX: OUTLIMIT (axis)=expression

OUTLIMIT=expressonl, ..., expresson8
OUTLIMIT(axis, ... , axis)=expresson, ... , expresson
OUTLIMIT(axis) - usedin an expresson

REMARKS: This command is defined in more detail in Section 9 Sarvo Drive.

146 Programming Commands

PATH ..PATH CLOSE ... PATH END Motion Parameter

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Specifies a continuous motion path.

PATH=axisl,axis2
EXOUT (bnn)=expression
EXOUT (bnn,len)=expression
OUT (bnn)=expression
OUT (bnn,len)=expression
LINE=axis distance,axis2 distance
FEEDRATE=expresson
ARC=axisl center, axis2 center, tangle
POINT=axisl distance, axis2 distance
RADIUS=expression
PATH CLOSE

PATH END

Axisl and axis2 are the axes used in the path.

The commands listed above are the only commands alowed in amotion
path. Path motion (LINE, ARC and POINT) proceeds from one seg-
ment to another without stopping. The path speed can be changed with
the FEEDRATE command. Outputs can be st in various segments with
standard output commands (EXOUT and OUT). When two consecu-
tive segments are lines, then a radius is inserted if the last RADIUS
command specified isanon-zero radius.

When Path statements are used in each task, a maximum of 100 points
are dlowed per PATH ... PATHEND block. Multiple, consecutive
PATH ’s are alowed within a task. However, motion stops between
PATH ’s. Up to 700 points may be used to specify a single Peth if the
only task using the PATH ... PATHEND is task 1 and no other task
contains an ARC command.

The PATH CLOSE specifies that the starting points Coordinates are
the ending point Coordinates during Path motion.

PATH=1,2
LINE=1.5,3
EXOUT(101)=1
ARC=3,0,+360
EXOUT(101)=0

PATH END

The above example will move from the present postion to postion
(1.5,3) usng the LINE motion. EXOUT(101) is set, a 360 degree
ARC is executed and then EXOUT(101) is cleared.

147

148

Programming Commands

POINT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

POSERR

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

Programming Commands

Motion Parameter
Specifies coordinates, which the motors will move through in a peth.
POINT=expressionl, expresson2

This command is only vaid between a PATH and a PATHEND date-
ment. Expressonl is the first axis coordinate, expresson? is the second
axis coordinate. The path connecting pointsis smooth.

POSMODE=1,1
PATH=1,2
POINT=1.5,3
POINT=4,5
POINT=6,7
PATH END

The above example will move the axes from the present position,
through pointg(1.5,3) and (4,5) to position (6,7) smoothly. The points
can be incrementa or absolute as set by the POSMODE command.

Trajectory Parameter
Returns the pogitiond error of the designated axis.
POSERR(axis) - used in an expresson
Note: ENCERR can be substituted for POSERR.
The axis pecifies the number of the axis (1-8).

Pogtion error is the difference between the absolute position and the
encoder position (ABSPOS - ENCPOS).

X=POSERR(1)
IF X>10THEN

PRINT#1,” Large Error”
END IF

149

POSMODE

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Motion Parameter
Sets or returns the positioning mode for the specified axis.

POSMODE(axis)=expression
POSMODE=expressionl, ..., expression8
POSMODE(axis, ... , axis)=expresson, ... , expression
POSMODE(axis) - usedin an expression

The axis gpecifies the number of the axis (1-8).

If the expresson is TRUE (non-zero) then the absolute positioning
mode is enabled. If the expresson is FALSE (zero) then the incrementd
mode is enabled. Incrementa positioning mode is the default mode.

POSMODE(2)=1
Sets the positioning mode for axis 2 to absolute.

POSMODE=1,,0
Sets the pogitioning mode for axis 1 to absolute and axis 3 is st to in+
crementa positioning mode.

POSMODE(1,3)=1,0
Sets the positioning mode for axis 1 to absolute and axis 3 is set to in-
crementd positioning mode.

Programming Commands

PRINT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

String Manipulating
Transmits designated data via the designated seria port.

PRINT#1,[expression][, or ;][expression][, or ;]
PRINT#2,[expression][, or ;][expression][, or ;]

Port 1isthe Host port and Port 2 isthe Auxiliary Port.

expression can bean vaiable parameter, string variable or Literd
gring. Litera strings must be enclosed in quotation marks.

If acomma’)" is used between expressons five spaces will separate
expressons.

If asemicolon " is used between expressions there will be no space
between expressions.

Up to 20 expressions can be used with one PRINT command.

If asamicolon " is used at the end of the PRINT command, no car-
riage-return/line-feed sequence will be generated.

ACCEL(2)=10.5

DECEL(2)=2.1

PRINT#1,” accel (2)=“;ACCEL (2),” decel (2)=“;DECEL(2)
‘ Host port out "accel(2)=10.5 decd(2)=2.1" <cr> <If>

ACCEL(2)=10.5

DECEL(2)=2.1

PRINT#2,” accel(2)= “;ACCEL (2),” decel (2)= “;DECEL (2)
‘Auxiliary port out "acce(2)= 105 decd(2)=21" <cr> <If>

ACCEL(2)=105

DECEL (2)=2.1

PRINT#2,” accel(2)= “;ACCEL(2),” decdl (2)= “:DECEL (2);
* Auxiliary port out ”accd(2)= 105 decel(2)= 2.1"

151

PRINT USING

ACTION:

PROGRAM SYNTAX:

REMARKS:

152

String Manipulation

Prints strings character or formatted numbers.

PRINT USING #1,"litera string",[exp][, or;][exp][;]
PRINT USING #1,Format$,[exp][, or;][exp][;]
PRINT USING #2,"literd string”,[exp][, or;][exp][;]
PRINT USING #2,Format$,[exp][, or;][exp][;]

Port 1 isthe Host Port and Port 2 is the Auxiliary Port.

The numeric values are formatted only using the literal string or a desig-
nated Format$ variable string. This string can contain non-format char-
acters that will be printed prior to the formatted number. The following
characters in the string will not be printed from the string:

gm0t ot "\ and)", However, these character can be print-
able characters by preceding the character with a"\".

Example:
requirement to send the following ASCII string with the current state

of OUT(101) (Output #1 on board 1 is <state> which is the coolant
control)

ab="Output \#1 is#

PRINT USING #1,a$,0UT(101); “ which is the coolant control"
The resulting seria output:
Output #1 is nwhich isthe coolant control
where: nisthe state of output (101)

The comma (,) which is the delimiter for expressions, will not print spaces
like the PRINT # command. If spaces are required, between expressions,
they must be added to the literd string or format$.

Example:
ACCEL(1)=100
DECEL (1)=200
a$="Acc=0000 Dcc=0000"
PRINT USING#1,a$,ACCEL (1),DECEL (1)
The resulting serial outpuit:
Acc= 0100 Dcc= 0200
If the numeric data is larger than the specified format than an * will
be substituted for the O's and #'s in the output.

Example:
ABSPOS(1)=1000.54
a$="Position= +0##.##"
PRINT USING #1,a$,ABSPOS(1)
The resulting seria output:
Pogition= +*** **

Programming Commands

PRINT USING continued

Programming Commands

The following specia characters are used to format the numeric field:
+ Thesign of the number will aways be printed.
- Only the negative sign will be printed. If the data is poditive a

gpace will be printed in place of the sign.

represents each digit postion. If no data exist at the digit position
substitute a space. The Digit field will always be filled.

. A decimal point may be inserted at any position in the field.

0 represents adigit position. If no data exist at the digit position sub-
ditute a 0. The Digit field will always befilled.

Any other character will be printed as encountered.

Note: if no sign isused the - sign isassumed.

The valid formats are:
L eft side format Comments
+0000 Thesgnwith leading zero’ s will be printed.
+0000. The sgn with leading zero's and decima point will be
printed. The right side format is optiona
+i#tHHt The leading spaces with a sign and digits will be printed.
+HHHHE. The leading spaces with a sign, digits and deci-
mal point will be printed. The right side format is optiondl.
0000 The- sign or aspace with leading zero's will be printed.
0000. The - sign or a space with leading zerds and decimal
point will be printed. The right side format is optional.
##H### The leading spaces with a -sign or a space and digits will
be printed.
#HH#t. The leading spaces with a -sign or a space, digits and
decimd point will be printed. The right Sde format is qo-

tiond.
+. The sgn and decimal point will be printed. This requires
the right side format also.
The sign and decimd point will be printed. This requires
the right side format also.
Right side format Comments

0000 Prints digits with trailing zer’s.

HittHt Prints digits with trailing spaces

OO0### Print two digits with trailing spaces.

If the expressions are literal strings or variable strings they will be printed
asis.

If a semicolon is used a the end of the Print Using command, no car-
riage-return / line-feed sequence will be generated.

When numeric data is to be printed, the format string is searched from
the beginning for aformat character (+0#.). The string data up to this po-
sition is sent via the serial port. The format characters (+0#.) are now
processed and the formatted value is sent via the seria port. When the
next numeric datais to be printed, this process continues from the current
position in the string. When the end of the format string is encountered
and numeric data is to be printed, a default format (PRINT # format) is
used. If the format string end is not encountered and the command is
complete the remaining characters in the format string will be printed.

153

PRINT USING continued

EXAMPLES:

The following example illustrates how the format string is proc-
essed.

Example:
PRINT USING#1,"Numbers are +###t## ## O##',100.54,"mv",
999,"cnts’ ,54," islimit”

The "Numbers are " is extracted from the string and sent via seria
port. The " +###.##" is extracted from the string as the data format,
which results in "+100.54" being sent via seria port. The string "mv" is
sent via seria port. The" " is extracted from the string and sent via s-
rial port. The "###" is extracted from the string as the data format,
which results in 999" being sent via seria port. The string " cnts” is sent
viaserid port. The " " is extracted from the string and sent via seridl
port. The " O##" is extracted from the string as the data format, which
resultsin "054" being sent via serid port. Thestring " islimit” is sent via
seria port. A crlf is appended and sent via serial port.

Resulting string:
Numbers are +100.54mv 999cnts 054 is limit<cr><If>

accel(1)=10000
A$=faccel (1)= 000000"
PRINT USING #1, Aaccel (1)= 000000", accel(1)

accel(1)= 010000 crif printed
PRINT USING #1, A$, accel(1)
accel(1)= 010000 crlf printed
End
PRINT USING #1, A +####H, 1234.6, 234
+1235 +234crlf printed
PRINT USING #1, A +00000, 1234.6, 234
+1235 +0234cr If printed

PRINT USING #1, A +##HH #1#H1, 1234.6, 234
+12346 +234. clf printed

PRINT USING #1, A +0000.0009, 1234.6, 234
+1234.600 +0234.000 cr If printed

PRINT USING #1, A ###+.000", 23.45, 22.3515
+23.450 +22.352crIf printed

Programming Commands

PROFILE Trajectory Parameter

ACTION: Determines how the motor’ s speed changes.
PROGRAM SYNTAX: PROFILE(axis)=expression

PROFILE=expressionl, ... , expressond
PROFILE(axis, ... , axis)=expression, ... ,expresson
PROFILE(axis) - used in an expression

REMARKS: The axis specifies the axis number (1-8).
The expression specifies the profile setting (1-32).

Speed changes require a period of accel/decd to increase/decrease the
motor’s speed. The Profile value determines how the accel/decd is gp-
plied. The MX controller has 32 choices. A profile setting of 1 results
in a“Trgpezoidd” profile. Thisyidds the minimum movetime. Settings
2-32 yidds “S-curve’ profiles with varying degrees of “S’. The higher
the profile setting, the more “S’ like the profile. Move times with profile
settings 1-32 are from 1 to 31 ms longer respectively than those with a
setting of 1. The “S-curve’ profiles usualy resultsin smoother motion at
the expense of longer move times.

Velocity Response, "s" = 16

18
6 r
ur
27

0r
Velocity
(rev/
sec)

D
T

150 200 250 300
Samples (mS)

0 50 100

EXAMPLES: PROFILE(1,3)=16,32
axis 1 profileis set to avaue of 16 and axis 3 profileis set to 32.

PROFILE(2)=10
axis 2 profileis set to avaue of 10.

PROFILE=16,,32
axis 1 profileis set to avalue of 16 and axis 3 profileis set to 32.

Programming Commands 155

Programming Commands

RADIUS

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

READ

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Motion Parameter
Sets or returns the ARC radius for Path blending.

RADIUS = expression
RADIUS - used in an expression

Blending only occurs between linesin a path.

The first syntax type sets the ARC radius for Peth blending equd to the
expresson. The second syntax type (expresson = RADIUS) returns
the current value of Radius.

X=RADIUS 'sasX equd to the current RADIUS vaue
RADIUS=25 'satsthe RADIUS for Path blending to .25 units

PATH=12
RADIUS=.25
LINE=1, 1
LINE=2,-5 ‘bending occurs
LINE=5,.5 ‘bending occurs
PATH END

M iscellaneous Command

Reads numbers from data statements and assigns them to the variables
inthelist.

READ vaiable, variable, etc
All numbersin the data tatements are floating point numbers.

The data statements are contained in the BASIC program. Refer to the
DATA satement description for more detall.

The DATA satement must dways gppear ahead of the READ date-
ment.

DATA 1,234

READ a, b,c,d 'reads next four values from the data statement into
variables g, b, cand d

RESTORE

157

REDUCE

ACTION:

PROGRAM SYNTAX:

REMARKS:

REGLIMIT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

M otion Parameter
Enables, disables the Reduce current or returns the enable status.

REDUCE(axis)=expresson

REDUCE=expressionl, ..., expresson8
REDUCE(axis, ... , axis)=expression, ... , expresson
REDUCE(axis) - used in an expression

This command is defined in more detail in the Stepper Section of the
Manud.

Over Trave Limit

Sets or returns the distance to be moved during a MOVEREG cycle,
while awvating atrigger.

REGLIMIT (axis)=expresson
REGLIMIT=expressonl, ..., expresson8
REGLIMIT(axis, ... , axis)=expression, ... , expresson
REGLIMIT(axis) - used in an expression

The axis specifies the axis number (1-8)

The expresson et the regidration travel distance limit for the specified
axis. A vdue of 0 disables the regidration travel distance limit.

If no trigger occurs, a MOVEREG cycle behaves like an incrementa
MOVE cycle, with the distance specified by REGLIMIT. REGLIMIT
must be set prior toa MOVEREG cycle.

REGLIMIT(2)=10
st the MOVERERG trave disance limit on axis 2 to 10 units

REGLIMIT=0,,10
disables the REGLIMIT for axis 1 and axis 3 has MOVEREG trave
digance limit of 10 units.

REGLIMIT(1,3)=0,10
disables the REGLIMIT for axis 1 and axis 3 has MOV EREG limit of
10 units.

Programming Commands

REM or °

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

RESET

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

RESTORE

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Miscellaneous Command
Allows source code comments to be inserted in the program.
REM or '

All text to theright of REM or ' to the end of the line is not consdered
part of the command during execution.

ACCEL(1)=10.2 REM axis 1 acceleration=10.2 units
DECEL(1)=54 'axis1 decderatiion=5.4 units

Miscellaneous Command
Resets the controller system.
RESET

This command causes the system to hdt, and then restart as though
power had been recycled. This command can be used to sart a differ-
ent project , as selected by the SEL1 SEL2 and SEL4 inputs on the
DSP Controller card.

A hardware input reset can dso be configured in the 1/O folder of the
Configuration and setup.

RESET

Miscellaneous Command
Allows DATA satementsto be read again.

RESTORE
RESTORE(number)

Setsthe pointer for DATA statements to the start (0) or to a designated
position (number).

RESTORE(10)
Setsthe pointer for DATA statements to position 10, the first variable in
the next READ statement will be loaded with element 10

DATA 1,2,34

READ a, b,c,d 'reads next four values from the data atement into
variables g, b, cand d

RESTORE

159

RIGHTS$

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

SETCOM

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

160

String Manipulation
Returns the rightmost characters of asring.
stringl$=RIGHT$(string2$,n)

The nisthe number of rightmost charactersto return. If nis greater than
the length of the string2$ then the entire string is returned to stringl$.

b$=“Hdlo World”
a$=RIGHT$(b$,4) 'sets a$="orld".

M iscellaneous Command

Sets the baud rate and data format for Auxiliary seria port.
SETCOM#n, baud, parity, data, stop

The varigble "n" sgnifies the port number. Presently, only the second
serid port (the Auxiliary Port) is supported, therefore only a vaue of 2
isvdid for "n".

The baud rate can be any value up to 38,400.
parity setting:

0 no parity

1 odd parity

2 even parity
data

7 7 bit datalength

8 8hit datalength
stop

1 1 stop hit

2 2 dop bits

If the inputs are outside the above setting the command will be ignored
and an error warning will be issued.

SETCOM#2,9600,0,8,1
Sets Auxiliary port to 9600 baud, no parity, 8 bit data and 1 stop bit.

Programming Commands

SHIFT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

SIGN

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

SIN

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Miscellaneous Command
Shifts the dements of a Sngle-dimension numeric array up or down.
SHIFT (array, n)

n is the number of shiftsto perform on the array. If n is a postive num:

ber, the array is shifted up and the top elements are discarded. If nisa
negative number the array is shifted down and the bottom eements are
discarded. Zeroes are shifted into the array.

This example illudtrates the effect of shift commands on a4-dement a-
ray "X".
x0 x@ x@ x3

1 2 3 4 X before shift command
0 1 2 3 x after SHIFT(x,1)
2 3 4 0 x after SHIFT(x, -1)

Mathematics Function
Returns the Sgn of an expresson.
SIGN(expression) - used in an expression
If the expresson is posgitive, the SIGN function returns 1.
If the expression is zero, the SIGN function returns 0.
If the expression is negative, the SIGN function returns-1.

SIGN(-10.0) * evaluatesto -1
SIGN(10) 'evaluatesto 1
SIGN(0) * evduatesto a0

M athematics Function
Returns the sne of the angle x, where x isin radians.
SIN(X) - used in an expression

To convert vaues from degrees to radians, multiply the angle (in de-
grees) times Pi/180 (or .017453) where Pi= 3.141593.

To convert a radian vaue to degrees, multiply it by 180/P (or
57.295779).

conv = 3.141593 / 180'converts degreesto radians
A =SIN (conv * 45) A =sn (45 degrees) or .7071

161

162 Programming Commands

SOFTLIMIT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Over Trave Limit

Enablegdisables or returns the SOFTLIMIT enable gate for the &
lected axis.

SOFTLIMIT (axis)=expresson
SOFTLIMIT=expressoni, ... , expression8
SOFTLIMIT(axis, ... , axis)=expression, ... ,.expresson
SOFTLIMIT(axis) - usedin an expresson

axis selects the designated axis (1-8).

The expresson sets the SOFTLIMIT date of the designated axes. A
"0" disables the SOFTLIMPOS and SOFTLIMNEG soft limits of the
designated axis. Any other vdue will enable the SOFTLIMPOS and
SOFTLIMNEG soft limits of the designated axis.

SOFTLIMIT(2)=0
Disables the SOFTLIMPOS and SOFTLIMNEG soft limits of axis 2.

SOFTLIMIT=1,,0
Enables the SOFTLIMPOS and SOFTLIMNEG soft limits of axis 1
and disables the axis 3 soft limits.

SOFTLIMIT(1,3)=1,0
Enables the SOFTLIMPOS and SOFTLIMNEG soft limits of axis 1
and disables the axis 3 soft limits.

163

SOFTLIMNEG

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

164

Over Trave Limit

Programmable softwar e limit switch for motion in the negative direc-
tion. Sets or returns the absolute negative travel position vaue for the
Specified axis.

SOFTLIMNEG(axis)=expression

SOFTLIMNEG=expressionl, ... ,expresson8

SOFTLIMNEG(axis, ... , axis)=expression, ... , expresson
SOFTLIMNEG(axis) - usedinan expresson

The"axis" pecifies the number of the axis (1-8).

The expresson sats the absolute value for the negative direction soft
limit in units

If during motion the absolute position becomes less than its software
limit vaue, the motion is aborted.

Software trave limits are used to stop the motor when the commanded
position exceeds the programmed software travel limit. There are two
software travel limits, one for + and one for - motor rotation. The +
software travel limit is tested when the motor is rotating in the + direc-
tion. The - software travel limit is tested when the motor is rotating in
the - direction.

The software travel limits are checked if they are enabled and a motion
other than MOVEHOME is occurring.

The software travel limits power up disabled.

When the travel limit is exceeded, the motor is decelerated to a stop
using the Max. ACCEL vaue, and an error code is st.

SOFTLIMNEG(2) =-4
Sets the negative direction soft limit of axis 2 a -4 units.,

SOFTLIMNEG=-5,,-6
Sets the negative direction soft limit of axis 1 at -5 units and axis 3 is sat
to -6 units.

SOFTLIMNEG(1,3)=-5,-6
Sets the negative direction soft limit of axis 1 a -5 units and axis 3 is set
to -6 units.

Programming Commands

SOFTLIMPOS

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Over Trave Limit

Programmable softwar e limit switch for motion in the pogtive direc-
tion. Sets or returns the absolute postive travel postion vaue for the
Specified axis.

SOFTLIMPOS(axis)=expression

SOFTLIMPOS=expressoni, ... ,expression8

SOFTLIMPOS(axis, ... , axis)=expression, ... , expresson
SOFTLIMPOS(axis) - usedinan expresson

The"axis" pecifies the number of the axis (1-8).
The expresson sets the vaue for the pogtive direction soft limit in units.

If during motion the absolute position becomes greater than its limit, the
motion is aborted.

Software travel limits are used to stop the motor when the commanded
position exceeds the programmed software travel limit. There are two
software travel limits, one for + and one for - motor rotation. The +
software trave limit is tested when the motor is rotating in the + direc-
tion. The - software travel limit is tested when the motor is rotating in
the - direction.

The software travel limits are checked if they are enabled and a motion
other than MOVEHOME is occurring.

The software trave limits power up disabled.

When the travel limit is exceeded, the motor is decelerated to a stop
using the Max. ACCEL vaue, and an error code is st.

SOFTLIMPOS(2) =4
Sets the pogitive direction soft limit of axis 2 a +4 units.

SOFTLIMPOS=5,,6
Sets the positive direction soft limit of axis 1 at +5 units and axis 3 is s&t
to +6 units.

SOFTLIMPOS(1,3)=-5,-6
Sets the positive direction soft limit of axis 1 at +5 units and axis 3 is st
to +6 units.

165

SPEED

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

166

Trajectory Parameter
Sets and returns the target velocity of the motor.

SPEED(AXIS)=expression

SPEED=expressoni, ..., expression8
SPEED(axis, ... ,axis)=expression, ... , expression
SPEED(axis) - used in an expresson

The axis gpecifies the number of the axis (1-8).

The expresson sets the gpeed of the designated axis in units/'second and
must be a pogitive vaue.

The velocity of an axis can be changed during motion by issuing a new
vaue for the SPEED command. The velocity change will use the
ACCEL or DECEL rate change value. A SPEED of 0 will stop the
motor but the cycle will remain busy. To resume the cyde smply
change the SPEED vaue from 0 and the cycle will resume motion.

SPEED Change During Motion

SPEED

ACCEL}
SPEED . / / PECEL
ACCEL E / /
§ SPEED
JOG —\

\/

}4— BUSY=0—"

4

BUSY=1

Note: The underlined text is the command required to
generate the velocity profile. The remaining text are related
commands.

SPEED(2)=10
Sets the gpeed of axis 2 to 10 units/second.

SPEED=0,,5
Sets the gpeed of axis 1 to 0 units/second and axis 3 to 5 units/second.

SPEED(1,3)=0,5
Sets the gpeed of axis 1 to 0 units/second and axis 3 to 5 units/second.

Programming Commands

SQRT
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

STOP

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

STOPERR

ACTION:

COMMAND SYNTAX:

REMARKS:

Programming Commands

M athematics Function

Returns the sguare root of the expression.
SQRT(expression) - used in an expression

The expression must greater than or equal to zero, or an warning will ac-
cur.

x = SQRT(16)
Sets variable x equal to avalue of 4.

M otion Parameter

Stops any motion with a control stop, uses the DECEL value for deceler-
ating to a stop.

STOP(axis)

STOP=expressionl, ..., expression8

STOP(axis, ... ,axis)

note: JOGSTOP can be substituted for STOP.
The axis specifies the number of the axis (1-8).

Any vaue for the expression will stop the designated axis.

This command will stop any motion using the DECEL vaue for normal
motion and FOLDCCDIST for following mation.

STOP(2)
requests following axis 2 to stop.

STOP=1,1
requests following axis 1 and axis 3 to stop.

STOP(1,3)
requests following axis 1 and axis 3 to stop.

M otion Par ameter

Sets or returns the maximum postion error alowed when motion is
stopped, referred to herein as "position error band."”

STOPERR(axis) =expression

STOPERR=expressioni, ... , expressond

STOPERR(axis, ... , axis)=expression, ... , expression
STOPERR(axis) - Used in an expression

Note: ENCBAND can be substituted for STOPERR.

STOPERR is a stepper drive and servo drive parameter.

167

168

STOPERR is defined in detail in both the Servo Drive and Stepper Drive
Sections of this manual.

Programming Commands

STR$

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

STRING$

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

TAN

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

String Manipulation
Returns a string representation of a numeric expression.
Stringl$=STR$(numeric expression)
The STR$ command is the complement of aVVAL command.
ACCEL(2)=100

x=50

y=2.1

ab=STRH(ACCEL(2)) ‘sets ab="100"
b$=STR$(X) ‘sets b$="50"
Cc$=STRH(y) ‘setsc$="2.1"

String Manipulation
Returns a tring of characters.
String1$=STRING$(number, code)
The number indicates the length of the string to return.
The code isthe ASCII code of the character to use to build the string.

a$ = STRING$(10,63) ‘setsap=""7?7?7727277

M athematics Function
Returns the tangent of the angle X, where x isin radians.
TAN(X) - usedinanexpresson

To convert vaues from degrees to radians, multiply the angle (in de-
grees) times Pi/180 (or .017453) where Pi= 3.141593.

To convert a radian vaue to degrees, multiply it by 180/P (or
57.295779).

Pl = 3.141593

‘assgn the congtant "PI™

x =TAN (Pl/4)

‘caculate tangent of 45 degrees, sets x equd to the value 1.0, whichis
the tangent of 45 degrees

169

TIMER

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

TIMERZ2

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

170

Time Function
Sets or read the Timer vaue in seconds.

TIMER - used in an expression
TIMER=expression

TIMERL1 - used in an expresson
TIMER1=expresson

The Timer should be set to avaue a the beginning of the task in which
itisused.
The Timer isincremented every millisecond.

TIMER=0 ‘st the timer to zero
DO
satements
WHILETIMER < 1.0 * dotheloop for 1 second

Time Function
Sets or read the Timer2 value in seconds.

TIMER?Z - used in an expression
TIMER2=expresson

The Timer should be set to avaue a the beginning of the task in which
itisused.
The Timer isincremented every millisecond.

TIMER2=0 ‘et the timer to zero
DO
statements
WHILE TIMER2< 1.0 ‘ dotheloop for 1 second

Programming Commands

TOLERANCE

ACTION:

SYNTAX:

REMARKS:

EXAMPLES:

UCASES$

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Miscellaneous Command
Sets a tolerance on a numeric comparison.

TOLERANCE = expression
TOLERANCE - usedin an expresson

Sets a numeric tolerance for al comparison operators (<, <=, = >=, >,
<>). If the comparison is within the bounds of a + tolerance the com+
parison istrue.

TOLERANCE=.001

IFx <=2 THEN “if x <= +1.999 then comparison istrue
Satements

ELSEIFx>=4THEN °‘if x>=+3.999 then comparisonistrue
Satements

ELSEIFX=3THEN ‘ if x is 2999 to 3.001 the comparison is

true
Satements
ELSEIFX<>3THEN ' if x <2999 or >3.001 the comparison is
true
Satements
END IF

String Manipulation
Returns a string with al letters converted to upper case.
stringl$=ucase$(string2%)

String2$ is copied and al lower-case letters are converted to upper
case.

This command is useful for making the INSTR command case insensi-
tive

a$="hdlo”
b$=UCASE(a$) * b$=*HELLO"

17

VAL

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

VELOCITY

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

WAIT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

172

String Manipulation
Returns the floating point vaue of the designated siring variable.
VAL(n$) - usedinanexpresson
n$ is the designated string variable.

The dring vaidble format for converson is [dgn]digity.digite or
E[sgn]integer]

The sgn and scientific notions are optiond.

Only numeric vaues are returned. The firgt character that cannot be
part of the number terminates the tring. If no digits have been proc-
esed, avalue of zero isreturned.

a$="134 Man t”
b$="10.55 dollars’
x=VAL(a$) " setsx=134
y=VAL(b$) * setsy=10.55
Trajectory Parameter
Sets or returns the path speed to be used for coordinated motion.

VELOCITY = expression
VELOCITY - usedinanexpresson

Thisvelocity isused inthe LINE, ARC, and PATH commands.

VELOCITY=10.1
Sets the coordinated velocity for a LINE or ARC command to 10.1
units/sec

k1=VELOCITY
Sets the variable k1 equd to the vaue of VELOCITY used in the pro-
gram

Time Function

Waits for the period of time (expressed in seconds) to expire before
continuing.

WAIT = expression
The expression defines the wait delay in seconds.
Program execution is suspended until the desired time has € gpsed.

WAIT=11

Programming Commands

Wait 1.1 seconds and then continue

Programming Commands 173

WAITDONE

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

174

M otion Par ameter

Waits for motion to be done for the specified axes. "Done' means no-
tioniscomplete.

WAITDONE(axis)
WAITDONE=expessionl, ... , expresson8
WAITDONE(axis, ,axis)

The"axis' specifies the number of the axis (1-8).
The expresson specifies the axis to wait for motion complete.

An dternate way to accomplish the WAITDONE function is as follows:
DO: LOOPWHILE BUSY(1)
* Waits until axis 1 motion is completed.

WAITDONE(3)
* Waits for axis 3 motion to be complete before continuing program
execution

WAITDONE (1,2,4,5,6,7,8)
“ Walts for axis 1, 2, 4, 5, 6, 7, and 8 motion to be complete before
continuing program execution.

Programming Commands

WARNING

ACTION:
PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

WNDGS

ACTION:

PROGRAM SYNTAX:

REMARKS:

Programming Commands

M iscellaneous Command

Returns the warning number of the task.

WARNING - used in expression

A non-zero indicates no warnings have been encountered in the task.

The predefined Warning codes are

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Command axisis not in task group.
Andog I/0 sdected is out of range.

BCD sdlected is out of range.

Expangon Input selected is out of range.
Expansion Output selected is out of range.
Digitd Input selected is out of range.
Digital Output selected is out of range.
Log command argument is zero or negative
SQRT command argument is negetive.
NVR eement isout of range.

READ command is out of data arguments.
MAXSPD command is out of range.
Motion occurring at program end.

RS232 Configuration Error.

Servo Parameter is out of range.

IF WARNING > 0 then " warning occurred?
Warn = Warning ' st Warn to WARNING number

END IF

M otion Par ameter

Enables or disable amotor drive.

WNDGS(axis)=expression

WNDGS=expressionl, ... ,expression8
WNDGS(axis, ... , axis)=expression, ... , expresson
WNDGS(axis) - used in an expression

This command is defined in detail in both Section 9 Servo Drive and
Section 10 Stepper Drive.

175

7.5 Host Commands Grouped By Functions

|/O Function
ANALOG
BCD

EXIN
EXOUT

IN

ouT

Miscellaneous Command
113 <nl,

13 ?’1
AXISBRD
AXSTAT

“BACKSPACE”
CAPPOS

CAPTURE
“CTRL A”
“CTRL C”
DELTACAPPOS

DIR
ERASE
ERR
ERRAXIS
ERRM
«ESCY
FILTER
FREE
FREEMEM
LOAD

NVR
NVRBIT
NVRBYTE
RESET
REVISION
RUN

SNVR

UNIT
WARNING
“XON XOFF

M otion Parameter
ARC

BUSY
DRVREADY

ENCBAND

176

Page
Sets or returns a numeric value representation on the analog port.

Returns the BCD switches value connected to an Expansion 1/0 port.
Returns the state of the specified expansion /O inputs.

Sets or returns the state of the specified expansion 1/O outputs.
Returns the state’ s of the specified digital 1/0 inputs.

Sets or returns the condition of a specified digital output. 198

This command activates/deactivates a controller from accepting
commands from a host computer.

Reguest the space remaining in the Host Receiver Buffer.

Sets or returns the number of axis cards in the system.

Returns the Axis Drive Type, Units/Rev, Drive resolution and Task
assigned to an axis.

Deletes one character from the host receiver buffer.

Returns the last captured position of an axis from a MOVEHOME,
MOVEREG or CAPTURE cycle.

Sets the position capture trigger condition or returns the capture status.
Stops al motion and al tasks.

Stops dl motion and dl tasks.

Returns the difference between the current captured position and the
previoudy captured position.

List the names of projects and tasks stored in non-volatile memory.
Erases a specific project or all projects stored in non-volatile memory.
Returns the controller error/warning number for a task.

Returns the controller axis number which created the error/warning.
Returns the error/warning messages for all tasks.

Allows Host commands to be executed during program execution.
Sets or returns the filter value for the defined analog inpuit.

Transfer the free space available in non-volatile memory.

Returns the amount of free memory for program execution allocation.
L oads the designated project from non-volatile memory into the
operating memory.

The NVR array is used for non-volatile variable storage.

Stores or returns the bit value in NVR memory.

Stores or returns the byte value in NVR memory.

Resets the system.

Returns the current revision level of the controller’s operating system.
Runs the loaded project.

Sets the default value for the designated NVR elements.

Returns the pulses/unit value of an axis.

Returns the warning number of a task.

Protocol for controlling data flow between the controller and host.

Initiates a coordinated motion to move in an arc.

Returns the motion status of an axis.

Enables or disables the checking of the drive (READY) signa on the
axis card.

Sets or returns the maximum position error dlowed at standstill.

Programming Commands

174
175
187
188
191

172
172
174

175
175

176
177
177
177

178
179
183
183
184
185
186
188
189
190

195
197
198
198
201
201
202
202
205
206
207

174
176

179
180

Programming Commands

177

M otion Parameter continued

ENCFOL
ENCMODE
ENCRES
EVENT1

EVENT2

FOLERR
JOG
JOGSTART
LINE

MOVE
MOVEHOME

MOVEREG

POSMODE
STOP
STOPERR
WNDGS

Over Travd Limit
HARDLIMNEG
HARDLIMPOS
REGLIMIT

SOFTLIMNEG
SOFTLIMPOS

Servo Parameter
INTLIM

KAFF

KD

Kl

KP

KVFF
OUTLIMIT

Trajectory Parameter
ABSPOS

ACCEL

DECEL

ENCERR

ENCPOS

ENCSPD

LOWSPD

MAXSPD
POSERR
PROFILE

178

Sets or returns the maximum position error alowed during motion.

Sets or returns the operating mode of a closed loop stepper axis.
Returns the encoder line count of an axis.

Returns the state of the trigger input labeled EVNT1 or sets the trigger

polarity and enable , which are used in aMOVEHOME, MOVEREG or

FOLMOVREG cycle.
Returns the state of the trigger input labeled EVNT2 or sets the trigger

polarity and enable , which are used in aMOVEHOME, MOVEREG or

FOLMOVREG cycle.

Sets or returns the maximum position error alowed during motion.
Runs the motor continuoudly in the specified direction.

Runs the motor continuoudly in the specified direction.

Initiates a coordinated linear move involving up to 8 axes.

Initiates a non-coordinated move.

Runs the motor until the home input is activated, captures and records
the position of the switch activation as home.

Runs the motor until the mark registration input is activated; then moves

the motor the desired registration distance.

Sets or returns the position mode of an axis.

Stops any motion with a control stop.

Sets or returns the maximum position error dlowed at standstill.
Enables or disables a motor drive.

Returns the - Limit hardware state of an axis.

Returns the + Limit hardware state of an axis.

Sets or returns the distance to be moved during a MOV EREG cycle,
while awaiting a trigger. 201
Sets or return the - direction software travel limit.

Sets or return the + direction software travel limit.

Sets the integral limit for a servo axis.

Sets or returns the acceleration feed forward gain of a servo axis.
Sets or returns the derivative gain of a servo axis.

Sets or returns the integral gain of a servo axis.

Sets or returns the proportiona gain of a servo axis.

Sets or returns the velocity feed forward gain of a servo axis.
Sets or returns the servo axis command limit voltage.

Sets or returns the commanded absol ute position of an axis.
Sets or returns the acceleration value of the motor.

Sets or returns the deceleration value of an axis.

Returns the positional error of the designated axis.

Returns the encoder position of an axis.

Returns the current encoder speed in Units/second.

Sets or returns the Low Speed (starting speed) value of a stepping motor

axis.

Sets or returns the maximum allowed speed of an axis.
Returns the positional error of the designated axis.
Determines how the motor speed changes.

Programming Commands

Page
181
181
182

186

187
189
192
192
195
196

197

197
200
204
205
207

190
190

203
203

191
192
193
193
194
194
199

173
173
178
180
182
182

195
196
199
200

SPEED Sets or returns the target velocity of an axis. 204
VELOCITY Sets or returns the path speed to be used for coordinated motion. 206

Programming Commands 179

7.6 Host Command Summary (alphabetical list)

“ <nu

G ?1

A
ABSPOS
ACCEL
ANALOG
ARC
AXISBRD
AXSTAT

B
“BACKSPACE”
BCD

BUSY

C
CAPPOS

CAPTURE

“CTRL A”
“CTRL C”

D
DECEL
DELTACAPPOS

DIR
DRVREADY

E
ENCBAND

ENCERR
ENCFOL
ENCMODE
ENCPOS
ENCRES
ENCSPD
ERASE
ERR
ERRAXIS

ERRM

“ E&”
EVENT1

180

This command activates/deactivates a controller from accepting
commands from a host computer.
Request the space remaining in the Host Receiver Buffer.

Sets or returns the commanded absolute position of an axis.

Sets or returns the acceleration value of the motor.

Sets or returns a numeric value representation on the analog port.
Initiates a coordinated motion to move in an arc.

Sets or returns the number of axis cards in the system.

Returns the Axis Drive Type, UnitsRev, Drive resolution and Task
assigned to an axis.

Deletes one character from the host receiver buffer.
Returns the BCD switches value connected to an Expansion |/O port.
Returns the motion status of an axis.

Returns the last captured position of an axis from aMOVEHOME,
MOVEREG or CAPTURE cycle.

Sets the position capture trigger condition or returns the position
capture status.

Stops dl motion and dl tasks.

Stops al motion and al tasks.

Sets or returns the deceleration value of an axis.

Returns the difference between the current captured position and the
previoudy captured position.

List the names of projects and tasks stored in non-volatile memory.
Enables or disables the checking of the drive (READY) signa on the
axis card.

Sets or returns the maximum position error alowed when motion is
stopped.

Returns the positional error of the designated axis.

Sets or returns the maximum position error allowed during motion.
Sets or returns the operating mode of a closed loop stepper axis.
Returns the encoder position of an axis.

Returns the encoder line count of an axis.

Returns the current encoder speed in Units/second.

Erases a specific project or al projects stored in non-volatile Memory.
Returns the controller error/warning number for a task.

Returns the controller axis number which created the error/warning
for atask.

Returns the error/warning message’s for all tasks.

Allows Host commands to be executed during program execution.
Returns the state of the trigger input labeled EVNT1 or sets the trigger

polarity and enable , which are used in a MOVEHOME, MOV EREG or

Programming Commands

172
172

173
173
174
174
174

175

175
175
176

176

177
177
177

178

178
179

179

180
180
181
181
182
182
182
183
183

184
185
186

FOLMOVREG cycle. 186

Programming Commands 181

EVENT2

EXIN
EXOUT

F
FILTER
FOLERR
FREE
FREEMEM

H

HARDLIMNEG
HARDLIMPOS

|
IN
INTLIM

J
JOG
JOGSTART

K
KAFF
KD
Kl
KP
KVFF

L
LINE
LOAD

LOWSPD

M

MAXSPD
MOVE
MOVEHOME

MOVEREG

N

NVR
NVRBIT
NVRBYTE

@)
ouT

182

Returns the state of the trigger input labeled EVNT2 or sets the trigger

polarity and enable , which are used in a MOVEHOME, MOV EREG or

FOLMOVREG cycle.
Returns the state of the specified expansion 1/0 inputs.
Sets or returns the state of the specified expansion 1/O outputs.

Sets or returns the filter value for the defined anal og inpuit.

Sets or returns the maximum position error allowed during motion.
Transfers the free space available in non-volatile memory.

Returns the amount of free memory for program execution alocation.

Returns the - Limit hardware state of an axis.
Returns the + Limit hardware state of an axis.

Returns the state’s of the specified digital 1/0O inputs.
Setsthe integral limit for a servo axis.

Runs the motor continuoudly in the specified direction.
Runs the motor continuoudly in the specified direction.

Sets or returns the acceleration feed forward gain of a servo axis.
Sets or returns the derivative gain of a servo axis.

Sets or returns the integral gain of a servo axis.

Sets or returns the proportiona gain of a servo axis.

Sets or returns the velocity feed forward gain of a servo axis.

Initiates a coordinated linear move involving up to 8 axes.
Loads the designated project from non-volatile memory into
operating memory.

Sets or returns the Low Speed (starting speed) value of a
stepping motor axis.

Sets or returns the maximum allowed speed of an axis.

Initiates a non-coordinated move.

Runs the motor until the home input is activated, captures and records
the position of the switch activation as home.

Runs the motor until the mark registration input is activated; then
moves the motor the desired registration distance.

The NVR array is used for non-volatile variable storage.
Stores or returns the bit value in NVR memory.
Stores or returns the byte value in NVR memory.

Sets or returns the condition of a specified digital outpt. 198

Programming Commands

Page

187
187
188

188
189
189
190

190
190

191
191

192
192

192
193
193
194
194

195
195

195

196
196

197

197

197
198
198

OUTLIMIT

P
POSERR
POSMODE
PROFILE

R
REGLIMIT

RESET
REVISION
RUN

S

SNVR
SOFTLIMNEG
SOFTLIMPOS
SPEED

STOP
STOPERR

U
UNIT

\%
VELOCITY

W
WARNING
WNDGS

X
“XON XOFF

Programming Commands

Sets or returns the servo axis command limit voltage.

Returns the positional error of the designated axis.
Sets or returns the position mode of an axis.
Determines how the motor speed changes.

Sets or returns the distance to be moved during a MOV EREG cycle,
while awaiting a trigger. 201
Resets the system.

Returns the current revision level of the controller’s operating system.

Runs the loaded project.

Sets the default value for the designated NVR elements.

Sets or return the - direction software travel limit.

Sets or return the + direction software travel limit.

Sets or returns the target velocity of an axis.

Stops any motion with a control stop.

Sets or returns the maximum position error alowed at standstill.

Returns the pulses/unit value of an axis.

Sets or returns the path speed to be used for coordinated motion.

Returns the warning number of a task.
Enables or disablesa motor drive.

Protocol for controlling data flow between the controller and the host.

199

Page

199
200
200

201
201
202

202
203
203
204
204
205

205

206

206
207

207

183

7.7 Host Commands - Alphabetical Listing

n <n (1]

ACTION:

COMMAND SYNTAX:

REMARKS:

n ? n

ACTION:

COMMAND SYNTAX:

REMARKS:

184

Miscellaneous Command

This command activates/deactivates a controller from accepting com-
mands from a host computer.

<n or<ncr
<n?
<0 or<Ocr

In order to daisy chain multiple controllers to communicate with asingle
hogt, each controller must be given a unique identification number. The
Unit ID # sdector switch defines the identification number of the con-
trol. This switch is interrogated on power turn on only. The factory set-
ting isdevice 1.

Each Controller must be given a unique identification (1-9)
beforethe system iswired.

In order to accept commands from a host device, a Control must be set
to the active mode. To do this, the host must send the device attention
command (<) followed by the device identification followed by a car-
riage return, line feed or non-numeric character. If n matches the con-
troller id number, that unit becomes the active controller.

If the host requires an acknowledgement of the active controller the <n?
command is tranamitted by the host and if the device exigts it will re-
gpond with itsid number.

If dl controllers are to be placed in the listen mode the host issues a
<0cr command. No data can be transferred from the Control to the
host in this mode. However, dl other commands will be honored by the
controllers.

M iscellaneous Command

The ? key (or ? character code, ASCII 63, sent via a serid port) re-
quests the space remaining in the Host Receaiver buffer.

?

The controller receiver buffer is 255 characters long.

Programming Commands

ABSPOS

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

ACCEL

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Trajectory Parameter

Sets or returns the commanded absolute position of an axis.

ABSPOS(axis)=number cr
ABSPOS=numberl, . .., number8 cr
ABSPOS cr

ABSPOS(axis) cr

See Programming Command ABSPOS.

ABSPOS(3)=2
Sets the absolute pogition of axis 3 to 2 units.

ABSPOS=1,,3
sets the absolute position of axis 1 to 1 unit, axis 2 no change and axis 3
to 3 units.

ABSPOS(3)
Returns the current absolute position of axis 3.

Trajectory Parameter

Sets or returns the accderation value of an axis.

ACCEL (axis)=number cr
ACCEL=numberl, ..., number8 cr
ACCEL (axis) cr

ACCEL cr

See Programming Command ACCEL.

ACCEL(3)=200
sets the accderation of axis 3 to 200 units/sec?.

ACCEL=100,,200
sets the acceleration rate of axis 1 to 100 units/'sec?, axis 2 no change
and axis 3 to 200 units/sec’.

ACCEL(3)
Returns the current accel eration rate for axis 3

185

ANALOG

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

ARC

ACTION:

PROGRAM SYNTAX:
REMARKS:

EXAMPLES:

AXISBRD

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

186

/O Function

Sets or returns a numeric vaue representing the voltage on the analog
port.

ANALOG(bOn) cr
ANALOG(bOn)=number cr

See Programming Command ANALOG

ANALOG(102)=2.5
Sets the voltage on board 1 output 2 to 2.5 volts

ANALOG(102)
Return the current voltage on board 1 input 2.

M otion Par ameter

Initiates a coordinated motion to move in an arc.
ARC =X, y, xcenter, ycenter, tangle
See Programming Command ARC

ARC=1,2,3,0,+180
‘ Initiates a 180° clockwise arc rotation, using axis 1 and 2, with a 3 unit
radius.

Miscellaneous Command
Sets or returns the number of axis cards in the system.

AXISBRD cr
AXISBRD = number cr

The AXISBRD command returns the current value for the number of
axis cards.

The AXISBRD=number command is only honored if the project directory
is empty, DIR command return no project names. The number (1-4) sets
the number of axis cards in the system.

This vaue is atered when a project is loaded into active ram and reflects
the number of axis defined in a project.

The Power-on default with no projectsis 1.

The Current value determines the maximum number of axes to be re-
turned during aHost command.

AXISBRD
Returns the current value of axis cards.

AXISBRD=4

Programming Commands

AXSTAT

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

"BACKSPACE"

ACTION:

COMMAND SYNTAX:

BCD

ACTION:

COMMAND SYNTAX:

REMARKS:

Programming Commands

Sets the current value of axis cardsto 4 (8 axis).

M iscellaneous Command

Returns the Axis Drive type, Units/Rev, Drive resolution and Task &
signed to an axis.

AXSTAT(axis) cr
The axis specifies the number of an axis (1-8)

The returned line for the Drive Type is one of the following:
CL STEPPER
STEPPER
SERVO

The returned line for the UnitRev is.
UNITS/REV = vaue

The returned line for Drive resolution (Stepper axis) is.
PULSESREV = value

The returned line for Drive Resolution (Servo axis) is:
ENC LINES = vaue

The returned line for the Task assigned to an axisis
TASK n
Where n is the task number.

AXSTAT(1)
Returns the axis status for axis 1.

AXSTAT(2)
Returns the axis status for axis 2.

M iscellaneous Command

The Backspace key or ASCII code 08 can be used to delete one char-
acter from the host receiver buffer.

BACKSPACE (ASCII 08)

/O Function

Returns the number set on a BCD switch bank connected to an expan+
son 1/O board.

BCD(bOn) cr

See Programming Command BCD

187

EXAMPLES BCD(101)
Returns the setting of BCD switch bank 1 connected to expansion
board 1.

188 Programming Commands

BUSY

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

CAPPOS

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:
1.

Programming Commands

M otion Par ameter

Returns the motion status of the selected axis. An axis is "busy" if no-
tion is occurring.

BUSY (axis) cr
BUSY cr

See Programming Command BUSY

BUSY (1)
Returns the motion status of axis 1.

BUSY
Return the motion status for dl assgned axes.

M iscellaneous Command

Returns the last captured postion of an axis from a
MOVEHOME, MOVEREG or CAPTURE cycle.

CAPPOS(axis) cr
CAPPOS cr

See Programming Command CAPPOS.
CAPPOS(axis) returns the last captured position for the specified axis.
CAPPOS returns the last captured position for al axes.

CAPPOS(1) cr ‘Returns the last captured position for axis

CAPPOS cr ‘Returns the last captured position for al axes.

189

CAPTURE

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

"CTRL A"

ACTION:

COMMAND SYNTAX:

REMARKS:

"CTRL C"

ACTION:

COMMAND SYNTAX:

REMARKS:

190

M iscellaneous Command

Sets the position capture trigger condition or returns the position capture
status.

CAPTURE(axis)= number cr
CAPTURE=numberl, ..., number8 cr
CAPTURE(axis) cr

CAPTURE cr

See Programming Command CAPTURE.

CAPTURE(1) =Ocr
Arms the trigger to capture the position of axis 1 when EVNT 1 becomes
active.

CAPTURE=0,1cr

Arms the trigger to capture the position of axis 1 when EVNT 1 becomes
active and arms the trigger to capture the position of axis 3 when EVNT
1 becomes inactive.

CAPTURE(2) cr
Returns a 0 or a 1 to indicate whether or not a capture has occurred on
axis 2.

CAPTURE cr
Returnsa 0 or a 1 to indicate whether or not a capture has occurred on
all axes.

M iscellaneous Command
Stops al motion and dl tasks.

Simultaneoudly press the keyboard keys marked "A" and the control key
"CTRL".

"CTRL A" will stop execution of al tasks presently running on
the controller; al motion ceases immediately.

If the axis is a servo axis "CTRL A" does not turn off the servo output
voltage.

M iscellaneous Command
Stops al motion and dl tasks.

Simultaneoudly press the keyboard keys marked "C" and the control key
"CTRL".

"CTRL C" will stop execution of dl tasks presently running on the con-
troller; al motion ceases immediately.

If the axisis a servo axis "CTRL C" turns off the servo output voltage.
To turn the servo output back on use the "WNDGS(axis) = 1" command.

Programming Commands

DECEL

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLE:

DELTACAPPOS

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Trajectory Parameter
Sets or returns the deceleration value of the selected axis.

DECEL (axis)=number cr

DECEL=numberl, number2, ..., number8 cr
DECEL (axis) cr

DECEL cr

See Programming Command DECEL.

DECEL (2)=50
Sets the deceleration rate for axis 2 to 50 units/sec?.

DECEL=50,,75
Sets the deceleration rate for axis 1 to 50 units/sec? , axis 2 is unchanged
and axis 3 to 75 units/sec’.

DECEL(2)
Returns the deceleration rate for axis 2.

DECEL
Returns the deceleration rate for al assigned axes.

M iscellaneous Command

Returns the difference between the current captured position and the
previoudy captured position.

DELTACAPPOS(axis) cr
DELTACAPPOS cr

See Programming Command DEL TACAPPOS.

DELTACAPPOS(3) cr
Returns the difference between the current captured position and the
previoudy captured position for axis 3.

DELTACAPPOS cr
Returns the difference between the current captured position and the
previoudy captured position for dl axes.

191

DIR

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

DRVREADY

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

192

Miscellaneous Command

List the names of projects and tasks stored in non-volatile memory.

DIR cr

The transfer format is:
n*s Project name checksum
Task name
Task name
etc
n*s Project name checksum
Task name
Task name
etc
free space = nnnn

n is the project number (0 to 6).

* indicates that this project isloaded into DSP card memory
s indicates that the project source code is |oaded

Project Name is the name of the project

checksum is aunique vaue for that project.

Task name isthe name of the Task in a project.

Note: If the CLR input is open circuited at power-on no projects
will be loaded into the DSP memory.

DIR
Transfers the names of the user projects and tasks stored in memory.

M otion Parameter

Enables or disables the checking of the drive (READY) signd on the axis
card.

DRVREADY (axis)=number cr
DRVREADY =numberl, ... , number8
DRVREADY (axis) cr

See Programming Command DRVREADY.

DRVREADY (3)=1
Bypasses the drive READY signa checking for axis 3.

DRVREADY=1,1
Bypasses the drive READY signal checking for axis 1 and axis 3.

DRVREADY (3)
Return the Drive Ready status for axis 3.

Programming Commands

Programming Commands

DRVREADY
Return the Drive Ready status for all axes.

193

ENCBAND

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

ENCERR

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

194

M otion Par ameter

Sets or returns the maximum postion error alowed when motion is

stopped.

ENCBAND(axis)=number cr
ENCBAND=numberl, ..., number 8 cr
ENCBAND(axis) cr
ENCBAND cr

See Programming Command ENCBAND.

ENCBAND(3)=.1
Sets the maximum position error of axis 3 to .1 unit.

ENCBAND=.1,15
Sets the maximum position error of axis 1 to .1 unit, and axis 3 to .15 unit.

ENCBAND(3)
Returns the maximum position error of axis 3.

ENCBAND
Returns the maximum position error of al axes.

Trajectory Parameter
Returns the position error of the designated axis.

ENCERR(axis) cr
ENCERR cr

See Programming Command ENCERR.
Note: POSERR can be used in place of ENCERR.

ENCERR(1)
Returns the present position error of axis 1.

ENCERR
Returns the present position error of all axes.

Programming Commands

ENCFOL

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

ENCMODE

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

Programming Commands

M otion Par ameter

Sets or returns the maximum position error alowed during motion.

ENCFOL (axis)= number cr
ENCFOL=numberl, ... , number8 cr
ENCFOL (axis) cr

ENCFOL cr

See Programming Command ENCFOL..
Note: FOLERR can be used in place of ENCFOL.

ENCFOL(2)=.4
Sets the following error of axis 2 to .4 units.

ENCFOL=4,, .3
Sets the following error of axis 1 to .4 units, and axis 3 is set to .3 units.

ENCFOL (2)
Returns the current following error set for axis 2.

ENCFOL
Returns the current following error set for dl axes.

Motion Parameter
Sets or returns the operating mode of a closed loop stepper axis.

ENCMODE(axis)=number cr
ENCMODE=number1, ... , number8 cr
ENCMODE(axis) cr
ENCMODE cr

See Programming Command ENCM ODE

ENCMODE(2)=0
Sets axis 2 to open loop operation.

ENCMODE=1,,2
Sets axis 1 to halt execution on excessive error, axis 2 no change and axis
3 to correct position on excessive following error.

ENCMODE(2)
Returns the operating mode of a closed loop for axis 2.

ENCMODE
Returns the operating mode of a closed loop for all assigned axes.

195

ENCPOS

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

ENCRES

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

ENCSPD

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

196

Trajectory Parameter

Returns the encoder position of an axis.

ENCPOS(axis) cr
ENCPOS cr

See Programming Command ENCPOS.

ENCPOS(1)
Returns the encoder value of axis 1.

ENCPOS
Returns the encoder value for al assigned axes.

M otion Par ameter

Returns the encoder line count of the selected axis.

ENCRES(axis) cr
ENCRES cr

The axis specifies the number of the axis (1-8).

ENCRES(axis)
Returns the current line count of the specified axis.

ENCRES
Returns the current line count of all axes.

ENCRES(2)
Returns the current line count of axis 2.

Trajectory Parameter
Returns the current encoder speed in units/'second.

ENCSPD(axis) cr
ENCSPD cr

See Programming Command ENCSPD.

ENCSPD(2)
Returns the current encoder speed of axis 2.

ENCSPD
Returns the current encoder speed of al assgned axes.

Programming Commands

ERASE

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

ERR

ACTION:
PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Miscellaneous Command
Erases a specific project or al projects stored in non-volatile memory.

ERASE DIR cr
ERASE project name cr

The project erased is not recoverable.

ERASE DIR
Erases dl projects stored in non-volatile memory.

ERASE project name
Erases the defined project namein non-volatile memory.

ERASE DIR
Erases dl projects stored in non-volatile memory.

ERASE CONVEYER
Erases project CONVEYER if it exists.

M iscellaneous Command

Returns the controller error/warning number for this task.

ERR cr

This command returns the error/warning status for all task and clears the
errors and axis which created the error. See the ERR basic Command
for the error/warning code listing.

The transfer format for task 0-7 is.
NN NN NN NN NN nn nn nn <cr> <If>
where: nnis0-99 for task 0-7

The axis which created the error/warning can be interrogated using the
ERRAXIS command. Send the ERRAXIS command prior to the ERR
command to interrogate the error and the axis which created the error.

ERRAXIS: ERR <cr>
This sequence returns the axis which created the error/warning and the
error/warning number on two separate lines.

197

ERRAXIS

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLE:

198

M iscellaneous Command

Returns the controller axis number which created the error/warning for
the task.

ERRAXIS cr

If a zero is returned for the task then the error/warning was not
axis related or there is no error/warning.

To determine the error/warning use the ERR or ERRM command.

The transfer format for task 0-7 is:
nNnnnnnnn <c><If>
where nis0-8 for task 0-7

ERRAXIS: ERR <cr>
This sequence returns the axis which created the error/warning and the
error/warning number on two separate lines.

Programming Commands

ERRM M iscellaneous Command

ACTION: Returns the error/warning message' s for the task’s (0-7).
PROGRAM SYNTAX: ERRM cr
REMARKS: This command returns the error/warning message’s for al task and

clears the errors and axis which created the error.

The error messages returned are:

0 no Errors

1 + Limit activated ‘ motion in +dir activated +Limit

2 - Limit activated “ motion in -dir activated -Limit

3 Soft Limit in +dir ‘ +dir soft limit exceeded

4 Soft Limit in -dir * -dir soft limit exceeded

5 CL attempts ‘ CL stepper attempts elapsed

6 Follow Error ‘ Following Error exceeded

7 MoveReg Dist Smdll ‘* MOVEREG distance to smadl for

DECEL rate.

8 DRVREADY fault * Drive not ready

9 Drive Not Enabled ‘ Servo drive not enabled

10 Program Out of Memory * Program Ram all used up

26 IXT Servo Error ‘ Excessive Duty Cycle Shutdown
27-99 User define ERR nn * User Program defined Error

The warning messages returned are:
11 Warn Axisnotintask ‘ axisisnot defined in this task.
12 Warn ANALOG I/O range * ANALOG point does not exist.

13 Warn BCD range * BCD bank does not exist.
14 Warn EXIN range “ EXIN point does not exist.
15 Warn EXOUT range “ EXOQUT point does not exist.
16 Warn IN range “ IN point does not exist.

17 Warn OUT range * OUT point does not exist.

18 WanLOGvdue<=0 *‘ LOG vaue out of range.
19 Warn SQRT arg negative * SQRT value is negative.

20 Warn NVR range “ NVR element does not exist.
21 Warn READ out of arg * READ command out of data.
22 Warn MAXSPD range * MAXSPD value out of range
23 moetion at programend ‘ Moation occurring when program ended
24 SETCOM error * Aux. seria port parameter @-

ror
25 Warn Servo Gainrange * Servo axis Gain out of range

EXAMPLES: ERRAXIS : ERRM <cr>
This sequence returns the axis which created the error/warning and the
error/warning message' s on two separate lines.

Programming Commands 199

"ESC" M iscellaneous Commands

ACTION: The ESC key (or ESC character code sent via a serial port) is used dur-
ing program execution to force execution of a command in the host
buffer.

COMMAND SYNTAX: ESC (ASCII 27) command

REMARKS: When the controller is executing a BASIC program, any host commands

received are queued for execution after the BASIC program finishes.
The execution of a host command can be forced to happen immediately
by preceding it with the ESC character (ASCIl 27). The command will
consist of al characters from the ESC to the cr (carriage return). Multi-
ple commands can be placed on one line, but they must be separated by
colons (2).

EXAMPLE: <ESC>ABSPOS(1)
Returns the absolute position of axis 1 during program execution.

EVENT1 M otion Parameter

ACTION: Returns the state of the trigger input labeled EVNTL1 or sets the trigger
polarity and enable for a Movehome and Movereg cycle.

PROGRAM SYNTAX: EVENT1(axis)=number cr
EVENT1=numberl, ... , number8 cr
EVENT1(axis) cr

EVENT1 cr
REMARKS: See Programming Command EVENT 1.
EXAMPLES: EVENT1(2)=0

disables Eventl as a MOVEREG trigger on axis 2

EVENT1(2)=1
enables Eventl to trigger when activated on axis 2

EVENT1(2)=-1
enables Eventl to trigger when open circuited on axis 2.

EVENT1(2)
Returns the current input state for the EVNT1 input on axis 2.

EVENT1
Returns the current input states for al EVNTL inputs on al assigned
axes.

200 Programming Commands

EVENT?2

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

EXIN

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLE:

Programming Commands

M otion Par ameter

Returns the state of the trigger input labeled EVNT2 or sets the trigger
polarity and enable for a Movehome and Movereg cycle.

EVENT?2(axis)=number cr
EVENT2=numberl, ... , number8 cr
EVENT2(axis) cr

EVENT2cr

See Programming Command EVENT 2.

EVENT2(2)=0
disables Event2 asa MOVEREG trigger on axis 2.

EVENT2(2)=1
enables Event2 to trigger when activated on axis 2.

EVENT2(2)=-1
enables Event2 to trigger when open circuited on axis 2.

EVENT2(2)
Returns the current input state for the EVNTZ2 input on axis 2.

EVENT2
Returns the current input states for al EVNTZ2 inputs on al assigned
axes.

/O Function

Returns the state of the specified expansion 1/O inputs.

EXIN(nnn) cr
EXIN(nnn,len) cr

See Programming Command EXIN.

EXIN(207)
returns the state of board 2 input 7

EXIN(207,3)
Returns a number 0-7 depending on the states of inputs 207-209.
EXIN(207)+2* EXIN(208)+4* EXIN(209)

201

EXOUT /O Function

ACTION: Sets or returns the state of the specified expansion 1/0 outputs.

PROGRAM SYNTAX: EXOUT(nnn) cr
EXOUT(nnn,len) cr
EXOUT (nnn)=number cr
EXOUT (nnn,len)=number cr

REMARKS: See Programming Command EXOUT.

EXAMPLES: EXOUT(207)=-3
turns output 7 on board 2 on

EXOUT(207)=0
turns output 7 on board 2 off

EXOUT(207)
Returns the last commanded output for 207.

EXOUT(207,3)=6.2
outputs 209=on, output 208=on and output 207=0ff

EXOUT(207,3)=4
output 209=0n, output 208=0ff and output 207=0ff.

EXOUT(208,2)
Returns the last commanded state for output 208 and 209

FILTER Miscellaneous Command
ACTION: Sets the filter value for the for the defined analog input
PROGRAM SYNTAX: FILTER(bOn)=number cr

FILTER(bON) cr
REMARKS: The"b" specifies the board (1-4).
The "n" specifies the analog input (1-4).
The number sets the filter value (.01 - 1). Where 1.0 is no filtering.

FILTER(bOn)=number
Sets the filter value for the designated board and input.

FILTER(bON)
Returns the filter value for the designated board and input.

EXAMPLES: FILTER(101)=.1
Sets the filter value for board 1 input to avalue of .1.

FILTER(302)=.1
Sets the filter value for board 1 input to avalue of .1.

202 Programming Commands

FOLERR

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

FREE

ACTION:

COMMAND SYNTAX:

REMARKS:

Programming Commands

M otion Par ameter

Sets or returns the maximum position error alowed during motion, herein
referred to as "following error.”

FOLERR(axis)=number cr
FOLERR=numberl, number2, ..., number8 cr
FOLERR(axis) cr

FOLERR cr

See Programming Command FOL ERR.
Note: ENCFOL can be substituted for FOLERR.

FOLERR(2)=.4
Sets the following error of axis 2 to .4 units.

FOLERR=4,, .3
Sets the following error of axis 1 to .4 units, axis 2 is unchanged and axis
3isset to .3 units.

FOLERR(2)
Returns the current following error set for axis 2.

FOLERR
Returns the current following error set for al assigned axes.

Miscellaneous Command
Transfers the free space, in sectors, available in non-volatile memory.
FREE cr

A sector consigts of 128 bytes of non-volatile memory. With no pro-
gram(s) loaded, the free space value is 2044 sectors.

The transfer format is:
free space = nnnncr

FREEMEM

ACTION:
COMMAND SYNTAX:

REMARKS:

EXAMPLE:

HARDLIMNEG

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

HARDLIMPOS

ACTION:

PROGRAM SYNTAX:

REMARKS:
EXAMPLES:

Miscellaneous Command

Returns the amount of free memory for program execution alocation.
FREEMEM cr

The value returned is the number of 32 bit word free for alocation.

The DIM command uses free memory for allocating an areafor arrays.

A new variable string uses free memory for storing the string characters.
The maximum free memory size is 45055 words.

If an "Out of Memory" error occurs during program execution the
FREEMEM command can be used to determine whether the error was
created by a string command or that the memory alocated for program
storage was exceeded. If the FREEMEM command returns a negétive
value the memory alocated for program storage was exceeded.

FREEMEM

Over Traved Limit
Returnsthe -LIMIT state for the selected axis.

HARDLIMNEG cr
HARDLIMNEG(axis) cr

See Programming Command HARDLIMNEG.

HARDLIMNEG(2)
Returnsthe -LIMIT state of axis 2.

HARDLIMNEG
Returnsthe -LIMIT state of all assigned axes.

Over Traved Limit
Returnsthe +LIMIT state of the selected axis.

HARDLIMPOS cr
HARDLIMPOS(n) cr

See Programming Command HARDLIMPOS.

HARDLIMPOS(2)
Returnsthe +LIMIT state of axis 2.

HARDLIMPOS
Returnsthe +LIMIT state of al assigned axes.
Programming Commands

IN

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

INTLIM

ACTION:

PROGRAM SYNTAX:

REMARKS:
EXAMPLES:

Programming Commands

/O Function

Returns the state of the specified digita 1/O inputs.

IN(bnn) cr
IN(bnn,len) cr

See Programming command | N.

IN(207)
Returns the state of board 2 input 7.

IN(207,3)
Returns the sum of input states 7-9 on board 2. The value returned will
be: IN(207) + (2*IN(208) + (4*IN(209).

Servo Parameter

Sets the Integra limit for the controller. This is the limit of the contribu-
tion to the servo output from the integral of the position error.

INTLIM (axis)=number cr
INTLIM=numberl, ... , number8 cr
INTLIM (axis) cr

INTLIM cr

See Programming Command INTLIM .

INTLIM(2)=50

setsthe integrd limit for axis 2 to 50 volts.

INTLIM(2)
returns the integral limit of axis 2.

INTLIM=50,,100
sets the integrd limit for axis 1 to 50 volts, axis 2 is unchanged and axis 3
is set to 100 volts.

INTLIM
Returns the integral limits on al assigned axes.

JOG

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

KAFF

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

M otion Par ameter

Runs the motor continuoudly in a specified direction.

JOGSTART (axis)=number cr
JOGSTART=numberl, ... ,number8 cr

Note: JOGSTART can be substituted for JOG
See Programming Command JOG.

JOGSTART(2)=1
Runs axis 2 continuoudy in the +direction.

JOGSTART=1,,-1
Runs axis 1 continuoudly in the +direction, axis 2 is unchanged and axis 3
runs continuoudy in the -direction.

Servo Parameter

Sets or returns the acceleration feed forward gain for a servo axis.

KAFF(axis)=number cr
KAFF=numberl, ... , number8 cr
KAFF(axis) cr

KAFF cr

See Programming Command K AFF.

KAFF(2)=.5
Sets the acceleration feed forward gain of axis 2 to .5 volts/encoder
count/msec?.

KAFF=.2,,0
Sets the acceleration feed forward gain of axis 1 to .2 volts/encoder
count/msec?, axis 2 is unchanged and axis 3 is set to O voltsencoder
count/msec®.

KAFF(2)
Returns the acceleration feed forward gain of axis 2.

KAFF
Returns the acceleration feed forward gain of all assigned axes.

Programming Commands

KD

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

K1

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Servo Parameter

Sets or returns the derivative gain for the servo axis.

KD(axis)=number cr
KD=numberl, ... , number8 cr
KD(axis) cr

KD cr

See Programming Command K D.

KD(2)=4
Sets the derivative gain of axis 2 to 4 milliseconds.

KD=10,8
Sets the derivative gain of axis 1 to 10 milliseconds, axis 2 is unchanged
and axis 3 is set to 8 milliseconds.

KD(2)
Returns the derivative gain of axis 2.

KD
Returns the derivative gain of al assigned axes.

Servo Parameter

Sets or returns the integral gain of a servo axis.

Kl (axis)=number cr
Kl=numberl, ..., number8 cr
Kl(axis) cr

Kl cr

See Programming Command K.

K1(2)=4
Sets the Integral gain of axis 2 to 4 milliseconds.

Kl=1,4
Sets the Integral gain of axis 1 to 1 milliseconds, axis 2 is unchanged and
axis 3 is st to 4 milliseconds.

KI(2)
Returns the Integral gain of axis 2.

Kl
Returns the Integral gain of al assigned axes.

207

KP

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

KVFF

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Servo Parameter

Sets or returns the proportional gain of the servo axis.

KP(axis)=number cr
KP=numberl, ..., number8 cr
KP(axis) cr
KPcr

See Programming Command K P.

KP(2)=20
Sets the Proportional gain of axis 2 to 20 millivolts'encoder count.

KP=18,,20
Sets the Proportiona gain of axis 1 to 18 millivoltsencoder count, axis 2 is
unchanged and axis 3 is set to 20 millivoltsencoder count.

KP(2)
Returns the Proportiond gain of axis 2.

KP
Returns the Proportional gain of al assigned axes.

Servo Parameter

Sets or returns the velocity feed forward gain for the servo axis.

KV FF(axis)=number cr
KVFF=numberl, ... , number8 cr
KVFF(axis) cr
KVFF cr

See Programming Command KV FF.

KVFF(2)=95
Sets the Ve ocity feed forward gain of axis 2 to 95%.

KVFF=98,,95
Sets the Velocity feed forward gain of axis 1 to 98% , axis 2 is un-
changed and axis 3 is set to 95%.

KVFF(2)
Returns the Velocity feed forward gain of axis 2.

KVFF
Returns the Velocity feed forward gain of al assigned axes.

Programming Commands

LINE

ACTION:

PROGRAM SYNTAX:
REMARKS:
EXAMPLES:

LOAD

ACTION:

COMMAND SYNTAX:

REMARKS:
EXAMPLES:

LOWSPD

ACTION:

PROGRAM SYNTAX:

REMARKS:
EXAMPLES:

Programming Commands

Motion Parameter
Initiates a coordinated linear move involving up to 8 axes.
LINE=numberl, ..., number8 cr
See Programming Command LINE.

LINE=1.0,,-2.0
Linear interpolated axis 1 and 3. Axis 1 moves +1.0 units, and axis 3
moves -2.0 units.

M iscellaneous Command

Loads the designated project from non-volatile memory into operating
memory.

LOAD project name cr
The name is limited to eight characters.

LOAD CONVEYER
Load project CONVEY ER into operating memory.

Trajectory Parameter

Sets or returns the Low Speed (starting speed) value of a stepping motor
axis.

L OWSPD(axis)=number cr
LOWSPD=numberl, ... ,number8 cr
LOWSPD(axis) cr

LOWSPD cr

See Programming Command L OWSPD.

LOWSPD(2)=1.5
sets axis 2 to 1.5 units/second.

LOWSPD=1.3,, 1.5
sets axis 1 to 1.3 units/'second, axis 2 is unchanged, and axis 3 to 1.5
units/second.

LOWSPD(2)
Returns the low speed value for axis 2.

LOWSPD
Returns the low speed value for al assigned axes.

210 Programming Commands

MAXSPD

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

MOVE

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Trajectory Parameter

Sets or returns the maximum allowed speed of the specified axis.

MAXSPD (axis)=number cr
MAXSPD=numberl, ... , number 8 cr
MAXSPD(axis) cr
MAXSPD cr

See Programming Command M AXSPD.

MAXSPD(3)=50
Sets the maximum speed for axis 3 to 50 units/second.

MAXSPD=50,,60
Sets the maximum speed for axis 1 to 50 units/second, axis 2 is un-
changed and axis 3 to 60 units/second.

MAXSPD(2)
Returns the maximum speed for axis 2.

MAXSPD
Returns the maximum speed for all assigned axes.

M otion Parameter
Initiates a non-coordinated move.

MOV E(axis)=number cr
MOV E=numberl, ... , number8

See Programming Command MOVE.
POSMODE(1,3)=0,0
MOVE(3)=-2

axis 3 moves -2 units.

MOVE=1,,3
axis 1 moves +1 units, and axis 3 moves +3 units.

211

MOVEHOME

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

MOVEREG

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

NVR

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

212

M otion Par ameter

Runs the motor until the home input is activated, captures and records the
position of the switch activation as home (electrica zero), then deceler-
ates the motor to a stop.

MOV EHOM E(axis)=number
MOV EHOME=numberl, ..., number8

See Programming Command MOVEHOME.

MOVEHOME(3)=1
Axis 3 executes a home cycle in the positive direction.

MOVEHOME=-2,,3
Axis 1 executes a home cycle in the negative direction, axis 2 is un-
changed and axis 3 executes a home cycle in the positive direction.

M otion Par ameter

Runs the motor until the mark registration input is activated; then moves
the motor the desired registration distance.

MOV EREG(axis)=number
MOV EREG=numberl, ... , number8

See Programming Command M OVEREG.

MOVEREG(3)=2
Initiates a positive registration cycle of 2 units for axis 3.

MOVEREG=1,,-2
Initiates a pogtive registration cycle of 1 unit for axis 1, axis 2 is un-
changed and initiates a negative registration cycle of 2 units for axis 3.

Miscellaneous Command

The NVR array is used for non-volatile variable storage.

NV R(number) cr
NV R(number)=vaue cr

See Programming Command NVR.

NVR(2)
Returns the NVR element 2 value.

NVR(2048)=10.5
Sets the NVR element 2048 to avalue of 10.5.

Programming Commands

NVRBIT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

NVRBYTE

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

OouT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

M iscellaneous Command

Store or return the bit value in NVR memory.

NVRBIT (bit)= number cr
NVRBIT (bit) cr

See Programming Command NVRBIT.

NVRBIT(65505)=1
sets Bit 1 of dement 2048 =1

NVRBIT(65536)=0
sats Bit 32 of ement 2048 =0

M iscellaneous Command

Stores or returns the byte value in NVR memory.

NVRBY TE(byte)=number cr
NVRBY TE(byte) cr

See Programming Command NVRBY TE.

NVRBY TE(8192)=255
sets MSB byte = 255 in element 2048

NVRBY TE(8189)=0
sets LSB byte = 0 in element 2048

/O Function

Sets or returns the condition of a specified digital output.

OUT (bnn)=number cr
OUT (bnn,len)=number cr
OUT(bnn) cr
OUT(bnn,len) cr

See Programming Command OUT.

OUT(107)=1
Digita 1/0 board 1 output 7 isset to a 1.

OUT(101,6)=48
digital 1/0 board 1 outputs 1-4 are set to a0 and outputs 5 and 6 are set
toal

OouUT(107)
Returns output 7 on digita 1/0 board 1.

OUT(101,7)
Returns outputs 1-7 on digital 1/O board 1.

213

OUTLIMIT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

POSERR

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

214

Servo Parameter

Sets or returns the servo command voltage limit.

OUTLIMIT (axis)=number cr
OUTLIMIT=numberl, ... , number8 cr
OUTLIMIT (axis) cr

OUTLIMIT cr

See Programming Command OUTLIMIT.

OUTLIMIT(2)=5
Limits the magnitude of the servo output voltage for axis 2 to £ 5 volts.

OUTLIMIT=5,,10
Limits the magnitude of the servo output for axis 1 to £ 5 volts, axis 2 is
unchanged and axis 3 to + 10 valts.

OUTLIMIT(2)
Returns the magnitude of the servo output for axis 2

OUTLIMIT
Returns the magnitude of the servo output for all assigned axes.

Trajectory Parameter

Returns the position error (absolute position - encoder position) of the
selected axis.

POSERR(axis) cr
POSERR cr

Note: ENCERR can be substituted for POSERR
See Programming Command POSERR.

POSERR(1)
Returns the present position error of the specified axis.

POSERR
Returns the present position error of al assigned axes.

Programming Commands

POSMODE

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

PROFILE

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Motion Parameter
Sets or returns the positioning mode for the specified axis.

POSM ODE(axis)=number cr
POSMODE=numberl, ... , number8 cr
POSMODE(axis) cr

POSMODE cr

See Programming Command POSM ODE.

POSMODE(2)=1
Sets the positioning mode for axis 2 to absolute.

POSMODE=1,,0
Sets the positioning mode for axis 1 to absolute, axis 2 is unchanged and
axis 3 is st to incremental positioning mode.

POSMODE(2)
Returns the positioning mode for axis 2

POSMODE
Returns the positioning mode for al assigned axes.

Trajectory Parameter
Determines how the motor speed changes.

PROFI L E(axis)=number cr
PROFILE=numberl, ... , number8 cr
PROFILE(axis) cr

PROFILE cr

See Programming Command PROFILE.

PROFILE(2)=10
axis 2 profileis set to avalue of 10.

PROFILE=16,,32
axis 1 profileis set to avaue of 16 and axis 3 profileis set to 32.

PROFILE(2)
Returns the profile value for axis 2.

PROFILE
Returns the profile value for all assigned axes.

215

REGLIMIT

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

RESET

ACTION:

COMMAND SYNTAX:

REMARKS:

REVISION

ACTION:

COMMAND SYNTAX:

REMARKS:

216

Over Trave Limit

Sets or returns the distance to be moved during a MOVEREG cycle,
while awaiting a trigger.

REGLIMIT (axis)=number cr
REGLIMIT=numberl, ..., number8 cr
REGLIMIT (axis) cr

REGLIMIT cr

See Programming Command REGLIMIT.

REGLIMIT(2)= 10
st the MOV EREG trave distance limit on axis 2 to 10 units

REGLIMIT=0,,10
disables the REGLIMIT for axis 1, axis 2 is unchanged and axis 3 has
MOVEREG travel distance limit of 10 units.

REGLIMIT(2)
Returns the Regidtration travel limit for axis 2.

REGLIMIT
Returns the Registration travel limit for &l assigned axes.

M iscellaneous Command
Resets the MX2000 controller.
RESET cr

This command causes the system to halt, and then restart as though
power had been recycled.

Misceallaneous Command

Returns the current revision level of the controller's operating system
software.

REVISION cr

The return format for this command is;
MX2000 REV n, date
where "n" is the current revison number and "date" is the release
date.

Programming Commands

RUN

ACTION:

COMMAND SYNTAX:

REMARKS:

SNVR

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Miscellaneous Command
Runs the loaded project or specified task number.
RUN cr

RUN starts execution of all loaded tasks from their respective
beginnings.

Miscellaneous Command
Sets the default value for the designated NVR elements.
SNVR(start, end)=value cr If
start isthe starting element number in NVR. The range is 1-2048.
end isthe ending element in NVR. The range start-2048.
The value is stored from the starting e ement to the ending element.

A hardware option is available that alows up to 32720 variables to be
saved.

SNVR(1,2000)=0
Sets NVR(1-2000) to O

SNVR(10,100)=-1
Sets NVR(10-100) to -1

SNVR(1000,1200)=0xf
Sets NVR(100,1200) to 255.

217

SOFTLIMNEG

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

SOFTLIMPOS

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

218

Over Trave Limit

Programmable "software limit switch" for motion in the negative direc-
tion. Sets or returns the absolute negative travel position value for the
specified axis.

SOFTLIMNEG(axis)=number cr
SOFTLIMNEG=numberl, ... ,number8 cr
SOFTLIMNEG(axis) cr

SOFTLIMNEG cr

See Programming Command SOFTLIMNEG.

SOFTLIMNEG(2) =-4
Sets the negative direction soft limit of axis 2 at -4 units.

SOFTLIMNEG=-5,,-6
Sets the negative direction soft limit of axis 1 a -5 units, axis 2 is un-
changed and axis 3 is set to -6 units.

SOFTLIMNEG(2)
Returns the negative direction soft limit value for axis 2.

SOFTLIMNEG
Returns the negative direction soft limit value for al assigned axes.

Over Trave Limit

Programmable "software limit switch" for motion in the positive direction.
Sets or returns the absolute positive travel position value for the specified
axis.

SOFTLIMPOS(axis)=number cr
SOFTLIMPOS=numberl, ... ,number8 cr
SOFTLIMPOS(axis) cr

SOFTLIMPOS cr

See Programming Command SOFTLIMPOS.

SOFTLIMPOS(2) =4
Sets the positive direction soft limit of axis 2 at +4 units.

SOFTLIMPOS=5,,6
Sets the positive direction soft limit of axis 1 a +5 units, axis 2 is un-
changed and axis 3 is st to +6 units.

SOFTLIMPOS(2)
Returns the positive direction soft limit value for axis 2.

SOFTLIMPOS
Returns the positive direction soft limit value for all assgned axes.

Programming Commands

SPEED

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

STOP

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Trajectory Parameter

Sets and returns the target velocity of the motor.

SPEED(axis)=number cr
SPEED=numberl, ..., number8 cr
SPEED(axis) cr

SPEED cr

See Programming Command SPEED.

SPEED(2)=10
Sets the speed of axis 2 to 10 units/second.

SPEED=0,,5
Sets the speed of axis 1 to 0 units/second, axis 2 is unchanged and axis 3
to 5 units/second.

SPEED(2)
Returns the speed value for axis 2.

SPEED
Returns the speed vaue for all assigned axes.

Motion Parameter
Stops any motion with a control stop.

STOP(axis)=number cr
STOP=numberl, ..., number8

See Programming Command STOP.
note: JOGSTOP can be substituted for STOP.

STOP(2)=1
requests axis 2 to stop.

STOP=1,1
requests axis 1 and axis 3 to stop.

219

STOPERR

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

UNIT

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

M otion Par ameter

Sets or returns the maximum postion error alowed when motion is
stopped, referred to herein as "position error band."

STOPERR(axis)=number cr
STOPERR=numberl, ... , number8 cr
STOPERR(axis) cr

STOPERR cr

See Programming Command STOPERR.
Note: ENCBAND can be substituted for STOPERR.

STOPERR(3)=.1
Sets the maximum position error for axis 3to .1 units.

STOPERR=.1,,,.15
Sets the maximum position error for axis 1 to .1 units and axis 4 to .15
units.

STOPERR(3)
Returns the maximum position error value of axis 3.

M iscellaneous Command

Returns the pulses/ unit value. Used for programming in "user units,”
such as inches or revolutions or meters, etc.

UNIT(axis) cr
UNIT cr

The axis specifies the number of the axis (1-8).

Unit is a signed vaue, and represents the number of pulses or counts per
unit. A positive value defines CW direction as the positive direction. A
negative value defines CCW direction as the positive direction.

UNIT(2)
Returns the unit value for axis 2.

UNIT
Returns the unit value for all assigned axes.

Programming Commands

VELOCITY

ACTION:

COMMAND SYNTAX:
REMARKS:

EXAMPLES:

WARNING

ACTION:
PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands

Trajectory Parameter
Sets or returns the path speed to be used for coordinated motion.

VELOCITY = number cr
VELOCITY cr

This velocity is only used as the path speed for the Host commands LINE
and ARC.

VELOCITY=1.0
Sets the coordinated for linear motion to 1 unit/second.

VELOCITY
Returns the current velocity for host mode.

M iscellaneous Command

Returns the warning number of each task.
WARNING cr

Returns the warning number for task 1-7 and clears the task warnings
and axis which created the warning.

The Warning return format is:
nn nn NN NN Nn nn nn <cr><|f>
where nnisaO or 11-25

The Predefined Warning codes are listed in the Programming Command
WARNING.

ERRAXIS : WARNING

Returns the axis which created the warning and the warning number for
task 1-7.

221

WNDGS

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

"XON XOFF"

ACTION:

COMMAND SYNTAX:

REMARKS:

M otion Parameter
Enables or disable amotor drive.

WNDGS(axis)=number cr
WNDGS=number1, ... ,number8 cr
WNDGS(axis) cr

WNDGS cr

See Programming Command WNDGS.

WNDGS(2)=1
Setsthe WNDGS state to 1 on axis 2.

WNDGS=0,,1
Sets the WNDGS state on axis 1 to a 0, axis 2 is unchanged and axis 3
WNDGS dateis 1.

WNDGS(2)
Returns the winding state for axis 2.

WNDGS
Returns the winding tate for dl assgned axes.

M iscellaneous Command

The XON/XOFF command is a serial communication protocol, executed
in software, that allows communications between two devices without the
need for additiona hardware control. The protocol is used for controlling
the flow of data between the Control and another device.

Xon (ASCII 17)
Xoff (ASCII 19)

The Xoff character is used to stop the transmission of RS232 or
R$485 characters. When one device sends an Xoff to the other device, it
istelling the other to stop transmitting characters. The transmitting device
should comply with the request.

The Xon character is used to resume transmission of the RS232 or
RSA485 characters. When one device sends an Xon character to the other,
itissgnifying that it is ready to receive more characters.

The MX2000 controller sends an Xoff character when the host buffer
gets within 80 characters from being full and a minimum of one CR or LF
has been received. The receiver will continue to receive characters until
the buffer is full. The controller will than issues an Xon character when
the host buffer has only 25 characters | eft in the buffer.

Programming Commands

This page lft intentionally blank

Programming Commands

Section 8
Following

8.1 - Following Description

The controller has the ability to position follow numerous
axes from a single master device. The following features
are listed below.

* Hexible Follower definition.

* Programmable follower ratio.

e Three types of following motions can be
performed, (JOG, MOVE and MOV EREG).

e Programmable Follower motion trigger.

* Programmable Delay Distance before Follower
motion.

* Programmable Follower Acceleration distance.

* Programmable Follower Deceleration distance.

* Positional advancelrecede cycles can be
performed during a FOLJOG cycle.

8.1.1 - Follower Definition

The initialization of the follower requires the
follower axes as well as the follower source to be
defined. This is accomplished using the FOLINPUT
command. When this command is encountered
during program execution it enables following.

Note: If a new follower definition command is
encountered during program execution it will
becomethefollower definition.

Command Syntax:
FOLINPUT(AXis,...,Axis) = ACTSPD(AXis)
FOLINPUT(AXis,...,Axis) = ENCSPD(AXis)
FOLINPUT(AXis,...,AXis)=ANALOG(bOn)* exp
FOLINPUT(AXis,...,Axis)=variable

Axis defines the follower axes. These axes must be
numeric values and be assigned to the task this
command is being used in.

Exp may be an equation, variable, command
and/or aconstant.

equation operators are limited to multiply, add and
subtract.

variable can beaLOCAL or COMMON variable.

command listing:
ACTSPD(axis) commanded velocity of an axis
ENCSPD(axis) encoder velocity of an axis
ANALOG(b0n) anaog input voltage
1=A side for analog input
2=B side for analog input
Board # of dua axis board

204

8.1.1.1 - Analog Following

An analog input with a center frequency and a

deviation frequency for a 10 volt input can be

defined as the master source for following.
Command Syntax:

FOLINPUT (axis, ... ,axis) =

(ANALOG (bOn) * .1 * DevFreq) + CenterFreq

ANAL OG(bOn) defines the analog source.
L 1=A sidefor analog input
L 2=B side for analog input
Board # of dual axes board

The .1 * DevFreq defines the velocity change per
analog input volt in Units/second. DevFreq can be a
variable or a constant.

The CenterFreqg variable defines the 0 volt input
velocity in Units/sec. The ACTSPD or ENCSPD
commands can be substituted for the CenterFreq
variable.

8.1.1.2 - Encoder Following

An Encoder input can be defined as the master
source. If the master axis is a stepper axis it must
configured as a closed loop stepper with the error
action set to disabled.

Command Syntax:
FOLINPUT (axis, ... ,axis)=ENCSPD (axis)

The ENCSPD (axis) defines the master encoder axis
(1-8) and can be assigned to any task. A
mathematical operators and/or Constant can be used
in conjunction with ENCSPD if desired.

8.1.1.3— Command & Variable
Following

The Master source can be defined by specific basic
command or variablee The commands are:
ACTSPD and ENCSPD. The variable can be a
COMMON or LOCAL variable.

Command Syntax:
FOLINPUT (axis, ... ,axis)=ACTSPD(MASTER)
FOLINPUT (axis, ... ,axis)=ENCSPD(MASTER)
FOLINPUT (axis, ... ,axis)=SpeedContr ol

axis specifies the number of the following axis.

MASTER is defined for a particular axis using the
#DEFINE statement.

ACTSPD & ENCSPD may have a mathematical

operator and/or Constants used in conjunction with

these commands.

SpeedControl can be a locd variable or a shared

variable. Mathematical operators and/ or Constants
Following for MX2000 version 4.0

can be used in conjunction with this variable as well.
This expression specifies the velocity of the master
source in units/seconds.

8.1.2 - Following Ratio

The ratio of the follower axis to the master is
specified by the FOLRATIO command. A value of
1.0 represents 100% of master. Any REAL value can
be used and a negative value will be converted to its
absolute value. The ratio of the follower can be
changed during motion but will only become
effective when the follower is in synchronization
with the master device. The rate at which the ratio
will change is controlled by the FOLRATIOINC
command. This command specifies the following
ratio change per second. The maximum
recommended ratio is 10.0.

Command Syntax:
FOLRATIO(axis) = exp
FOLRATIO =exp, ... , exp
FOLRATIO(axis, ... , axis) = exp, ... , exp

axis specifies the number of the following axis.

exp specifiesthe following axis ratio to the master
velocity.

Command Syntax:
FOLRATIOINC = exp, ... , exp
FOLRATIOINC(axis, ... , axis) = exp, ... , exp

axis specifies the number of the following axis.

exp specifies the ratio acceleration rate in ratio
increment per second.

Example:
FOLRATIO(2)=.5 * 50% of master velocity
FOLRATIOINC(2)=5" 500% change per second
istherateto achieve a
new folratio during
motion.
Note: If folratio(2)=1iscommanded during
motion it would take .1 secondsto achieve 100%
((100-50)/500).

Following for MX2000 version 4.0

8.1.3 - Follower Motions

There are three following motion commands
FOLJOG, FOLMOVE and FOLMOVEREG.

FOLJOG commands continuous motion and allows
a positional advance/recede cycle to be performed.
The STOP command is used to stop thiscycle.

Command Syntax:
FOLJOG(axis) = exp
FOLJOG =exp, ..., exp
FOLJOG(axis, ... , axis) = exp, ... , exp

axis specifies the number of the following axis.
exp specifies the direction of travel for the follower.
FOLMOVE moves the follower a specific distance.

Command Syntax:
FOLMOVE(axis) = exp
FOLMOVE =exp, ..., exp
FOLMOVE(axis, ..., axis) = exp, ... , exp

axis specifies the number of the following axis.
exp specifies the follower distanceto travel.

FOLMOVEREG performs a mark registration
move once aregistration trigger occurs.

Command Syntax:
FOLMOVEREG(axis) = exp
FOLMOVEREG = exp, ... , exp
FOLMOVEREG(axis, ... , axis) = exp, ... , exp

axis specifies the number of the following axis.

exp specifies the registration distance for the
follower axis.

STOP command can be used to stop any of the
above motion.

Command Syntax:
STOP(axis)
STOP=exp, ..., exp
STOP(axis, ... , axis)
axis specifies the number of the following axis.

exp stops the designated axes.

205

8.1.4 - Basic Following States

The basic following states for all motion commands
consist of await for trigger state, wait for distance
state, Acceleration state, Constant state,
Deceleration state and Done state. These states are
depicted in the figure below.

Basic Following States

FOLACCDIST FOLSYNC
MOTIONSTATE(4)
1

FOLDCCDIST
MOTIONSTATE(8) MOTIONSTATE(16)
1 1

T B

(Y

STOP

FOLSTARTDIST
MOTIONSTATE(2)

4 4

FOLTRIG DONE
MOTIONSTATE(1) MOTIONSTATE(0)

8.1.4.1 - Following Trigger

A starting trigger for follower motion can be
programmed with the FOLTRIG command. If the
FOLTRIG value of a follower axis is non-zero, the
follower motion will not begin until the specified
trigger condition is met.

Thetrigger choices are:

no trigger

Eventl input on closure
Event2 input on closure
Eventl input on opening
Event2 input on opening

A WNEFLO

The Event inputs are located on the follower axis.

Command Syntax:
FOLTRIG(axis)=exp
FOLTRIG=exp, ..., exp
FOLTRIG(axis, ... , axis)=exp, ... , exp

axis specifies the number of the following axis.

exp specifies the starting trigger value.
8.1.4.2 - Follower Start Delay Distance

A start distance delay can be introduced after the
follower trigger condition is met using the
FOLSTARTDIST command. The master must
travel the programmed distance before the follower
axis motion begins.

Command Syntax:
FOLSTARTDIST (axis)=exp
FOLSTARTDIST=exp, ..., exp
FOLSTARTDIST (axis, ... , axis)=exp, ... , exp

206

axis specifies the number of the following axis.

exp specifies the master travel distance in units.

8.1.4.3 - Follower Acceleration

The follower acceleration rate to initidly
synchronize with the master device at motion start is
controlled by the FOLACCDIST command. This
command defines the distance, in units, that the
master device must travel for the follower to
synchronize with it.

The follower velocity starts at 0 and ramps linearly
to the master speed. The average speed for the
follower is 50% of the master during this time thus,
the follower distance traveled during acceleration is
(.5* FOLACCDIST * FOLRATIO).

Command Syntax:
FOLACCDIST (axis) = exp
FOLACCDIST =exp, ..., exp
FOLACCDIST(axis, ... , axis) = exp, ... , exXp

axis specifies the number of the following axis.

exp specifies the master travel distance in units.

8.1.4.4 - Follower Synchronization

The follower is considered in Synchronization when
the follower velocity matches the master velocity
times the following ratio of the follower axis. This
synchronization state can be monitored using the
FOLSYNC or MOTIONSTATE command.

Command Syntax:
FOLSYNC(axis) - used in an expression
MOTIONSTATE(axis) - used in an expression

axis specifies the number of the following axis.

Each follower axis contains a register that indicates
the current state of the follower. The individual
follower states are defined as a series of unique
numbers O, 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512.
The MOTIONSTATE command is used to return the
current follower state number.

8.1.4.5 - Follower Deceleration

The follower Deceleration rate is controlled by the
FOLDCCDIST command. This command defines
the distance, in units, that the master device must
travel for the follower to stop and terminate motion.

Following for MX2000 version 4.0

Command Syntax:
FOLDCCDIST (axis) = exp
FOLDCCDIST =exp, ..., exp
FOLDCCDIST(axis, ... , axis) = exp, ... , exXp

axis specifies the number of the following axis.
exp specifies the master travel distance in units.

The follower velocity starts at master velocity and
ramps linearly to 0. The average speed for the
follower is 50% of the master during this time thus,
the follower distance traveled during deceleration is
(.5* FOLDCCDIST * FOLRATIO).

Note: Issuing a STOP command can stop
Follower motion. The master will travel the
FOLDCCDIST before the follower terminates
motion. The exception would be if the master
velocity reaches zero before the FOLDCCDIST
has been traveled. It is recommended that the
WAITDONE command be used to allow a
complete stop prior to executing the next line of
code.

8.1.5 - Advance/Recede cycle

The follower position can only be advanced or
receded during a FOLJOG cycle. The issuing of a
FOLOFFSET commands a positional offset to be
performed when the follower and master velocities
are in synchronization. The FOLOFFSET cycle
consists of two parts a synchronization portion and
an offset portion. If material is to be cut it is done
during the synchronization portion of this cycle.

Command Syntax:
FOLOFFSET (axis)=exp
FOLOFFSET=expl, ... , exp8
FOLOFFSET (axis, ... , axis)=exp, ... , exp

axis specifies the number of the following axis.

exp specifies the follower travel distance in units. If
the travel distance is positive a positional advance
cycle will be performed. If the travel distance is
negative a positional recede cycle will be performed.

8.1.5.1 - Offset Wait Distance

An Offset wait distance can be programmed at the
start of an advancelfrecede cycle via the
FOLSYNCDIST command. This wait distance can
be used as the cutting distance in a flying shear
application, material and rotary knife
synchronization distance or any other operation
requiring synchronization at the beginning of an
advance/recede cycle.

Following for MX2000 version 4.0

Command Syntax:
FOLSYNCDIST (axis) = exp
FOLSYNCDIST =exp, ... , exp
FOLSYNCDIST (axis, ... , axis) = exp, ... , exp

axis specifies the number of the following axis.

exp specifies the master device travel distance in
units.

8.1.5.2 - Offset Velocity Limits

A velocity limit can be imposed on an
advance/recede cycle. The limit is specified as a
ratio of the master device velocity. The advance
cycle velocity limit is specified by the
FOLMAXRATIO command and must be a positive
number and a value greater than the FOLRATIO
value.

Command Syntax:
FOLMAXRATIO(axis) = exp
FOLMAXRATIO =exp, ... , exp
FOLMAXRATIO (axis, ... , axis)=exp, ... , exp

axis specifies the number of the following axis.
exp specifies the maximum velocity.

The recede cycle velocity limit is specified by the
FOLMINRATIO command and may be a negative
value if the follower direction is allowed to reverse.
If the value is positive it must be less than the
FOLRATIO vaue.

Command Syntax:
FOLMINRATIO(axis) = exp
FOLMINRATIO =exp1, ..., exp8
FOLMINRATIO(axis, ... , axis) = exp, ... , exp

axis specifies the number of the following axis.

exp specifies the minimum velocity allowed.

8.1.5.3 - Offset Distances

The distance the follower will advance or recede
from the master during an offset cycle is specified
by the FOLOFFSET command. The distance
traveled by the master during the advance/recede
part of an offset cycle is specified by the
FOLOFFSETDIST command. If the FOLOFFSET
distance sign is positive the follower will advance by
this distance and if the sign is negative the follower
will recede by this distance.

207

Command Syntax: Command Syntax:

FOLOFFSETDIST (axis) = exp FOLOFFSET (axis) = exp
FOLOFFSETDIST =exp, ..., exp FOLOFFSET =exp], ... , exp8
FOLOFFSETDIST (axis,..., axis)=exp, ... , exp FOLOFFSET (axis, ... , axis) = exp, ... , exp

axis specifies the number of the following axis. axis specifies the number of the following axis.

exp specifies the master device travel distance in zﬁﬁ rﬁgﬁf;ﬁs‘[gecgllgwer travel distance in units

units during an offset cycle.

FOLOFFSET
Follower advance distance traveled

()

MOTIONSTATE(64) MOTIONSTATE(256)

MOTIONSTATE(128)
|

[| 1) i

FOLSYNC FOLSYNCDIST FOLSYNC

MOTIONSITATE(S) MOTIONSITATE(SZ) advance cycle MOTIONTTATE(S)

(Y FOLOFFSETDIST]
N >

Master distance traveled

FOLMAXRATIO

recede cycle

L L L

MOTIONSTATE(128)

FOLMINRATIO

—

MOTIONSTATE(64) MOTIONSTATE(256)

L J

FOLOFFSET
Follower recede distance traveled

Foloffset Cycle Velocity Profile

208 Following for MX2000 version 4.0

8.1.6 - Following program Template

The following template can be used as a guideline
for writing afollower program.

txxxxxx ol|lower Parameter initialization * * *x*****

#DEFINE FOLLOWER 1
#DEFINE MASTER 2

FOLTRIG(FOLLOWER)=0
FOLSTARTDIST(FOLLOWER)=0
FOLACCDIST(FOLLOWER)=expression
FOLDCCDIST(FOLLOWER)=expression
FOLRATIO(FOLLOWER)=1
FOLRATIOINC(FOLLOWER)=10
FOLMAXRATIO(FOLLOWER)=2
FOLMINRATIO(FOLLOWER)=0

¢ *** Follower and Master definitions (chose one) ***

FOLINPUT(FOLLOWER)=variable
FOLINPUT(FOLLOWER)=ACTSPD(MASTER)
FOLINPUT(FOLLOWER)=ENCSPD(MASTER)
FOLINPUT(FOLL OWER)=ANAL OG(bOn)* expression

Ekkkkkkhkkkkk advancelrecaje mOtIOﬂ kkkkkkkkkhkhkkkkx

FOLJOG(FOLLOWER)==1

DO
LOOP UNTIL FOLSYNC(FOLLOWER)=1

DO
FOLSYNCDIST(FOLLOWER)=expression
FOLOFFSETDIST(FOLLOWER)=expression
FOLOFFSET(FOLLOWER)=expression

DO
LOOP UNTIL MOTIONSTATE(FOLLOWER)=32

‘cut material statements (in synchronization)

DO
LOOP UNTIL MOTIONSTATE(FOLLOWER)<>32
LOOP UNTIL EXIN(100)=1

DO : LOOP UNTIL FOLSYNC(FOLLOWER)=1
STOP(FOLLOWER)
WAITDONE(FOLLOWER)

Ekkkkkkkkhkkhk FO”OWGf move Cycle*************

FOLMOV E(FOLLOWER)=expression
WAITDONE(FOLLOWER)

¢ xxRxkkx Pollower mark registration cycle ** x** x**

REGLIMIT(FOLLOWER)=expression
FOLMOVEREG(FOL L OWER)=expression
WAITDONE(FOLLOWER)

Following for MX2000 version 4.0

8.1.7 — Distance M easur ements

The distance between items can be measured by
using the combination of the CAPTURE, CAPPOS
and DELTACAPPOS commands. These commands
can be helpful when uniform spacing between items
isrequired.

The CAPTURE command arms a position capture
cycle or returns the current capture status. The
captured position can be read via the CAPPOS
command. The distance between capture positions
can beread viathe DEL TACAPPOS command.

Command Syntax:
CAPTURE(axis)=exp
CAPTURE=expl, ... , exp8
CAPTURE(axis, ... , axis)=exp, ... , exp
CAPTURE(axis) — used in an expression
axis specifies the number of the axis.
exp specifies the trigger condition.

Command Syntax:
CAPPOS(axis) —used in an expression

axis specifies the number of the axis.

Command Syntax:
DELTACAPPOS(axis) — used in an expression

axis specifies the number of the axis.

209

8.1.8 - Cut to length Example

The cutting cycle requires that the material and
cutter be in synchronization when the material is
being cut and that the cutter be returned to the next
cutting position.

Example: The materia is to be cut in 11 units
lengths. The cutting portion of the cycle will take 1
second and the materia is moving at 1 unit/second.
The FOLRATIO is assumed to be 1.0.

This cutting cycle is accomplished by using the
FOLOFFSET command. The FOLOFFSET cycle
consists of a synchronization section
(FOLSYNCDIST) and offset travel section

(FOLOFFSET and FOLOFFSETDIST). The
FOLSYNCDIST command is used to define the
material cutting distance and the FOLOFFSET,
FOLOFFSETDIST for defining the next cutting
position.

The cut length is the summation of the
FOLSYNCDIST and the FOLOFFSETDIST
distances. This is the incrementa distance traveled
by the master during the cycle.

The FOLOFFSET distance is the negation of the cut
length. This is the recede distance traveled by the
follower during the offset cycle.

Cut to length Cycle

[-————————— Cut Length 4>‘
~—— FOLOFFSET start FOLOFFSET end

|
Master

Velocity

FOLOFFSETDIST/4

100%

FOLSYNCDIST

Time

Ave Vel —

max - direction
distance

max + direction
distance

Peak Vel
FOLMINRATO —m — — — — — — — —— —— —— —

Ave Vel = - (cut length / FOLOFFSETDIST) + 1

Peak Vel = (Ave Vel *2) - 1

max + direction distance = (.5%(1/(1+abs(Ave Vel))*(FOLOFFSETDIST/4))+FOLSYNCDIST
max - direction distance = - (.5 * (1/(1+abs(Ave Vel)) * (FOLOFFSETDIST/4))

Fig 1. Showsthe Velocity Profilefor this
application

AveVe =-(11/10) +1=-1 (-10%)

Peak Vel = (-.1* 2) —1=-1.2 (-120%)

Max + direction distance traveled =

(5* (VA +.1)* (10/4)) + 1 = +2.136 units
Max — direction distance traveled =

-(5* (U(1+.1D)* (10/4)) =-1.136 units

210

FOLOFFSETDIST
END

FOLOFFSET

city End

Master
Follower

FOLRATIO=0

0 Velocity FOLSYNCDIST=1

FOLOFFSETDIST=10

FOLOFFSET FOLOFFSET=-11

START

4

Distance

FOLSYNCDIST

Fig 2. Showsthe Positional Profilefor this
application.

Notes:

1) The cutting position is considered the 0
position on the Positional Profile.

2) Thelongest cut length creates the maximum
distance excur sion around the cutting position.
3) The shortest cut length createsthe highest
Peak Velocity.

Following for MX2000 version 4.0

8.1.8.1 - Cut to Length Program Example

#DEFINE MASTER 1 “master axis number

#DEFINE FOLLOWER 2 ‘follower axis number

#DEFINE SYNC DIST FLAG 32 ‘waitfor Sync distance

#DEFINE CUT_LENGTH 11 ‘materia cutting length

#DEFINE IN_SYNC _DIST 1 ‘distance master travelsin sync with follower
thkkkkkkkx*k Inltla|lzef0||OW8r parameters************************
ABSPOS(MASTER,FOLLOWER)=0,0 * set starting position to 0

PROFILE(FOLLOWER)=16 * profile set to S Curve with setting of 16
FOLRATIO(FOLLOWER)=1.0 * follow at 100% of master velocity
FOLTRIG(FOLLOWER)=0 ‘ no trigger required
FOLSTARTDIST(FOLLOWER)=0 ‘ no delay distance

FOLACCDIST(FOLLOWER)=1 * master travels 1 unit before follower matches master velocity
FOLDCCDIST(FOLLOWER)=1 ‘ master travels 1 unit before follower stops
FOLSYNCDIST(FOLLOWER)=IN_SYNC DIST ‘distance master travelsin sync with follower
FOLMINRATIO(FOLLOWER)=-1.5 * offset velocity allowed to reverse up to 150% of master
SPEED(MASTER)=1 ‘ master velocity 1 units/sec

thkkkkkhkk,*x deflne and aCtlvaIefO”OWGI' aXiS**********************

JOG(MASTER)=1 ‘ start master axis
FOLINPUT(FOLLOWER)=ACTSPD(MASTER)

FOLJOG(FOLLOWER)=1 * follow in the same direction as master source

DO : LOOP UNTIL FOLSYNC(FOLLOWER)=1 ‘wait for initia velocity synchronization

tkkkddkdkxkx pa-form CUt to Imgth Cycle***************************

DO
FOLOFFSETDIST(FOLLOWER) = CUT_LENGTH —IN_SYNC_DIST * setup offset cycle
FOL OFFSET(FOLLOWER) = -CUT_LENGTH * command offset cycle

“rxxxx wait for offset cyclein synchronization portion to begin *****
DO : LOOPUNTIL MOTIONSTATE(FOLLOWER) = SYNC _DIST_FLAG
‘ Material cutting statements
“*x%xx wait for offset portion of cycleto begin ******x**
DO : LOOPUNTIL MOTIONSTATE(FOLLOWER) <> SYNC _DIST_FLAG
LOOP UNTIL EXIN(101)=1 * exit on stop request

“*x%xx% cut to length cycle termination requested *******
‘rx%xx% wait for velocity synchronization *****
DO : LOOPUNTIL FOLSYNC(FOLLOWER) =1

tkkkk*x*%x% aop fO”OWGr and Walt for motlon Sopped kkhkkhkkkkkhkhkkkkkhkhkhkkkkhkikk%k%k
texxxkx* follower moves FOLSY NCDIST before deceleration occurs * * * * * x **
STOP(FOLLOWER)

WAITDONE(FOLLOWER)

tkkddkkxkx gop mastq and Walt for mOtIOﬂ goppaj *hkkhkhkhkhkhkkkhkhhkhhkkhdhhhkkkkik
STOP(MASTER)
WAITDONE(MASTER)

tkkkddkkxkx moveto Startlng pOS|t|0n Of followa- *hkkhkkhkhkhkhkhkkkdhkhhhkkhkkhkhkhhhkkx
POSMODE(FOLLOWER)=1

MOV E(FOLLOWER)=0

WAITDONE(FOLLOWER)

END

Following for MX2000 version 4.0 211

8.1.9 - Rotating K nife Examples

A knife located on the follower axis is synchronized
with the material controlled by the master axis. The
knife is located at 12 o'clock initialy and its cutting
area is located 36° on each side of 6 o’ clock. Thus
the Knife must be in synchronization with the master
in the material cutting area. This system is set up
such that one revolution of the master and follower
axesis equivalent to 1 unit. Therotating knife axisis
not allowed to reverse for safety purposes.

The FOLACCDIST command value is used to
synchronize the Knife with material at startup. This
is accomplished by setting the FOLACCDIST to
twice the distance required to move the follower the
initial 144° ((144/360)*2= .8 units) to the cutting
area.

The FOLSYNCDIST command is used to control
the cutting area of the knife. Since 72° of cutting
area is required the FOLSYNCDIST is set to
(72/360) .2 units.

The FOLOFFSET command controls the moving of
the knife to the new cutting position. Thus the
FOLOFFSET = (1 — cut length)) and varies with
different cut lengths. The FOLOFFSET command
can create an advance or recede cycle depending on
the cut length.

The cut length is controlled by the distance traveled
by FOLSYNCDIST + FOLOFFSETDIST. Thus the
FOLOFFSETDIST = cut length — FOLSYNCDIST
and varies with different cut lengths.

The FOLMINRATIO command controls the
minimum speed allowed by the follower during an
Offset cycle. Since the follower axis is not alowed
to reverse direction the FOLMINRATIO must be set
to 0. This command comes into play whenever cut
length is greater than 1.

The FOLMAXRATIO command controls the
maximum speed alowed by the follower during an
Offset cycle. This command comes into play
whenever the cut length is less than 1. The
maximum attainable speed for the follower axis
limits the minimum cutting distance in this
application. Although this speed can be limited by
the FOLMAXRATIO the dope of the
accel eration/decel eration becomes steeper as the cut
distance becomes shorter.

212

The FOLMAXRATIO value must be set in between
the instantaneous rate and the triangular rate that is
calculated asfollows:

Instantaneous rate = FOLRATIO *
((FOLOFFSET / FOLOFFSETDIST) + 1)

Triangular rate = FOLRATIO *
(((FOLOFFSET / FOLOFFSETDIST) * 2) + 1)

where:
FOLOFFSET =1 —cut length
FOLOFFSETDIST = cut length — FOLSYNCDIST

8.1.9.1 Rotating Knife Cycle

When a FOLJOG is commanded the follower axis
ramps up to match the master velocity. The distance
traveled by the follower is .4 units (144°). It is now
in position 1 of the Rotary Knife Cycle. This is the
starting position for cutting the material.

An offset cycle is commanded and the follower and
master move .2 units in synchronization, 72° of
motion on the follower axis. The materia is cut
during this portion of the cycle. It is now in position
2 of the Rotary Knife Cycle.

The offset portion of the cycle is now executed. The
master moves the FOLOFFSETDIST distance and
the follower end up at the starting position for
cutting the material (144°). It is now in position 3 of
the Rotary Knife Cycle. The material has now
moved the cut length.

This cutting cycle continues until EXIN(101)=1.
Then the program now waits for the last offset cycle
to complete. It is now in position 3 of the Rotary
Knife Cycle. A follower axis stop is now
commanded.

Both axes now travel the FOLSYNCDIST. It is now
in position 2 of the Rotary Knife Cycle.

The follower now decelerates to a stop. The distance
traveled by the follower is .4 units (144°). This puts
the knife back at 12 o' clock, which is the starting
position.

The master axis is now commanded to stop ending
the cutting cycle.

Following for MX2000 version 4.0

Rotary Knife Cycle

After Initial
FOLACCDIST

(1)

Start of Program

After
FOLOFFSETDIST
&
FOLOFFSET

(3)

After
FOLSYNCDIST

After
FOLDCCDIST
&

End of Program

2000 —m — — — — — —_ FOLMAXRATIO

il 9

100% — — — -
’ Velocity

% - FOLMINRATIO
A «—3—p A

Program Start Program End

0% — —

Following for MX2000 version 4.0 213

Example 1. Materia iscut in.7 units lengths and the knife cutting areais 72° (.2 units).

FOLRATIO 1

FOLSYNCDIST (72/360) =.2

FOLOFFSET 3 (1 - cut length)
FOLOFFSETDIST .5 (cut length — FOLSYNCDIST)

Instantaneousrate=((.3/.5) +1)* 1=1.6 (160%)
Triangular rate= (((.3/.5)* 2))+1 = 2.2 (220%)
FOLMAXRATIO 2 (1.6t02.2)

Distance traveled by follower during offset is always (1 — cut length)

- cut length

follower always advances
(1 - cut length)

— FOLMAXRATIO (200%)

A FOLOFFSETDIST p Master Velocity (100%)

47_4 distance master travels

FOLSYNCDIST
distance both travel

Example 2: Material iscut in 2.2 unit lengths and the knife cutting areais 72° (.2 units).

FOLRATIO 1

FOLSYNCDIST .2

FOLOFFSET -1.2 (1 —cut length)
FOLOFFSETDIST 2.0 (cut length — FOLSYNCDIST)

FOLMINRATIO 0
Distance traveled by follower during offset is always (1 — cut length)

< Follower always recedes -
(1 - cut length)

100% FOLOFFSETDIST Master
. Velocity
distance master travels

0% FOLMINRATIO
& |*— FOLSYNCDIST

A

cut length -

214 Following for MX2000 version 4.0

8.1.9.2 - Rotating Knife Program Example 1 (advance cycle)

#DEFINE MASTER 1 ‘master axis number

#DEFINE FOLLOWER 2 ‘follower axis number

#DEFINE IN_SYNC 8 ‘wait for in sync state

#DEFINE SYNC DIST_FLAG 32 ‘wait for Sync distance state

#DEFINE CUT_LENGTH 7 ‘material cutting length

thkkkkkkkx*k Inltlallzefollower parameters*************************
FOLSYNCDIST(FOLLOWER)=72/360 * distance the master must travel for material to be cut
ABSPOS(MASTER,FOLLOWER)=0,0 ‘set positionto 0
PROFILE(FOLLOWER)=16 * profile set to S Curve with a setting of 16
FOLRATIO(FOLLOWER)=1.0 ‘ follow at 100% of master velocity
FOLTRIG(FOLLOWER)=0 ‘ no trigger required
FOLSTARTDIST(FOLLOWER)=0 ‘ no delay distance

FOLACCDIST(FOLLOWER)=(144/360) * 2 “align knife with cutting surface
FOLDCCDIST(FOLLOWER)=(144/360) * 2 * align knife at 12 o’clock

FOLMAXRATIO(FOLLOWER)=2.0 ‘ maximum offset velocity is 200% of master
SPEED(MASTER)=5 ‘ master velocity set to 5 units/sec
thkkkkkkkx*k deflne and aCtlvatefO”OWGr aXiS***********************

JOG(MASTER)=1 ‘ start master axis
FOLINPUT(FOLLOWER)=ACTSPD(MASTER)

FOLJOG(FOLLOWER)=1 * follow master source in same direction

DO : LOOP UNTIL FOLSYNC(FOLLOWER)=1 ‘wait for initial velocity synchronization

DO
FOLOFFSETDIST(FOLLOWER)= CUT_LENGTH - FOLSYNCDIST(FOLLOWER) * setup offset cycle
FOLOFFSET(FOLLOWER)=1- CUT_LENGTH ‘command offset cycle

trkxkkxkx wait for offset cyclein synchronization portion to begin ********
DO : LOOPUNTIL MOTIONSTATE(FOLLOWER)=SYNC _DIST_FLAG
thkkkkkkk*x Walt for off%t portlon Of CyC|etO begln kkhkkkhkkkkkkkkkkkkkkkkkkkk*
DO:LOOP UNTIL MOTIONSTATE(FOLLOWER) <> SYNC_DIST_FLAG

LOOP UNTIL EXIN(101)=1 * wait for stop input

Ekkkkkkkk* rotary Cuttg CyC|etefmInatI0n rmu& kkkkkhkkkkkkhkkhkkkkkkhkkkkx*k
LR R R WalthI' VeIOCIty WnChrOﬂlzaIIOI"l khkkkhkkkkhkkhkhkkhkkkhkhkhkhkkkkhkhkkx*x
DO:LOOP UNTIL MOTIONSTATE(FOLLOWER)=IN_SYNC

frxxxkxkx gtop follower and wait for motion to stop

“rxxxxx% follower moves FOLSYNCDIST before deceleration occurs * ** * ***x

STOP(FOLLOWER) ‘ motion stops after master travels the FOLDCCDIST.
WAITDONE(FOLLOWER) * wait for follower axis to stop

PFrxkAFx* gtop master and wait for motion to stop
STOP(MASTER)

WAITDONE(MASTER)

END

Following for MX2000 version 4.0 215

8.1.9.3 - Rotating K nife Program Example 2 (recede cycle)

#DEFINE MASTER 1 ‘master axis number

#DEFINE FOLLOWER 2 ‘follower axis number

#DEFINE IN_SYNC 8

#DEFINE SYNC DIST FLAG 32 ‘wait for Sync distance state

#DEFINE CUT_LENGTH 2.2 ‘material cutting length in units

thkkkkkk* Inltla||Z€f0||0W€I‘ parame[ers************************
FOLSYNCDIST(FOLLOWER)=72/360 * distance the master must travel for material to be cut
ABSPOS(MASTER,FOLLOWER)=0,0 ‘ set positionto O
PROFILE(FOLLOWER)=16 ‘ profile set to S Curve with a setting of 16
FOLRATIO(FOLLOWER)=1 * follow at 100% of master velocity
FOLTRIG(FOLLOWER)=0 ‘ no trigger required
FOLSTARTDIST(FOLLOWER)=0 ‘ no delay distance

FOLACCDIST(FOLLOWER)=(144/360) * 2 ‘ aign knife with cutting surface 144° from start
FOLDCCDIST(FOLLOWER)=(144/360) * 2 * align knife at 12 o’clock

FOLMINRATIO(FOLLOWER)=0 * offset cycle not alowed to reverse
SPEED(MASTER)=5 ‘ master velocity set to 5 units/sec
thkkkkkkkx*k deflne and a:tlvatefollower aXiS***********************
JOG(MASTER)=1 ‘ start master axis
FOLINPUT(FOLLOWER)=ACTSPD(MASTER)

FOLJOG(FOLLOWER)=1 * follower in the master direction

Prxkkxkkxx wait for initial velocity synchronization ***x* % xxskxkakxkakokx
DO : LOOP UNTIL FOLSYNC(FOLLOWER)=1

Ekkkkkkkkx*k paform rotary CUtter Cycle****************************

DO
FOLOFFSETDIST(FOLLOWER)= CUT_LENGTH - FOLSYNCDIST(FOLLOWER) *setup offset cycle
FOLOFFSET(FOLLOWER)=1- CUT_LENGTH ‘command offset cycle

srkxkkkkx wait for offset cyclein synchronization portion to begin ******x*

DO:LOOP UNTIL MOTIONSTATE(FOLLOWER)=SYNC_DIST_FLAG
thkkkkkkk*x Walt for off%t portlon Of CyC|etO begln kkhkkkhkkkkkkkkkkkkkkkkkkkk*

DO:LOOP UNTIL MOTIONSTATE(FOLLOWER) <> SYNC_DIST_FLAG

LOOP UNTIL EXIN(101)=1 * wait for stop input

Ekkkkkkkk*% rotary Cuttg CyC|etefmInatI0n rmu& kkkkkkkkkkhkkhkkkkhkkhkkkk*%
tkkkkkkkkxk WalthI' VeIOCIty WnChrOﬂlzaIIOI"l khkkkkhkkkkkhkhkkhkkkhkhkhkhkkkkhkhkkx*x
DO:LOOP UNTIL MOTIONSTATE(FOLLOWER)=IN_SYNC

frxxxkxkx gtop follower and wait for motion to stop

‘rxxxxxk follower moves FOLSYNCDIST before deceleration occurs * ** * * **
STOP(FOLLOWER)

WAITDONE(FOLLOWER)

frkxxkxkx gtop master and wait for motion to stop
STOP(MASTER)

WAITDONE(MASTER)

END

216 Following for MX2000 version 4.0

8.1.10 - Gear Box Following Example
Thistype of application only requires aratio between 2 axes that must be synchronized.

Program Example
This example simulates a gearbox with a 5:1 reduction.

#DEFINE MASTER 1

#DEFINE FOLLOWER 2

frkxxkxk initialize master axis and follower parameters * * * x % xx x %
ACCEL(MASTER)=50 * master axis acceleration = 50 units/sec”
DECEL (MASTER)=50 * master axis deceleration = 50 units/sec?
SPEED(MASTER)=5 ‘ master axis speed = 5 units/sec
PROFILE(MASTER,FOLLOWER)=16,16 ‘ profile set to S Curve with a setting of 16
ABSPOS(MASTER,FOLLOWER)=0,0 * set position to 0
FOLRATIO(FOLLOWER)=0.2 * follows at 20% of master velocity
FOLSTARTDIST(FOLLOWER)=0 ‘ no delay distance
FOLACCDIST(FOLLOWER)=0 ‘ no acceleration distance
FOLDCCDIST(FOLLOWER)=0 ‘ no deceleration distance
FOLTRIG(FOLLOWER)=0 ‘ no following trigger required

thkkkkkkkx*k deflne and aCtIVGIEfO”OWGr aXiS***********************
FOLINPUT(FOLLOWER)=ACTSPD(MASTER) ‘follower cycle definition
FOLJOG(FOLLOWER)=1 * start follower axis

fkkkkkkk*k EXGCUte maln program kkhkkkkhkkkkhkkkhkhkhkkhkhkkhkhkkkkkhkhkkkkkkx*%x

DO
‘ Program statements

LOOP UNTIL EXIN(100)=1 * wait for program end
STOP(FOLLOWER) ‘ motion stops
WAITDONE(FOLLOWER) “ wait for FOLLOWER axisto stop
END

Following for MX2000 version 4.0

217

8.1.11 — Following Command Listing

ACTSPD

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLES:

ENCSPD

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

Trajectory Parameter

Returns the current commanded velocity of an axisin
Units/second.

ACTSPD(axis) - usedin an expression

This command can be used in conjunction with a FOLINPUT
command to specify the master source. It can also be used to
monitor the current commanded velocity of an axis.

FOLINPUT(1,3)=ACTSPD(2)
‘ Sets the current commanded vel ocity of axis 2 as the master
velocity. Axis 1 and axis 3 are follower axes.

axspd=ACTSPD(2)
‘ Sets variable axspd to the current commanded vel ocity of axis 2.

Trajectory Parameter
Returns the current encoder speed in units/second.
ENCSPD(axis) - used in an expression
The encoder speed is monitored at the sample rate selected for the
axis. This results in an encoder count/sample time value that is

converted to units/second. Since this value is digita and not
filtered avelocity, deviations will result.

X=ENCSPD(2)

Sets variable X to the current encoder speed of axis 2.

outputspd=0 “initial value

FOR x=1TO 10 ‘ number of samples
outputspd=outputspd+ENCSPD(1) *‘ sample update
wait=.001 ‘ sampletime

NEXT x

outputspd=outputspd/10 ‘ filtered value

FOLINPUT(1,3)=ENCSPD(2)

* Sets the current encoder velocity of axis 2 as the master source for following. Axis 1 and axis 3 are

follower axes.

218

Following for MX2000 version 4.0

FOLINPUT

ACTION:

PROGRAM SYNTAX:

EXAMPLES:

Following for MX2000 version 4.0

Following Parameter

This command specifies the follower axes and the master velocity
source.

FOLINPUT (axis, ... ,axis)= expression

The axis specifies the follower axes (1-8). These axes must be
assigned to the task the FOLINPUT command is used.

The expression specifies the master velocity source for the
follower. The expression may be an equation, variable, command
or a constant. The mathematical operators that are allowed in the
expression are limited to multiply, add and subtract. If avariableis
used it can be a LOCAL or COMMON variable. The commands
allowed in the expression are limited to: VELOCITY which
specifies the velocity of a task, SPEED(axis) which specifies the
target velocity of the specified axis, ACTSPD(axis) which
specifies the current commanded velocity of the specified axis,
ENCSPD(axis) which specifies the encoder (mechanical) velocity
of the specified axis, ANALOG(bOn) which specifies the analog
input port to use in the expression and ABSPOS(axis) the current
absolute position of an axis.

FOLINPUT(1, 3)=(analog(101) * .1 * DevFreq) +VELOCITY
Analog follow axis board 1 "A input”. The follower axes are axis
1 and axis 3. The VELOCITY command controls the center
frequency and variable DevFreq controls the 10 volt deviation
frequency from the center frequency. The sign of the Analog input
voltage control how the deviation frequency is applied to the center
frequency (add or subtract). The commands ACTSPD, SPEED or
ABSPOS can be substituted for the VELOCITY in the expression
if desired.

FOLINPUT(1,3)=ENCSPD(2)
encoder follow axis 1 and axis 3 using the encoder input of axis 2
as the master velocity.

FOLINPUT(2,3)=ACTSPD(1)
Axis 2 and axis 3 follows the actual commanded speed of axis 1.
Note: Commands VELOCITY (1), SPEED(1) or ABSPOS(1) can
be substituted for ACTSPD(1).

FOLINPUT(2,3)= MasterSpd

AXxis 2 and axis 3 follows the numeric value of variable MasterSpd.
A numeric value can also be substituted for variable MasterSpd if
desired.

219

FOLTRIG

ACTION:
PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

220

Following Parameter

Defines the follower starting trigger for motion.

FOLTRIG(axis)=expression
FOLTRIG=expressionl, ..., expression8
FOLTRIG(axis, ... ,axis)=expression, ... , expression
FOLTRIG(axis) - used in an expression

The axis specifies the number of the following axis (1-8).

The expression specifies the starting trigger.

Vaue Specified Trigger

0 No trigger

1 Event 1 on closure
2 Event 2 on closure
3 Event 1 on opening
4 Event 2 on opening

This command is related to the FOLSTARTDIST command as
follows. The follower will not start motion until the
FOLSTARTDIST has been traveled by the master source once the
trigger condition of the FOLTRIG command has been met.

Master FOLACCDIST —P» 4>|

——————————————————————— 100%
Velocity 0

FOLSTARTDIST — P
AR ’*

‘ LFOLTRIG condition met
FOLJOG or FOLMOVE or FOLEMOVEREG

commanded

Follower
Velocity Profile

FOLTRIG(1)=2
sets event 2 on closure as the starting trigger for axis 1.

FOLTRIG=0,,3
sets no trigger for axis 1, sets event 1 on opening as starting trigger
for axis 3.

FOLTRIG(1,3)=0,3
sets no trigger for axis 1, sets event 1 on opening as starting trigger
for axis 3.

Following for MX2000 version 4.0

FOLSTARTDIST

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLE:

Following for MX2000 version 4.0

Following Parameter

Specifies a master distance that is used as a delay distance for
starting motion. The distance delay starts when the specified
starting trigger of FOLTRIG command occurs.

FOLSTARTDIST (axis)=expression
FOLSTARTDIST=expressionl, ... , expression8
FOLSTARTDIST (axis) - used in an expression
FOLSTARTDIST(axis,axis)=expression, ... , expression

The axis specifies the number of the following axis (1-8).
The expression specifies the master distance traveled in units.

This command is related to the FOLTRIG command as follows.
The follower will not start motion until the FOLSTARTDIST has
been traveled by the master source once the trigger condition of the
FOLTRIG command has been met.

Master FOLACCDIST —P» 4>|

S —————————— ———— — — — — = 100%
Velocity

FOLSTARTDIST —P»
N

‘ LFOLTRIG condition met
FOLJOG or FOLMOVE or FOLEMOVEREG

commanded

Follower
Velocity Profile

FOLSTARTDIST(1)=1.5
axis 1 master distance delay is 1.5 units before starting motion.

FOLSTARTDIST=1,,3
axis 1 master distance delay is 1 unit and axis 3 master distance
delay is 3 units before starting motion.

FOLSTARTDIST(1,4)=1,3
axis 1 master distance delay is 1 unit and axis 4 master distance
delay is 3 units before starting motion.

221

FOLACCDIST

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

222

Following Parameter

Specifies the master distance traveled for the follower to catch the
master velocity after follower motion begins.

FOLACCDIST (axis)=expression
FOLACCDIST=expressionl, ... , expression8
FOLACCDIST(axis, ... ,axis)=expression, ... , eXpression
FOLACCDIST(axis) - used in an expression

The axis specifies the number of the following axis (1-8).
The expression specifies the master distance to travel in Units.

The follower axis will start motion once the trigger condition is
met and the master distance specified by the FOLSTARTDIST
command is achieved. Once motion begins the follower will match
the master velocity in the specified master distance. The distance
traveled by the follower is 50% of the FOLACCDIST distance
times the FOLRATIO vaue.

Master _ _ _FOLACCDIST _ _ "1 __ ™ |

0,
Velocity 100%

Follower
Velocity Profile

\ \ |<‘ FOLSTARTDIST —]

KKL

FOLACCDIST(1)=1.5
axis 1 match the master velocity in 1.5 units after starting motion.

FOLTRIG condition met

FOLJOG or FOLMOVE or FOLEMOVEREG
commanded

FOLACCDIST=1,,3
axis 1 match the master velocity in 1 unit and axis 3 match the
master velocity in 3 units after starting motion.

FOLACCDIST(1,4)=1,3
axis 1 match the master velocity in 1 unit, axis 4 match the master
velocity in 3 units after starting motion.

Following for MX2000 version 4.0

FOLDCCDIST

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Following for MX2000 version 4.0

Following Parameter

Specifies the master distance traveled for the follower to attain a
velocity of zero from the current velocity.

FOLDCCDIST (axis)=expression
FOLDCCDIST=expressionl, ... , expression8
FOLACCDIST(axis, ... ,axis)=expression, ... , eXpression
FOLDCCDIST (axis) - used in an expression

The axis specifies the number of the following axis (1-8).
The expression specifies the master distance of travel in Units.
The follower axis will decelerate to a velocity of zero in the

specified master distance. The distance traveled by the follower is
50% of the FOLDCCDIST distance timesthe FOLRATIO vaue.

|<— FOLDCCDIST —P»

100 — ————— ™) — - - - - - [— - Master Velocity

FOLDCCDIST(1)=1.5
axis 1 must stop from current velocity in 1.5 units.

FOLDCCDIST=1,,3
axis 1 must stop from the current velocity in 1 unit, axis 3 must
stop from the current velocity in 3 units

FOLDCCDIST(1,4)=1,3
axis 1 must stop from the current velocity in 1 unit, axis 4 must
stop from the current velocity in 3 units.

223

FOLRATIO

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

224

Following Parameter

Sets the ratio of the following axisto the master. A value of 1
represents 100% of the master.

FOLRATIO(axis)=expression
FOLRATIO=expressionl, ... , expression8
FOLRATIO(axis, ... ,axis)=expression, ... , EXpression
FOLRATIO(axis) - used in an expression

The axis specifies the number of the following axis (1-8).
The expression specifies the following axis ratio to the master.

If the FOLRATIO is changed during a follower motion the
follower will accelerate/decelerate to the new FOLRATIO at the

FOLRATIOINC rate.

Follower Velocity
Profile

FOLRATIOINC
rate

FOLRATIO 150%

‘Master Velocity 100%

FOLRATIO 50%

FOLRATIO
changed

FOLRATIO acceleration time = (FOLRATIO(new) - FOLRATIO(old)) / FOLRATIOINC

FOLRATIO(2)=1.5
Sets axis 2 folratio to 150% of the master velocity.

FOLRATIO=1,,15
satsaxis 1 folratio to 100% and axis 3 to 150% of the master

velocity.

FOLRATIO(1,3)=1,1.5
satsaxis 1 folratio to 100% and axis 3 to 150% of the master

velocity.

Following for MX2000 version 4.0

FOLRATIOINC

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Following for MX2000 version 4.0

Following Parameter

Specifies the acceleration rate for afolratio change during motion
in ratio increment per second.

FOLRATIOINC(axis)=expression
FOLRATIOINC=expressionl, ..., expression8
FOLRATIOINC(axis, ..., axis)=expression, ... , expression
FOLRATIOINC(axis) - usedinan expression

The axis specifies the number of the following axis (1-8).

The expression specifies the ratio acceleration rate in ratio
increment per second.

Used in conjunction with the FOLRATIO command to specify the
acceleration rate for a FOLRATIO. If the FOLRATIO is changed
during a follower motion the follower will accelerate/decel erate to
the new FOLRATIO at the FOLRATIOINC rate.

Follower Velocity
Profile

FOLRATIOINC
rate

FOLRATIO 150%

‘Master Velocity 100%

FOLRATIO 50%

FOLRATIO
changed

FOLRATIO acceleration time = (FOLRATIO(new) - FOLRATIO(old)) / FOLRATIOINC

FOLRATIOINC(1,3)=2,4
axis 1 FOLRATIO changes at a 200% rate every second and axis 3
FOLRATIO changes at a400% rate every second.

FOLRATIOINC(2)=1
axis2 FOLRATIO changes at a 100% rate every second.

FOLRATIOINC=2,,4
axis 1 FOLRATIO changes at a 200% rate every second and axis
3 FOLRATIO changes at a 400% rate every second.

225

FOLJOG

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

RELATED COMMANDS:

226

Following Motion
Requests a Following axis jog cycle.

FOLJOG(axis)=expression
FOLJOG=expressionl, ..., expression8
FOLJOG(axis, ... , axis)= expression, ... , expression

The axis specifies the number of the following axis (1-8).

The expression specifies the following axis to jog. If the
expression is negative the motion will take place in the opposite
direction of the master. The value of the expression isirrelevant.

FOLJOG(2)=1
Requests following axis 2 to start a Jog cycle in the same direction
of the master.

FOLJOG=1,,-1

Requests following axis 1 to start a Jog cycle in the same direction
as the master and following axis 3 to start a Jog cycle in the
opposite direction of the master.

FOLJOG(1,3)=1,-1

requests following axis 1 to start a Jog cycle in the same direction
as the master and following axis 3 to start a Jog cycle in the
opposite direction of the master.

FOLACCDIST
FOLDCCDIST
FOLINPUT
FOLTRIG
FOLRATIO
FOLSYNC
FOLSTARTDIST
MOTIONSTATE
FOLOFFSET
FOLOFFSETDIST
FOLSYNCDIST
STOP
FOLMAXRATIO
FOLMINRATIO

Following for MX2000 version 4.0

FOLMOVE

ACTION:
PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

RELATED COMMANDS:

Following for MX2000 version 4.0

Following Motion

Request a Following axis move.

FOLMOV E(axis)=expression
FOLMOVE=expressionl, ... , expression8
FOLMOVE(axis, ..., axis)=expression, ... ,expression

The axis specifies the number of the following axis (1-8).

The expression specifies the incremental move distance in units. If the
expression is negative the motion will take place in the opposite direction
of the master.

FOLMOVE
¢—— distance traveled ——p»|

FOLACCDIST FOLDCCDIST

Master

0, — e ———— — — — — —
100% Velocity

}

FOLMOVE

FOLMOVE(2)=10
requests following axis 2 to move 10 units and follow the master
direction.

FOLMOVE=-5,,10

request following axis 1 to move 5 unit in the opposite direction of the
master. Following axis 3 to move 10 units and follow the master
direction.

FOLMOVE(1,3)=-5,10

request following axis 1 to move 5 unit in the opposite direction of the
master. Following axis 3 to move 10 units and follow the master
direction.

FOLACCDIST
FOLDCCDIST
FOLINPUT
FOLTRIG
FOLRATIO
FOLSYNC
FOLSTARTDIST
MOTIONSTATE

227

FOLMOVEREG Following Motion

ACTION: Request a Following axis move registration cycle.
PROGRAM SYNTAX: FOLMOVEREG(axis)=expression

FOLMOVEREG=expressionl , ..., expression8
FOLMOVEREG(axis, ... , axis)=expression, ... , expression

REMARKS: The expression specifies the follower distance to move after the
registration trigger occurs.

If the expression is negative the motion will take place in the
opposite direction of the master.

The axis specifies the number of the following axis (1-8).
trigger occured

FOLACCDIST FOLDCCDIST

- F—L>_____ Master

100% ———=——— JJ _Velocity

f - w >
FOLMOVEREG FOLMOVEREG
distance traveled

EXAMPLES: FOLMOVEREG(2)=10
following axis 2 movereg distanceis 10 units.

FOLMOVEREG=5,,10
following axis 1 movereg distanceis 5 units and following axis 3
movereg distance is 10 units.

FOLMOVEREG(1,3)=5,10
following axis 1 movereg distanceis 5 units and following axis 3
movereg distance is 10 units.

RELATED COMMANDS: FOLACCDIST
FOLDCCDIST
FOLINPUT
FOLTRIG
FOLRATIO
FOLSYNC
FOLSTARTDIST
MOTIONSTATE

228 Following for MX2000 version 4.0

STOP M otion Parameter

ACTION: Stops any motion with a control stop.
PROGRAM SYNTAX: STOP(axis)
STOP=expressionl, ..., expression8

STOP(axis, ... ,axis)
note: JOGSTOP can be substituted for STOP.
REMARKS: The axis specifies the number of the following axis (1-8).

This command will stop any motion using the DECEL value for
normal motion and FOLDCCDIST for following motion.

Any vaue for the expression will stop the designated axis.

The WAITDONE, DONE or BUSY commands are related to the
STOP command. One of these related commands should follow the
STOP command to assure that motion has stopped in the
designated axes before proceeding with program execution.

EXAMPLES: STOP(2)
reguests following axis 2 to stop.
DO : LOOP UNTIL DONE(2)

STOP=1,,1
requests following axis 1 and axis 3 to stop.
WAITDONE(1,3)

STOP(1,3)
requests following axis 1 and axis 3 to stop.
DO : LOOPWHILE BUSY (1,3)

FOLSYNC Following Motion
ACTION: Returns the following sync status of the specified axis.
PROGRAM SYNTAX: FOLSYNC(axis) - used in an expression

REMARKS: The axis specifies the number of the following axis (1-8).

The value returned is either a0 (out of sync) or 1 (in sync).

EXAMPLE: DO : LOOPUNTIL FOLSYNC(2)=1
wait for axis 2 to synchronize with master velocity.

DO : LOOP WHILE FOLSYNC(2)=0
wait for axis 2 to synchronize with master velocity.

Following for MX2000 version 4.0 229

MOTIONSTATE

ACTION:
PROGRAM SYNTAX:
REMARKS:

230

Trajectory Parameter
Returns the motion state for an axis.
MOTIONSTATE(axis) - used in an expression.

The motion states for afollowing cycle are:
0 Following cycle Done.
1 Waiting for Following Trigger.
2 Waiting for master to move FOLSTARTDIST distance.
4 Acceleration to Master Velocity in FOLACCDIST
distance.
8 In Synchronization with master Velocity.
16 Decelerating to Stop in FOLDCCDIST master distance.
32 Offset command issued and Waiting for master to move
FOLSYNCDIST distance before starting the Offset
Acceleration.
64 Offset Acceleration occurring.
128 At FOLMAXRATIO or FOLMINRATIO limit.
256 Offset Deceleration occurring.
512 Checking for pending Offset Cycle.

FOLMOVE ‘
FOLMOVEREG 0 no trigger
1 Event 1 active
FOLTRIG 2 Event 2 active
3 Event 1inactive
4 Event 2 inactive

Wait
for
Trigger
1)

FOLJOG

Master moved decel
distance

-—Trigger occured

Wait
For
Distance

(2)

FOLSTARTDIST

-«+——— Master traveled Start
Distance

FOLDCCDIST FOLACCDIST

«4+—Master traveled Accel

Distance
Constant
®)

“4—— FOLOFFSET commanded

FOLSYNC

Wait
For Sync
Distance
(32)

Another
Offset
command
(512)

FOLSYNCDIST

<4—— Master moved FOLSYNCDIST
Distance

Offset
Decel
(256)

Offset
Constant
(128)

Offset
Accel
(64)

L)

Master moved FOLOFFSETDIST distance
Follower moved FOLOFFSET distance

Following for MX2000 version 4.0

MOTIONSTATE continued

Following for MX2000 version 4.0

Motion state O (Done)
No following motion is taking place or being commanded.

Motion state 1 (Wait for Trigger)
A following motion has been commanded and is waiting for the
specified trigger to occur. The trigger is specified by the FOLTRIG
command.

Motion state 2 (Waiting for Distance)
Waiting for the master delay distance to be completed. This master
distance traveled is specified by the FOLSTARTDIST command.

Motion state 4 (ACCEL)
The follower motion has started and is accelerating to the master
velocity. The master distance traveled during acceleration is specified
by the FOLACCDIST command.

Motion state 8 (Constant)
The follower is in synchronization with the master velocity and no
offset cycle has been commanded. This state sets the return state of
the FOLSY NC command to a one.

Motion state 16 (DECEL)
The follower is decelerating to a stop.

Motion state 32 (Wait For Sync Distance)
The follower and master velocities are in synchronization. Thisis the
first portion of the offset cyclee The master travels the
FOL SYNCDIST distance during this portion of the offset cycle.

Motion state 64 (Offset Accel)
The follower is accelerating to the FOLMAXRATIO velocity during
an advance-offset cycle or decelerating to the FOLMINRATIO
velocity during a recede-offset cycle. The master is executing the
FOLOFFSETDIST distance.

Motion state 128 (Offset Constant)
Thefollower isrunning at the FOLMAXRATIO or FOLMINRATIO
velocity. The master is gtill executing the FOLOFFSETDIST distance.

Motion state 256 (Offset Decel)
The follower is decelerating from the FOLMAXRATIO value during
an advance-offset cycle or accelerating from the FOLMINRATIO
value during a recede-offset cycle. The offset cycle will be completed
when the master velocity times the FOLRATIO value is reached. The
master is gill executing the FOLOFFSETDIST distance and is
completed when the offset cycle is completed.

Motion state 512 (Another Offset command)
The follower has just completed an offset cycle and is checking to see
if a pending offset cycle is requested. If a pending offset cycle is
requested will proceed to motion state 32 otherwise, will go to motion
state 8.

231

FOLMAXRATIO

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

232

Following Parameter

Sets or returns the maximum allowable following axis speed
during an offset advance cycle.

FOLMAXRATIO(axis)=expression
FOLMAXRATIO=expressionl, ..., expression8
FOLMAXRATIO(axis, ... ,axis)=expression, ... , eXpression
FOLMAXRATIO(axis) - used inan expression

The expression sets the maximum speed ratio to the master. This
value must be larger than the FOLRATIO of the axis. The vaue
must be a positive number.

The axis specifies the number of the following axis (1-8).
FOLLOWING OFFSET

ADVANCE CYCLE
_FOLMAXRATIO

S - 200%
________ Master Velocity
| 100%
FOLSYNCDIST
FOLOFFSETDIST

FOLMAXRATIO(2) = 3
sets the folmaxspeed of axis 2 to 300% of the master.

FOLMAXRATIO=5,,1
sets the folmaxratio of axis 1 to 50% of master and folmaxratio of
axis 3 to 100% of the master.

FOLMAXRATIO(1,3)=.5,1
sets the folmaxratio of axis 1 to 50% of master and folmaxratio of
axis 3 to 100% of the master.

Following for MX2000 version 4.0

FOLMINRATIO

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Following for MX2000 version 4.0

Following Parameter

Sets or returns the minimum allowabl e following axis speed during
arecede offset cycle.

FOLMINRATIO(axis)=expression
FOLMINRATIO=expressionl, ..., expression8
FOLMINRATIO(axis, ... ,axis)=expression, ... , Expression
FOLMINRATIO(axis) - used in an expression

The expression sets the minimum speed ratio to the master. This
value must be less than the FOLRATIO of the axisand can be a
negative value.

If the value is a negative number the following axis will be allowed
to reverse the direction during a recede offset cycle.

The axis specifies the number of the following axis (1-8).

FOLLOWING OFFSET
RECEDE CYCLE

FOLOFFSETDIST
|<— FOLSYNCDIST)
Master Velocity

________ 100%

FOLMINRATIO

0%

x=FOLMINRATIO(axis)
Sets the expression to the current FOLMINRATIO of the specified
axis.

FOLMINRATIO(2)=-2.0
sets the following minimum speed for axis 2 to -200% which
allows an offset recede cycle to reverse directions.

FOLMINRATIO=.1,,0
setsthe folminratio of axis 1 to 10% of master and folminratio of
axis 3 to 0% of the master.

FOLMINRATIO(1,3)=.1,0
setsthe folminratio of axis 1 to 10% of master and folminratio of
axis 3 to 0% of the master.

233

FOLOFFSET

ACTION:
PROGRAM SYNTAX:

REMARKS:

234

Following Parameter

Defines afollowing incremental offset distance from the current

position.

FOLOFFSET (axis)=expression

FOLOFFSET=expressionl, ..., expression8

The expression specifies the following axis offset in units.

The axis specifies the number of the following axis (1-8).

Used in conjunction with FOLSYNCDIST, FOLOFFSETDIST,
FOLMAXRATIO and FOLMINRATIO to advance or recede the
follower axis. The FOLSYNCDIST defines the master delay
distance travel in synchronization after an FOLOFFSET command
is issued. The FOLOFFSETDIST defines the master distance

traveled while the FOLOFFSET

IS being performed. The

FOLMAXRATIO defines the upper velocity limit for an advance
cycle. The FOLMINRATIO defines the lower limit velocity for a

recede cycle.

The FOLOFFSET command only works during a FOLJOG cycle .

Follower Position
(Recede cycle)

FOLOFFSET(axis) = -3

FOLOFFSETDIST(axis) = 4

Time

Master Position

Follower Position
(Advance cycle)
FOLOFFSET(axis) = 3
FOLOFFSETDIST(axis) = 4

Position
(units)

<@— FOLSYNDIST(axis) = 1

Following for MX2000 version 4.0

FOLOFFSET continued

250%

<—FOLSYNCDIST(axi

Master
Velocity
100%

EXAMPLES: FOLOFFSET(1,3)=1,-1
advance axis 1 one unit and recede axis 3 one unit.

FOLOFFSET(2)=1
advance axis 2 one unit.

FOLOFFSET=1,,-1
advance axis 1 one unit and recede axis 3 one unit.

Following for MX2000 version 4.0 235

FOLOFFSETDIST

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

236

Following Parameter

Sets or returns the master distance traveled for a FOLOFFSET
command.

FOLOFFSETDIST (axis)=expression
FOLOFFSETDIST=expressionl, ... , expression8
FOLOFFSETDIST (axis, ... , axis)=expression, ... , EXpression
FOLOFFSETDIST (axis) - used in an expression

The axis specifies the number of the following axis (1-8).
The expression specifies the master distance traveled in Units.

Used in conjunction with the FOLOFFSET command to specify
the master distance traveled during a FOLOFFSET command.

FOLOFFSETDIST(1,3)=1,1
axis 1 master distance is one unit and axis 3 master distance is one
unit.

FOLOFFSETDIST(2)=1
axis 2 master distance is one unit.

FOLOFFSETDIST=1,,1
axis 1 master distance is one unit and axis 3 master distance is one
unit.

Following for MX2000 version 4.0

FOLSYNCDIST

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Following for MX2000 version 4.0

Following Parameter

Specifies the master distance to travel when a FOLOFFSET
command is issued. This distance will be traveled before the
FOLOFFSET command is executed.

FOLSY NCDIST (axis)=expression

FOLSYNCDIST (axis)=expressioni, ..., expression8
FOLSYNCDIST (axis) - used in an expression
FOLSYNCDIST(axis, ... ,axis)=expression, ... ,eXpression

The axis specifies the number of the following axis (1-8).
The expression specifies the master distance traveled.

Used in conjunction with the FOLOFFSET command to specify
the in synchronization master distance traveled during a
FOLOFFSET cycle.

250%

FOLSYNCDIST(axi

Master
Velocity
100%

FOLSYNCDIST(2)=.5
sets the master distance traveled for axis 2 to .5 units.

FOLSYNCDIST(1,3)=5,.6
sets the master distance traveled for axis 1 to .5 units and the
master distance traveled for axis 3 to .6 units

FOLSYNCDIST=.5,,.6
sets the master distance traveled for axis 1 to .5 units and the
master distance traveled for axis 3 to .6 units

237

8.1.11 - Follower Exercise

1) Fill inthe Motion states and Following Commands on the following sheet. Put the Following
command letter inside the Parenthesis and the motion state number in between brackets. All of the
Following commands and Motion states are used at |east once.

2) Write auser program that will generate the velocity profile on the following sheet. The master axis
should be stable before the follower axisis allowed to move.

3) Set up datalogging to prove that the profile will be generated.

Ekkkkkkhkhkhkhhkhhkhkhhxdkx*k Followar Wl” fO”OW the Maser ax'sspwj a[1000A) kkkkhkhkhkkkkhkhkhkhkhkkkhkhkhkhkkkhkhkhkxx*x
Ekkkkkhkkkhkhkhkkhkhkkhkhikkkkx*% Follower trlggerSWhen EVENT 1 Isa:tlve kkkkhkkhkkhkkkkhkhkhkhkkkkhkhkhkhkkkhkhkhkikkkkhkkhkkkkx*%

#DEFINE MASTER 2

#DEFINE FOLLOWER 1

SPEED(MASTER)=5 ‘ Master velocity is 5 units/sec
ACCEL (MASTER)=50 * Master acceleration is 50 units/sec”
DECEL (MASTER)=50 * Master deceleration is 50 units/sec’
DRVREADY (FOLLOWERMASTER)=1,1 * drives not required to run program
JOG(MASTER)=1 ‘START MASTER AXIS

DO : LOOPUNTIL ACTSPD(MASTER) >=4.9 ‘WAIT FOR MASTER TO ACHIEVE SPEED
STOP(FOLLOWER) * follower axis stop
WAITDONE(FOLLOWER) ‘ wait for follower axis done

STOP (MASTER) ‘ master axis stop
WAITDONE(MASTER) ‘ wait for master axis done

END

238 Following for MX2000 version 4.0

Following Commands
a) FOLACCDIST

MotionStates
_no__.o.<<_3o o<m_m done b) FOLDCCDIST
<<mE:@ 8::@@2. ¢) FOLJOG
W aiting 8.1 start distance to m._m_umm d) FOLMAXRATIO
>oom__mfﬁ_:@ to Bmmﬂﬂmﬂxm_ooé e) FOLMINRATIO
In <m_oo_c.\ Synchonization f) FOLOFFSET
_umo.m._mﬂmzso to stop . g) FOLOFESETDIST
W aiting for offset sync distance to elapse h) FOLSTARTDIST
Offset cycle acceleration taking place

i) FOLSYNC
Offset cycle at oo:mﬂm.:” m_omm.o_ i) FOLSYNCDIST
Ozmmﬁ.&\o_m o_oom_m.:m:o: taking place K) FOLTRIG
Checking for pending offset cycle) STOP

() enterfollowing command letter
[] enter Motion State Number

[] [] []
il _ _ > 4— master distance (L)
) =)
() [«— followerdistance «) ()
M 11, Co oo |t
-— -t i -— —
(VA) 4— master distance —p»
o ()
[]
> 4— follower distance —p»| <t P
«C)

239

Following for MX2000 version 4.0

Program answer:

fkkkkkhkkkhkhkkkhkkhkhkkkkkx*% FOIIOWH Wl” fOIIOW the Masa aXISSpeGj at 1000/0 kkkkkhkkhkkkkhkkhkhkkhkkhkkkhkhkhkkkkhkhkikkkk*
Ekkkkkkkkhkhkhkkkhkkkikkkkkx% Follower trlggerswhen EVENT 1 Isa:tlve kkkkkhkkhkkkkhkhkhkkhkkhkkhkhkhkhkkkkhkhkhkkkkhkkhkkkkx*%

#DEFINE MASTER 2

#DEFINE FOLLOWER 1

SPEED(MASTER)=5 ‘ Master velocity is 5 units/sec

ACCEL (MASTER)=50 * Master acceleration is 50 units/sec”

DECEL (MASTER)=50 * Master deceleration is 50 units/sec”

DRVREADY (FOLLOWER,MASTER)=1,1 * drives not required to run program

JOG(MASTER)=1 ‘START MASTER AXIS

DO : LOOPUNTIL ACTSPD(MASTER) >=4.9 ‘WAIT FOR MASTER TO ACHIEVE SPEED
thkkkkkx*k Inltlallzethefollower parameters~k*******~k~k********~k~k******~k~k****************************
FOLRATIO(FOLLOWER)=1.0 ‘ following ratio is 100%

FOLTRIG(FOLLOWER) =1 * follower triggers on eventl going active
FOLACCDIST(FOLLOWER) =1 * follower catches master in 1 unit of travel of the master
FOLDCCDIST(FOLLOWER) =1 ‘ follower stop in 1 unit of travel of the master
FOLMAXRATIO(FOLLOWER) = 2.0 * offset maximum velocity limit is 200% of master
FOLMINRATIO(FOLLOWER) =0 * offset minimum velocity limit is 0% of master
FOLSTARTDIST(FOLLOWER) = 1 ‘ delay 1 unit of travel of the master before motion

P P
kkkkkkk deflnefOHOWGr & mas[er axes**

FOLINPUT(FOLLOWER) = ACTSPD(MASTER)

‘rxxxkxk request for motion start of follower axis

FOLJOG(FOLLOWER) = 1

FOLSYNCDIST (FOLLOWER) =1 " distance master travels during in sync portion of offset
FOLOFFSETDIST(FOLLOWER) =1 * distance master travels after in sync portion of offset
FOLOFFSET(FOLLOWER) =1 ‘ offset cycle request to advance follower 1 unit

Ekkkkk*k Walt for |n SynC pOftIOI”I Of Offﬁ CyCletO b%ln khkkkkhkkhkkhkkhkhkkhkhkkhkhkhhkkhkhkkkhkhkhkhkhkkhkhkhkhkhkhkhkhkkkkkhkkk*x*%

DO : LOOPUNTIL MOTIONSTATE(FOLLOWER) = 32

% %% % \wyajt for offset portion of cycleto begin

DO : LOOPUNTIL MOTIONSTATE(FOLLOWER) <> 32

FOLSYNCDIST (FOLLOWER) =1 " distance master travels during in sync portion of offset
FOLOFFSETDIST(FOLLOWER) = 1 * distance master travels after in sync portion of offset
FOLOFFSET(FOLLOWER) = -1 * offset cycle request to recede follower 1 unit

Ekkkkk*k Walt for Off%t Cycleto fInISh khkkkkhkkhkkhkkkhkkhkhkhkhkkhkkhkhhkhkhhkhkhhkhkhhhkhhkhhhkhkhkhhkhkhkhkkhkhkhkhkkkhkhkhkikkkkxk*,%x

DO : LOOPUNTIL FOLSYNC(FOLLOWER) =1

WAIT=1 * optional wait before stopping
STOP(FOLLOWER) * follower axis stop
WAITDONE(FOLLOWER) ‘ wait for follower axis done
STOP (MASTER) ‘ master axis stop
WAITDONE(MASTER) * wait for master axis done
END

240 Following for MX2000 version 4.0

(

(C)

[1]

"

MotionStates

Following Commands

Following cycle done A) FOLACCDIST
W aiting for trigger B) FOLDCCDIST
Waiting for start distance to elapse C) FOLJOG
Accellerating to master velocity D) FOLMAXRATIO
In Velocity Synchonization E) FOLMINRATIO
Decelerating to stop F) FOLOFFSET
Waiting for offset sync distance to elapse G) FOLOFFSETDIST
Offset cycle acceleration taking place H) FOLSTARTDIST
Offset cycle at constant speed) FOLSYNC
Offset cycle deceleration taking place J) FOLSYNCDIST
Checking for pending offset cycle K) FOLTRIG
L) STOP
() enterfollowing command letter
[1 enter Motion State Number
[512]
[64] [128] [256]
-— — .
b 4— master distance
a (G)
(A) (J) (J) [«— followerdistance
[4] [32] [32] [64] (F) [256]
- —»> - > <
(K) 4— master distance —p»
(H)
[2] (G)
—» [128]
4— follower distance —p» -

A

(F)

- (E)

[0]

241

Following for MX2000 version 4.0

This page left intentionally blank

242 Following for MX2000 version 4.0

Section 9
Servo Drive

9.1 - Servo Control

A servo is a closed loop system. The loop is closed by
taking a measurement of the actual output (usualy a po-
sition or velocity) and comparing it to the desired com-
mand or reference input. Subtracting the output signal
from the reference generates an error signal. The error
signal tells the controller how far away the output is from
the desired position. Then, a control law (algorithm)
modifies this error signal to provide an output to drive a
servo amplifier.

The controller uses a modified form of the classic PID
(Proportional, Integral, Derivative) control law with ve-
locity feed forward. The commanded position is com-
pared to the Encoder position and a position error is gen-
erated. A control algorithm modifies this error to provide
an output torque command to drive the servo amplifier.
The PID control loop uses or derives the following pa-
rameters or commands:

Servo Block Diagram

Absolute
Position

OUTLIM
Output

/ (volts)

Encoder
Position

The user project configuration alows access to the ma-
jority of the servo parameters and in some case thisis the
only access.

The servo parameters that can be modified in the program
configuration only are Integration during motion (Servo
Drive Folder), Sample time (Servo Drive Folder), En-
coder line count (Encoder Folder), Encoder direction
(Encoder Folder). The Integration during motion pa-
rameter control whether the integral term has any effect
on the output voltage to the servo drive during motion.
The Sample time controls how often the voltage output is
updated. The Encoder line count indicates the resolution
of the encoder. This value must match the encoder line
count of the servo motor encoder. The pulse count per
revolution is four times the Encoder Line count. One
pulse count is the finest resolution that can be attained.
The Encoder direction parameter allows a convenient
method of changing the encoder direction if incorrect.

If the servo drive has a limitation on the commanded in-
put voltage, other than +10v to —10v, a limit could be im-

244

posed using the OUTLIM command. However, this pa-
rameter is limited to a user program command only. This
command must be placed at the beginning of the user
program to protect a servo drive that has a voltage
input limitation.

The remaining servo parameters can be modified in the
program configuration as well as the users program.
These are Kp (Proportiona gain), Ki (Integral gain), Kd
(Derivative gain), Kaff (Acceleration feed forward), K vff
(Velocity feed forward), INTLIM (integral limit voltage),
FOLERR (maximum error alowed). These parameters
can be modified in the configuration using the Servo
Drive Folder. Note: The Kp, Ki, Kd and Kaff parame-
ters are modified during auto-tuning. Some controls
do not have K aff asa parameter.

It is highly recommended to tune a servo drive using the
AUTO-TUNE environment. Under certain conditions,
mostly compliant loads, this may not be possible. Thus, if
the servo drive must be manually tuned a means for thisis
also available in the servo-tuning environment.

9.1.1 - Servo Tuning

Tuning is a process of determining the PID and feed for-
ward gains to get the desired system response. Typical
performance indicators like: overshoot, response time,
stiffness, settling time, bandwidth and damping can all be
used to measure how well the system is tuned. Tuning a
gain to improve its performance characteristic may cause
another characteristic to get worst.

Before attempting servo tuning the following must be
done: Modify the project configuration for the System
folder, Encoder folder, Servo Drive folder and then Com-
pile and download the user project to the controller.

9.1.1.1 - System folder

The System folder alows the Drive type, Task assign-
ment for the drive, motor direction for a+ motion and
Units per motor revolution to be configured.

System

Motor Direction Units per motor
resolution

Task assignment Drive Type

2|10

& [+ = cw motor directi

Axis 1 |c \mcpu\name.ms»l_t open loop stepper

Axis 2 |c:\mcpi\name.tsk open loop stepper +=cw motor direction [1.0

1) Assign the servo drive to an axis by selecting the
servo drive item from the Drive Type drop list.

2) The servo drive must be assigned to a specific task.
Choose the task from the Task assignment drop list.

3) If the motor direction requires a reversa for a + di-
rection motion make the necessary choice under the
Motor Direction drop list.

4) Define the unit value of the axis. Enter the desired
vaue in the Units per motor revolution text box.
Example: 1=1 Unit/motor rev.

Servo Drive

9.1.1.2 - Encoder Folder

This folder defines the Servo Encoder direction and En-

coder resolution.
Encoder

Encoder type Encoder Line count pulse count
direction (lines /rev) (pulses/rev)

Axis 1 | quadrature |i normal direction |&| 500 2000

Axis 2 | quadrature normal direction 500 2000

Encoder type must be set to quadrature.

Encoder direction determines how the encoder rotation
direction is interpreted. The choices are normal direction
or reverse direction. Use the default setting to start.

Encoder line count defines the encoder resolution in
lines for a quadrature encoder. An Encoder with 1000
lines will provide 4000 counts/revolution, or quadrature
counts. Set this value to the encoder line count of the ser-
vomotor.

Pulse count defines the pulse count per motor revolution.
Thisvalue is aways 4 times the Encoder line count. If the
encoder input is pulse and direction, the pulsesrev value
should be entered here.

9.1.1.3 - Servo Drive Folder

This folder alows the user project servo drive parameters
to be modified. The PID loop gains, acceleration feed
forward gain, velocity feed forward gain, integral limit,
following error, sample time, and enable/disable integra-
tion during motion. The default settings for this folder are
suggested before tuning the servo drive.

This folder is modified during auto or manual tuning of a
servo drive and requires compilation and downloading of
the project to save the tuning settings.

Servo drive

Proportional Integral gain | Derivative gain | Accel feed forward Velocity feed
gain (msec) (msec) (volts/count/msec®| forward (%)
(millivolts/count)

Axis1 | 0.0 0.0 0.0 0.0 0.0

Axis 2 | 0.0 0.0 0.0 0.0 0.0

Servo drive

Integral limit Following error Sample time Integration
(volts) (units) (milliseconds) during motion

Axis 1 100.0 0.05 1.024 msec + enabled +

Axis 2 100.0 0.05 1.024 msec enabled

Servo Drive

Proportional gain

This gain is multiplied by the position error and thus
contributes proportionally to the output torque.
Generally, the higher the Kp, the lower the error at
any time during the move. However, if Kp is too
high, the system can overshoot severely or “buzz”
loudly. This type of buzzing instability may be seen
as“grass’ on the error response curve in the move re-
sponse screen. In this case, Kp should be lowered. Kd
may also be lowered, but to alesser extent.

Generally the range for Kp is 10 to 150. Kp less than
10 will usually produce a soft or duggish system. Kp
over 175 produces a stiff system, but one that may be
approaching instability. Note these are genera
ranges, not absolute requirements.

Integral gain

The reciproca (1/Ki) of thisterm is multiplied by the
sum of the position error over time. The effect of Ki
is thus time related, and affects the steady state error.
The higher Ki, the longer it will take for the control-
ler to “integrate out” any steady state error. The ef-
fect of Ki is seen mostly at constant speed (including
standstill). Ki is NOT required for stability, and gen-
erally has a de-stabilizing effect on the system, espe-
cidly if itistoo low. If Kiis TOO LOW the system
may oscillate slowly and wildly back and forth like a
washing machine. Ki is required, if the system must
achieve a very low steady state error (within a few
counts).

The genera range for Ki is 10 to 70. Ki less than 10
may lead to wild, low frequency oscillations. If
steady state error is not a consideration, Ki may be
set to zero. Ki is often disabled during motion to re-
duce overshoot at the end of the move.

Derivative gain

Thisterm is multiplied by the encoder velocity at any
point in time. Generally, raising Kd will reduce over-
shoot in the move response, however, Kd is the term
most susceptible to “digital instability”. Thisis where
the quantification effects of the digital encoder feed-
back in conjunction with too high a Kd cause the
systemto “buzz”.

The general range for Kd is 5 to 20. Kd less than 5
usually leads to an unstable system, Kd >20 usually
leads to “buzzing”.

Accel feed forward
Some controllers have a Kaff term. This term is mul-
tiplied by the commanded acceleration to contribute
to the output torque command. This term only takes
effect to reduce the error during acceleration and de-
celeration. Generally Kaff islessthan 4. Most appli-
cations will run fine with Kaff set at zero.

245

Velocity feed forward
Thisterm is multiplied by the commanded velocity to
contribute to the output torque command. It has no
effect on general stability, and may be set to as high
as 100% to reduce position error during motion. Too
high a Kvff causes undue motor heating. Generally,
Kvff should be set between 50 and 100.

Integral limit
Limits the contribution of the integral term to the
servo loop’s output. This limit is imposed on the in-
ternal calculation within the controller, and is used to
prevent excessive buildup of the integrator output
which can occur if a constant error is alowed to exist
for extended periods of time. Too low an integral
limit may reduce the effectiveness of the integrator
by limiting its contribution to the output torque
command. This would cause a constant steady state
error. Too high an integral limit may allow the inte-
grator to build up alarge error stored in the controller
memory. This error would then be “unwound” at the
end of a move causing excessive overshoot and a
long settling time. The limit can be set between 0 and
319 volts. A setting of 100 is a good midrange start-
ing point, and this parameter rarely needs adjustment.

Following error
Defines the maximum error allowed during motion in
units. If this limit is exceeded the servo drive shuts
down. The default setting is a good starting point.

Sampletime
Determines how often the servo loop output is up-
dated. The possible settings are .256 milliseconds to
2.048 milliseconds in .256 millisecond increments. A
setting of 1.024 is a good starting point.

I ntegration during motion

This feature allows you to select whether the integra-
tion gain is used during the profile motion. Enabling
the integrator during motion will reduce your error at
speed, but may cause some unacceptable overshoot in
the response. Some controllers alow you to set this
parameter in the servo tuning screen, while others re-
quire that you change it in the Servo folder in the
program configuration (be sure to compile and
download the project each time you change the con-
figuration or the change will not take effect).

Note: A program does not haveto bewritten
in thetask in order to tunethe servomotor.

246

9.1.1.4 — Servo Tuning Environment

The servo-tuning Environment allows a servo drive to be
manually tuned, auto-tuned and testing the results of the
tuning.

Clicking on the Servo Tuning command button can ac-
cess the servo-tuning Environment. The project in the
controller must match the project in the PC. If necessary
compile and download the project at thistime.

The servo gains, Integration Limit, Sample Time, Inte-
gration during motion parameters can be modified for an
individual axis on the opening screen. The four steps for
tuning a servo can be executed from this screen as well.

View Logged Data !D X

Left cursor | |*| Right cursor

0.000 ms 2048.000 ms.
0

0.0

0.0ms 1024.00 ms 2048.0 ms

[Step 1: Measure — | [~ Step 2: Calculation — | [~ Step 3: Update [Step 4: Response

Accel | 100.0 unitsisec?

Decel |100.0 unitsisec?

speed [10.0 units/sec

Move [10.0 units

Profile

[oisa

oisplay [, o,
time

[e) |
pply voltage SHUTDOWN

Servo Tuning environment

Command Buttons
Zoom toggles between displaying the graph between
cursors and the full screen view. The two vertical
linesin the display window are the cursors.

Save Graph saves the currently displayed graph and
appears as an item on the drop list.

Freeze scale freezes the current logged scale value.

UnFreeze allows the next commanded motion graph
to be auto scaled.

Graph setup alows for the selection of color and
style for each logged item.

Print prints the current graph.
Quit exitsthe Servo Tuning environment.

Shutdown disables the servo drive and outputs a
torque command of O volts. The Update controller
gains command button will re-enable the servo out-
put voltage.

Servo Drive

Step 1: Measure
Servo axis selects the servo axis.

Output — volts selects the stimulus voltage for meas-
uring system gain. The default is 2 volts.

Speed — units/sec selects the target speed for meas-
uring system gain. The default is 10 units/sec.

Distance Limit — units limits the bump travel dis-
tance allowed when measuring system gain. The de-
faultis 5 units.

Measure system gain commands a system gain
measurement when clicked. The System Gain will
be updated when the cycle is completed.

Step 2: Calculation
System Gain displays the result of a measure system
gain cycle or amanually entered value.

System Bandwidth selects the system bandwidth for
the Gain Calculation. The default is 30 hertz.

Calculate servo gains commands a gain calculation
cycle. The Kp, Ki, Kd and Kaff values will be up-
dated at the completion of the cycle.

Step 3: Update
Kp displays the current value of the proportional
gain. This can be manually changed if desired.

Ki displays the current value of the integral gain.
This can be manually changed if desired.

Kd displays the current value of the derivative gain.
This can be manually changed if desired.

Kaff displays the current value of the acceleration
feed forward gain. This can be manually changed if
desired.

Kvff displays the current value of the velocity feed
forward gain. Thisis used to reduce the positiona er-
ror during acceleration. This can be manualy
changed if desired.

IntLim displays the current value of the integra
limit. This can be manually changed if desired.

Sample Time selects the servo sample time of the
Servo axis.

Update controller gains transfers the current values
of Kp, Ki, Kd, Kaff, Kvff, IntLim and Sample time to
the controller. The servo drive is now enabled.

Servo Drive

Step 4: Response
Accel sdlects the acceleration rate for a move re-
sponse. Defaullt is 100 units/sec?.

Decel selects the deceleration rate for a move re-
sponse. Default is 100 units/sec?.

Speed selects the target speed for a move response.
Default is 10 units/sec.

M ove select the incremental distance traveled during
amove response. Default is 10 units.

Profile selects the motion profile for a move re-
sponse. Default is trapezoidal.

Disable integrator during Motion enables or dis-
ables the integrator during motion. When checked the
integrator is disabled during motion.

Display time selects the logging period for a move
response cycle. Up to 10 seconds can be logged.

Execute move commands a move response. The log-
ging results are transferred when the cycle is com-
pleted. The individual logged items can be selected
by clicking on the arrow in the Display Drop List.

Display
Display Drop list selects the logged item to be dis-

played.

View Port displays the results of a move response
cycle.

Torque Control
Volts select the stimulus torque voltage that will be
applied to the servo drive when the Apply voltage
button is clicked.

Apply voltage transfers the selected stimulus voltage
selected by the volts spin controller as the torque
command for the servo drive.

9.1.1.5- Auto Tuning

Before a servo can run properly, the servo gains Kp, Ki,
Kd, and Kvff must be set up to yield the appropriate move
response. The controller has the ability to automatically
set the servo gains using an automatic tuning procedure.

Auto-tuning can be broken into four separate steps meas-

ure gain (step 1), calculate gains (step 2), update gains
(step 3) and move Response (step 4).

247

Step 1: Measure

The system gain is a measure of the overall responsive-
ness of the system. Higher inertia and/or lower torque
yields lower system gain. Lower inertia and/or higher
torque yields higher system gain. The system gain
number is used when the software calculates the servo
gains. A lower system gain requires higher calculated
controller gains in order for the motor to track a given
profile response.

Clicking M easur e System Gain instructs the controller
to provide a “bump” of torque to the motor. Three pa-
rameters, Output, Speed, and Distance Limit are used
to measure system gain.

The Output text box is used to select the amount of
voltage that the controller will use to bump the motor.
The range of the Output is 0 to 10 volts where 10 volts
represents peak torque. Typically the default parameter
of 2 volts is adequate, although some large inertia sys-
tems may require the Output be set to 3 or 4 volts.

The Speed text box is used to select the target velocity
for the gain measurement. During gain measurement,
the output torque will be applied to the motor until the
speed set here is reached. The default speed is usually
sufficient if revg/sec is used for the unit of measure.

The value in the Distance Limit text box limits the
distance that the motor will turn during the gain meas-
urement. If the distance limit is reached before the
motor reaches the speed indicated, or if the speed can-
not be reached with the voltage entered, an error mes-
sage will appear. If an error appears, try increasing the
distance limit or raising the voltage output slightly.

Generdlly, the default parameters for these three pa
rameters should be used during the gain measurement,
provided that the unit per motor rev was left at the de-
fault of 1.

Caution! When the Measure System Gain
button is clicked, the motor will move quickly
and abruptly for a short distance.

If the gain measurement is unsuccessful, verify that the
motor moves properly with a constant torque command
applied. Clicking the Apply Voltage button on the tun-
ing screen will do this. Clicking the Apply Voltage
button will output a constant torque to the motor pro-
portional to the command voltage. Start with zero and
click on the up or down arrows to apply positive or
negative torque respectively. Unless the system has
high friction, the motor should begin to move with less
than one volt applied. Check that the motor torque is
smooth and continuous in both directions by applying
small amounts of positive and negative voltage.

248

Step 2: Calculation

The system bandwidth is essentially the maximum fre-
quency of excitation to which the system will respond.
Generally, higher bandwidth systems are “stiffer” or
“tighter”. Lower bandwidth systems are “soft” or
“sluggish”. Generally bandwidths range between 10 to
60 Hz (cycles per second). The auto tuning procedure
uses the bandwidth setting along with the measured
system gain to calculate the appropriate servo gains for
the system. The default bandwidth of 30 Hz is usually a
good starting point, although sometimes the bandwidth
must be lowered to achieve a stable system, or raised to
achieve a fast enough response.

Calculate Servo Gains

Clicking the Calculate Servo Gains button will use the
bandwidth and measured system gain to calculate the
Kp, Ki, Kd, Intlim (and Kaff if applicable) parameters.
These fields will be updated after the calculation is
complete.

Step 3: Update

Clicking Update Gains will update the gains to the
controller immediately. Caution! Updating the gains
may change the dynamics of the system such that it
becomes unstable and oscillatory. If a loud buzzing
or vibration occurs after updating gains, the Shutdown
button should be clicked. It is also possible that a fault
will occur if the oscillation overtaxes the servo drive. In
this case you will have to enter the terminal screen and
clear the error by typing ERR or ERRM. If necessary,
go to Step 2 and lower the bandwidth and re-calculate
the servo gains. Now update the gains again. Repeat
this process until the system is stable and will smoothly
resist loading in both directions.

Step 4: Response

Step 4 allows test motion profile parameters to be en-
tered so that the proper motion response may be veri-
fied. Accel, Decel, Speed and M ove Distance parame-
ters describe the move that the motor will try to follow
during the test. The display time is adjustable so that
shorter or longer moves may be fully displayed. The
unit for each parameter is configured in the System
Folder.

Once the profile parameters setup is complete, the sys-
tem is ready to attempt to execute the move. Clicking
the Execute move command button will command the
motor to execute the move profile. The controller will
log the response of the motor and display the results on
the screen graphically. The position error, torque com-
mand, encoder velocity, etc. may be viewed by clicking
on the drop down list at the top of the window. The
displayed graph of the position error is the error based
on quadrature signal feedback from the encoder (for ex-
ampl e there are 4000 counts or pulses per revolution on
a 1000 line encoder).The response may be observed to
verify proper performance for the programmed profile.
If the response is acceptable, Quit the servo screen and
Save the configuration. Y ou will how have to Compile
and Download the project for the new servo informa-
tion to permanently take effect.

Servo Drive

Step 4A: Response Fine Tuning

Integrate During Motion

Thisfeature allows you to select whether the integration
gain is used during the profile motion. Enabling the in-
tegrator during motion will reduce your position error at
speed, but may cause some unacceptable overshoot in
the response. Some controllers allows this parameter to
be set in the servo tuning screen, while others require
that the change be completed in the Servo folder in the
program configuration. Be sure to compile and down-
load the project each time a change is made to the con-
figuration or the change will not take effect. Stable re-
sponses with and without integration during motion en-
abled are shown below.

View Logged Data E]

Right cursor

20 L
Quit
[Step 1: Measure. [Step 2: Calculation [Step 3: Update ——— — Step 4: Response

Kp Accel [100.0 units/sec?

Servo axis System Galn
—— s | PR —

[a]
o]
IntLim [X] pisable integrator during motion

B~ e[swrom |

Stable response with integration during
motion disabled

View Logged Data B
Left cursor Axis 1 Position error (units)
0.000ms

Right cursor

o0
Graph setup v
[~ Step 1: Measure —][Step 2: Calculation [~ Step 3: Update ——— [Step 4: Response
Kp Accel [100.0 units/sec?
Servo axis PSR
R | R oo it
IntLim [Disable integrator during mation

B~ Lo]| swroom |

Stable response with integration during
motion enabled

Velocity Feed Forward

This term reduces the error during motion. It should
typically be set between 50% and 100%. The figures
below show a response with Kvff set to 0%, 50% and
100%. In all three cases the integration during motion
was disabled, although integration can be enabled if it
yields the response required.

Servo Drive

View Logged Data
Left cursor Axis 1 Position error (units) Right cursor
5 0000 ms 768.000 ms

Zoom

save graph

Freeze scale

o
——
Quit
[Step 1: Measure [~ Step 2: Calculation [~ Step 3: Update —— 1 Step 4: Response
Kp 22.0897 | mvient Accel 100.0 units/sec?
Servo axis System Gain
o] System Bandwidih Kait [00__Jvienums? || move [100 i
Speed - units/sec hertz Kvif 00 % Profile | Trapezoidal
-
inttim [1000 | volts (0] GlEesB ey e G meren
sample [a] .. Display secs
o [v] time
system gain based on measured with calculated using updated

B oo] || swroome |

Response with Kvff = 0%

View Logged Data !

Lett cursor Axis 1 Posiion srror () Righ cursor
0.000 ms 765,000 ms
oss2s

00
Graph setup
qure
T D | O e [SEPEURED | Gy e
Kp 22.0897 [mvient Accel 100.0 units/sec?
Servo axis [1 [a]ff system cain
[¥] revaisect || ki [1womr ms oecel [1000 J—

Output - volts Kd 9.0234 | ms Speed |10.0 units/sec
o System andwidtn kat [00_|vienums? || wove [100

intLim [100.0 volts [pisable integrator during motion

Calculate servo gains | | Update controller |

Display
time.

Execute move
using updated
controller gains

based on measured with calculated
system gain servo gains

system gain
11 Motor may turn 1!

|

ame profile as above with Kvff = 50%
Note reduction in error

Measure |

SHUTDOWN |

wn

View Logged Data

L By Axis 1 Position error (units) Right cursor
0.000 ms. 768.000 ms

Freeze scale f\
o0
Fe——
am
[Step 1: Measure [~ Step 2: Calculation [~ Step 3: Update —— 1 Step 4: Response
Kp 22.0897 [muvicnt Accel 100.0 unitsisec?
System Bandwidtn kait [00 vienums? || move [100 units

10.0

intLim [100.0 volts. [pisable integrator during motion

Distance Limit - units
- sample Display
time time

secs

Execute move
using updated
controller gains

based on measured with calculated
system gain servo gains

system gain
11 Motor may turn 1!

Measure |

Calculate servo gains | | Update controller |

SHUTDOWN |

|

o |

ame profile as above with Kvff = 100%
Note reduction in error

249

9.1.1.6 - Manual Tuning Adjustment

Most applications work acceptably using the results of the
auto tuning procedure. However, if the results of the auto
tuning sequence do not yield a satisfactory move re-
sponse, the servo gains may be adjusted manualy to
achieve the required performance. Manual tuning of the
servo can be quite involved. Be sure to read this section a
few times through before deciding to begin manual ad-
justments.

The single most important rule to remember when ad-
justing the servo manually is to gradually change one
gain at a time. There can be interactions between the
parameters that will affect the response, and changing
more than one gain at atime will certainly lead to confu-
sion.

First let's begin with some definitions along with a de-
scription of each parameter and its function. The control
loop uses a modified PID agorithm to compensate the
system response. The servo parameters adjust the con-
troller's output torque command based on position error,
i.e. the difference between commanded position and en-
coder position at any given point in time. The encoder
velocity and commanded velocity are also used in some
cases. Each parameter contributes to the output torque
command in adifferent way.

Stability or instability:

If the servo system behaves smoothly and without loud
buzzing, vibration or oscillation it is said to be stable.
Conversely, if the system buzzes, vibrates, or oscillates
it is said to be unstable. The first goal of servo tuning
is to achieve a stable system. Once stable the system
may be adjusted or “tweaked” to optimize performance.
Adjustments should only be made if the response is out-
right unacceptable. The figures below show a stable and
unstable system response.

View Logged Data EEE
Left cursor oxis 1 Posiion error ni) Right cursor

——
o -
Fm———
e
[Step 1: Measure ~—][Step 2: Calculation —][~ Step 3: Update [~ Step 4: Response
Kp 22.0897 | mvicnt Accel 100.0 units/sec?
sevoaxis[1 4 || Sisiem cain
%] wvsisect || ki [1moser |ms oecel [1000 —
System Banawistn Kt [00_]vienums? || move [i00
spees unsisec || [30 [fnene i [rmew g
intLim | 1000 | volts [pisable integrator during motion
n -
Sample Display
5.0 1.024 768 secs
e [roes & me e L 3]
system gain based on measured with calculated using updated

Calculate servo gains | | Update controller |
| SHUTDOWN |

|

Shows stable response

250

View Logged Data [Ix
Dere T
e
—
F—
Freeze scale ﬂ ﬂ
0 nvf\ AfA
e — VYTV
p—
—
e
Ao ST BT
= S ST [S B EeaE — = S D Step 4 Response
Kp 21.0306 | mvient Accel [1000 unitsisec?
Servo axis | 1 [a] Sustem Galn
M| To0— Jrevsisecte || i [sm_Jms vecel (1000 —
T G o —
speed uniisisec || [30 [Bfnere kit [so0 % Frofile [Trapezoiast
inttim [1000] volts e e ——
T —
A L A S
Bt ¥ e i
s S Uraskoniraer e
ey e Bitbetats SN UpEEE
o e Emerh e e
‘ ﬂs volts P ‘ | SHUTDOWN |

Shows unstable response
(due to Kito low)

View Logged Data ! [x
Left cursor Axis 1 Position error (units) ¥ Right cursor
403 2000 mS 768.000 ms

zoom
Save graph
Freeze scale M e f,m

Graph sewp \/ Sa T

-.093

0.0ms 768.000 ms 768.0 ms

[Step 1: Measure [~ Step 2: Calculation [~ Step 3: Update — Step 4: Response

75.0 mvlent Accel | 100.0 units/sec?

«
E— ﬂ System Gain D
v evsisect || ki [1o0m7 |ms oecel 1000 —

Speed |10.0 units/sec

Distance Limit - units
sample [a] Display [a]

5.0 1024 (4l ms 768 secs

X time fime [v]

i
Calculate servo gains | | Update controller | | Execute move |

Measure
system gain
1! Motor may turn 1!

based on measured with calculated
system gain servo gains

controller gains.

SHUTDOWN |

& s Apply voltage
[v]

Shows unstable response
(due to Kp and/or Kd too high)
Note "fuzz" from motor "buzzing"

Kp:

Proportional gain. This gain is multiplied by the posi-
tion error and thus contributes proportionally to the
output torque. Generally, the higher the Kp, the lower
the error at any time during the move. However, if Kp
istoo high, the system can overshoot severely or “buzz”
loudly. This type of buzzing instability may be seen as
“grass’ on the error response curve in the move re-
sponse screen. In this case, Kp should be lowered. Kd
may also be lowered, but to alesser extent.

Generally the range for Kp is 10 to 150. Kp less than 10
will usually produce a soft or sluggish system. Kp over
175 produces a stiff system, but one that may be ap-
proaching instability. Note these are general ranges, not
absolute requirements.

Servo Drive

Ki:

Integral gain. The reciprocal (1/Ki) of this term is
multiplied by the sum of the position error over time.
The effect of Ki is thus time related, and affects the
steady state error. The higher Ki, the longer it will take
for the controller to “integrate out” any steady state er-
ror. The effect of Ki is seen mostly at constant speed
(including standstill). Ki is NOT required for stability,
and generally has a de-stabilizing effect on the system,
especidly if it istoo low. If Ki is TOO LOW the sys-
tem may oscillate slowly and wildly back and forth like
a washing machine. Ki is required, though, if the sys-
tem must achieve a very low steady state error (within a
few counts).

The genera range for Ki is 10 to 70. Ki less than 10
may lead to wild, low frequency oscillations. If steady
state error is not a consideration, Ki may be set to zero.
Ki is often disabled during motion to reduce overshoot
at the end of the move.

Kd:

Derivative gain. Thisterm is multiplied by the encoder
velocity at any point in time. Generally, raising Kd will
reduce overshoot in the move response, however, Kd is
the term most susceptible to “digital instability”. Thisis
where the quantification effects of the digital encoder
feedback in conjunction with too high a Kd cause the
system to “buzz”.

The general range for Kd is 5 to 20. Kd less than 5 usu-
ally leads to an unstable system, Kd >20 usually leads
to “buzzing”.

K Vff:
Feed forward velocity gain. Thisterm is multiplied by
the commanded velocity to contribute to the output
torque command. It has no effect on general stability,
and may be set to as high as 100% to reduce position
error during motion. Too high a Kvff causes undue
motor heating.

Generally, Kvff should be set between 50 and 100.

K aff:
Some controllers have a Kaff term. This term is multi-
plied by the commanded acceleration to contribute to
the output torque command. This term only takes effect
to reduce the error during accel eration and deceleration.
Generally Kaff is less than 4. Most applications will
run fine with Kaff set at zero.

9.1.1.6.1 - Adjustment based on auto
tune calculation

It is usually desirable to use the auto tuning gains as a
starting point for further adjustment. If the system is un-
stable at given bandwidth, the bandwidth may be lowered,
and the auto tuning run again. If the move response at this
lower bandwidth is unacceptable, the following procedure
may be attempted.

Set bandwidth to 25 Hz and calculate gains. Then:
Servo Drive

1) Update gains and energize system .

2) If the system “buzzes’, cut Kp in half, and lower Kd
by 25%.

3) If the system no longer buzzes, check your move
response.

4) If the move response over shoots too much, or the
system buzzes sometimes, then lower Kp until the
buzz goes away and the overshoot is acceptable.

5) Check your move response, and set Kvff to between
50-100%. This should reduce the error during the
move, and may also improve the overshoot.

6) If theresponseiswell behaved, but sluggish, raise Kp
in increments of 2 until acceptable response is
achieved. If ever the system “buzzes’ Kp must be
lowered again.

7) Verify proper response.

8) The system should now be stable and well behaved.

9.1.1.6.2 - Full Manual Adjustment

Although it is much more involved, the servo can be
tuned “from scratch”. The trick here is to be very patient
and methodical. Make sure to record each change and its
resultant effect on the response. In step 1 the measure
system gain button is used to determine proper encoder
direction. Step 2 is not used at all. Step 3 is used to enter
and update the servo gains. Step 4 is used to enter the
move profile parameters and execute a move response.
Make sure to Update Gains after each adjustment so they
take effect. You can use the example response screens at
the end of this procedure as a guide. CAUTION! M otor
instability can cause severe vibration or sudden
movements. Insure that appropriate safety measures
such as mechanical limits are employed to prevent
danger ous movements of the motor and load.

1) Click measure system gain. Caution! the motor
will move suddenly during this process. This will
verify that the encoder direction is correct for the
servo to run properly.

2) If the encoder direction is found to be reversed, then
quit the auto tune screen immediately and enter the
Configuration. Select the encoder folder and change
the encoder direction to the opposite of the present
setting. Save the configuration information, compile
and download the modified project.

3) Re-enter the servo tuning screen and set Ki, Kvff, and
Kaff to zero.

4) Together, set Kp to alow number, say 5, and Kdtoa
mid-range number, say 10.

5) Update the gains and see if the motor is stable by
moving the load dightly by hand (if this is safe). Be
ready to shutdown if the motor oscillates.

6) If the motor is stable and does not vibrate, raise Kp
by 2.

7) If not, lower Kp by 1. Repeat until the motor is sta-
ble.

8) Once Kp is as high as it will go and till be stable,
reduce Kp by 50% to provide some stability margin.

9) Now try your move response.

10) If the move is stable but overshoots severely, lower
Kp dlightly. Slight overshoot is 0.k. at this point.

251

11) Continue lowering Kp until the overshoot is close to SEE— = O]
Lett cursor Right cursor

acceptable. ALY CEEC
12) Now we can try to reduce the error during the mo-

tion. —
13) Set Kvff to 50 and check the response. o0 T
14) If the error is not acceptable increase Kvff by 10 and

check the response, repeat until the response is ac- -

ceptable.
15) Now let’stry to use Ki to reduce the error at rest. [P T s T T e e T

16) Set Ki to a high number, say 75 and check the move sous[1 [o [pmmesn e [k Gmmme || ower [mor] wneses

Speed | 10.0 units/sec

response. E] s
17) If the response smooth out takes a long time to settle ENCEE o Lo . [ropemeca 3]

at the end, then decrease Ki by 10. If the motor goes e e]

unstable, raise Ki back up again.) —
18) Verify the proper response to your profiles. | Sivngans | | contole gans |
19) If the response still exhibits oscillation or overshoot, [B | snoroown |

you may need to dampen the system response by

raising Kd and repeating the process from step num- Stiff response

ber 5. See the effect of lower Kp and higher Kd in the (with high Kp and low Kd)

response graphs below. ‘
20) If the motor will not respond as required, check the — EwEY

torque command response in the pull down window i issioooms

to verify that the controller is not saturating at 10

volts during accel/decel. Thiswould indicate too high

an acceleration for this motor and load. Lower the

accel or decrease the load inertia.

21) THAT'SIT! au

save graph

Measure

Calculate servo gains
system gain

based on measured
system gain

-.0445
0.0ms 1536.00 ms 1536 ms
i i K| 22.3306 | mvient Accel 100.0 units/sec?
The following screens show examples of tuning re- »

T [v] ,e‘,s/ses/v Ki 200.0 ms Decel [100.0 units/sec?
sponses. Each has a description of what caused the re- |
sponse shown 20 system ket [0]vicnumst || Move [100

. A
Speed - units/sec 30 hertz Kvit 80.0 % Profile | Trapezoidal w|
IntLim | 100.0 volts [] pisable integrator during motion
Sample Display
system gain based on measured with calculated using updated

vnhs Apply voltage H SHUTDOWN |

Response with high Ki and
integration enabled during motion
Note very long settling time

View Logged Data !El X View Logged Data !El X
Lett cursor U ———— Right cursor Left cursor “Axis 1 Position error (units) Right cursor
0.000 ms 1536.000 ms. 0.000 ms 1536.000 ms.
2.552 .014
200m 200m
save graph save graph
Frecze scale Frecze scale
00 00 Mhags
vy
Graph setup Graph setup
Print Print
Quit Quit
-2.552 -.014
0.0ms 1536.00 ms 1536 ms 0.0ms 1536.00 ms 1536 ms
[Step 1: Measure [~ Step 2: Calculation [Step 3: Update — Step 4: Response —————————— [Step 1: Measure [~ Step 2: Calculation [Step 3: Update [— Step 4: Response
3 1 mvicnt Accel [100.0 units/sec? Kp 22.0105 | mvient Accel | 100.0 units/sec?
T&]|| system Gain P [a]| | system Gain
Servo axis | 1) Servo axis | 1 , .
[v] m revsisec?iv Ki 18.0 ms Decel | 100.0 units/sec [¥] m revsisecitv Ki 45 ms Decel [100.0 units/sec
Output - volts ki [2000 |ms speed [100 unitsisec Output - volts ka [00238 |ms speed [100 unitsisec
[a] A
SeelemnfiHECs ﬂ hertz wit Tooe o profile [Traneroida: = Speed - units/sec 30 H hertz o Profile | Trapezoidal oo
[0]
IntLim | 100.0 volts [pisable integrator during motion IntLim | 100.0 volts [] pisable integrator during motion
Distance Limit - units = o Distance Limit - units = =
Sample Display - sample bisplay
1024 [&] ms 1536 secs 50 1024 [&] s 1536 secs
o] e T (250 9] e 1922 [3] e (252 [9]
Measure Calculate servo gains Update controller Execute move Measure Calculate servo gains Update controller Execute move
system gain ased on measured with calculated using updated system gain based on measured with calculated using updated
11 Motor may turn 11 system gain servo gains controller gains 1t Motor may turn 11 system gain servo gains controller gains
‘ ﬂs attn P — ‘ | SHUTDOWN | ‘ ERSES Apply voltage ‘ | SHUTDOWN |

Sluggish response Response with low Ki and

(due to low Kp and high Kd) integration enabled during motion
Note excessive ringing

252 Servo Drive

(¢

e (O Vi e s

0485 131
Zzoom Zoom
Save graph save graph
Freeze scale Freeze scale
Q@ Afadnhg
DALAANAARE ALY 0.0
Graph setup Graph setup
Print Print
Quit Quit
-0485 - = -131 - -
00ms 1536.00 ms 1536 ms 00ms 1536.00ms 1536 ms
[Step 1: Measure — | [~ Step 2: Calculation [~ Step 3: Update ——— 1 Step 4: Response [Step 1: Measure — [Step 2: Calculation — [~ Step 3: Update ————— [~ Step 4: Response
2
Systom Gain Kp 220105 | muient Accel [100.0 units/sec Xe 50 -, Accel [1000 units/sec?
s 5) System Gain
[00 Jrevsisectn || ki 4.0 ms Decel [100.0 unitsisec revsisecv Ki 180 ms pecel [100.0 units/sec?
Kd 90234 |ms Speed [10.0 units/sec Kd 300 ms speed [10.0 units/sec
= 5‘9"‘""‘”""" Kaff 0.0 vienums? || Move | 10.0 s System Bandwidth Kaff 0.0 vicntims? | | Move [10.0 units
100
o] i (1200 Jvetis || [bissbeimgratr aurng moton
Distance Limit - units.
sample Display ecs
mele play sample [Tal Display cecs
time time
ate controller Execute mov:
Measure Calculate servo gains. Update controlle ecute move easore oI ST Uprco Garals S mee
system gain based on measured with calculated using updated g i
11 Motor may turn 11 system gain servo gains controller gains system gain based on measured with calculate using update
1t Motor may turn 1t system gain servo gains controller gains

B~ o][swrom |

Response with low Ki and
integrator disabled during motion
Note excessiveringingout at the end of the
move only. The integrator is engaged when
the profile stops

e MR O
View Logged Data |
Left cursor Axis 1 Position error (units) Right cursor 0.000ms () 1536.000 ms

oo B o]| swvroown |

Previous profile with Kd raised
to dampen out oscillation.

0.000 ms 1536.000 ms
054
Zoom
Zoom
Save graph
save graph grap
Freeze scale
Freeze scale 00 [T
0.0 o VLA RR R A
t
Graph setup raph setup
Print
Print rin
Quit Quit
-054 - - -082
0.0ms 1536.00 ms 1536 ms. 0.0/ms: 1536.00 ms 1536 ms.
r u r utati [~ Step 3: Update —————— —
[Step 1: Measure — | [~ Step 2: Calculation —] [~ Step 3: Update ———————— — Step 4: Response Step 1: Measure Step 2: Calculation p 3: Up Step 4: Response.
2
Kp 70.0 mvient Accel 100.0 unitsisec? O Ca Kp 22.5769 | mvient Accel 100.0 units/sec’
Servo axis System Gain Seiolacs] 2 Decel 100.0 unitsisec?
[00 Jrevsisecn || xi 18.0 ms Decel [100.0 unitsisec? [0 Jrevsiec’n || ki 18.0467 |ms

10.0 unitsisec

Output - volts Kd 9.0234 ms Speed 10.0 unitsisec Output - volts Kd 3.5 ms Speed
[0] System Bandwidin qat [o0 |vienums? || move [100 (o] sten sgnswisn cart [on Jvienums? || Move [100
[ropermon Tl

inttim [1000_Jvonts [oisable integrator during motion

IntLim [bisable integrator during motion

stance Limit - units

sees time

Distance Limit - units Displ.

Display
time

secs

Measure Calculate servo gains Update controller Execute move Measure Calculate servo gains Update controller Execute move
system gain based on measured with calculated using updated system gain based on measured with calculated using updated
1t Motor may turn 1 system gain servo gains controller gains 1! Motor may turn 1! system gain servo gains controller gains

f []| swroom | B o]| [swwom |

Response with high Kp Response with low Kd.
Note instability can be seen as vibration. Note oscillation at end of profile.
Kp should be lowered to eliminate instability. T T

Left cursor Axis 1 Position error (units) Right cursor
0.000 ms 1536.000 ms

082

Zoom
Leit cursor Axis 1 Position error (units) Right cursor
0.000 ms 1536.000 ms.
11325

p—
—— Aaaa

B U k¥ Print
Graph setup

Quit
(i [Step 1: Measure —] [~ Step 2: Calculation — [~ Step 3: Update ——————— — Step 4: Response ——————————]
Kp 22.5769 | mvicnt Accel 100.0 units/sec’
[Step 1: Measure — | [~ Step 2: Calculation — Step 3: Update ———————— — Step 4: Response . System Gain X
.
System Gain SE) 60 GRZAIG e 1000 BllEes Output - volts Kd 9.0234 ms Speed 10.0 units/sec
w

GriE3 kvit [0 % Profile | Trapezoidal

IntLim

[bisable integrator during motion

A e stance Limit - units
Speed - unitsisec "?‘ Kkvif [80.0 % Profile [Trapezoidal Sample pisplay
time time

niim [1000|voits [bisable intsgrator during motion

e Sample Display [a] Measure Calculate servo gains Update controller Execute move
time time [v] = system gain based on measured with calculated using updated
i Motor may turn 1 Sysiam o servo gains controller gains
Measure, Calculate servo gains Update controller Execute move
system gain based on measured with calculated using updated
DT e s e renEea [0 s SHUTDOWN

‘-vu\ls _ ‘ SHUTDOWN . . .
= | | Response if IntLim is too low and

Response with low Kp. Note oscillation. integrator enabled during motion.
If Kp can not be raised, Kd may be raised Note that the integrator cannot bring the error
to reduce the ringing as shown below. to zero during the flat top part of the profile

Servo Drive 253

ow Logged Data View Logged bata [0
Left cursor xis 1 Position error (anits) Right cursor Left cursor [= 1 command veloery wmisises) [Right cursor
Quit Quit
[Step 1: Measure ~— | [~ Step 2: Calculation [~ Step 3: Update ————]r— Step 4: Response —] [Step 1: Measure ~—][Step 2: Calculation [~ Step 3: Update | Step 4: Response
Kp Accel [100.0 units/sec? Kp. Accel | 100.0 units/sec?
Servo axi: i G Servo axis System Gain
rovsrsect || i S oo it S | srecl | A
Inttim [bisable integrator during motion ntLim [oisable integrator during motion
sample Display - Sample Display
Measure Calculate servo gains Update controller Execute move Measure. ‘Calculate servo gains. Update controller Execute move
system gain based on measured with calculated using updated system gain based on measured with calculated using updated
‘ D PEEyaD ‘ | SHUTDOWN | ‘ ﬂs e e — ‘ | SHUTDOWN |

Response if the programmed speed is too Command velocity profile
high for the motor. This also can be caused
by the drive running at too low a bus voltage.

View Logged Data

]

gged Data
Lett cursor e L Amaiog owp T Toraue oty | —_— o o L Enaner veroeny Gmies | Right cursor
0.000 ms 1280.000 ms. 512.000 ms 1586.000 ms
00051 10025 = -
Zoom Zo0m
save arapn Save graph
Freeze scale Freezs scale
00 00
Graphisetup Graph setup
print print
Quit Quit
0051 10025
ooms w000 me om0 ms Goms 102400 ms 2018 ms
[Step 1: Measure —— [~ Step 2: Calculation [~ Step 3: Update [~ Step 4: Response —————————] [Step 1: Measure — [Step 2: Caloulation [Step 3: Update ——————— — Step 4: Response ——————————
Kp 225769 | mvient Accel | 100.0 units/sec® Kp Accel [100.0 units/sec?
Servo axis P s System Gain
utput - volts ko [s029e Jms speed [100 unisisec ot vor - Speed [100 unliafses
Speed - units/sec ﬂ nertz wi | @ Profite [Trapezoidal Speed -unitsisec s G ot “ e curve < 16 3
intim [1000] vols [Disabislintegrator during mation nttim [isabislintearaior duringlmetion
Distance Limit - units = Distance Limit - units
Sample Display - Sample Display
n secs
ime s {ime o] time ime sees
Measure Calculate servo gains Update controller Execute move Teaae) e (s Update controller Execute move
system|gain based|on|messured with calculated using updated S G o] om s with calculated using updated
1 Motor may turn 1t system gain servo gains controller gains 11 Motormay turn Il e servalgains controllergains
‘ volts PP vl ‘ | SHUTDOWN | ‘ ﬂs velts GO TEEED ‘ | SHUTDOWN |

Response of the torque command for the Encoder velocity profile
previous profile with speed set too high.
Note that the torque command saturates at 10
volts. Any time the command goes + or -10V,
the motor is not producing the required
torque to bring the error down.

254 Servo Drive

9.1.2 Excessive Duty Cycle Shutdown

As the servo system responds to shaft displacement
due to move commands or reaction torque's, the
servo amplifier produces current to drive the motor.
A fesature has been added that prevents the unit from
generating too much current and/or motor heating
due to an excessive duty cycle situation. Here, duty
cycle refers to the percentage of time that the system
is required to generate a current (and therefore re-
sultant torque) above its continuous rating.

The peak current is assumed to be twice the continu-
ous current rating of the servo amplifier. Also, the
servo amplifier produces peak current when a 10-
volt signal is applied to the amplifier. For example a
4 ampere continuous current rating (5-volt amplifier
signal) would produce a peak available current of 8
amperes (10-volt amplifier signal). The continuous
current can be maintained indefinitely. However,
currents above the continuous current rating (up to
the peak current) can only be generated for alimited
length of time before damage to the servo amplifier
and/or motor will result. If the amplifier and motor
are alowed to cool (i.e. the motor rests for a short
period) as aresult of the current dropping below the
continuous current rating, then repetitive occur-
rences of currents above the continuous current rat-
ing may be acceptable.

If an excessive duty cycle situation occurs, the user
task will error trap and al motors in the task will be
stopped. The servo axis with the excessive duty cy-
cle will be disabled resulting in the motor shaft
spinning freely unless it is held by an external
brake. Error code 26, | XT Servo Error will be gen-
erated for this axis. The axis that created the error
can be interrogated using the ERRAXIS command.
The error that created the error trap can be interro-
gated using the ERR command. This error can be
cleared by commanding an ERR=0,0 statement in
the error handler.

The excessive duty cycle is defined as atime that the
amplifier is saturated (peak current). The default
time is 3 seconds and can be changed using basic
command IXT in a user task. The excessive duty
cycle check can be disabled if the time value for the
IXT command is zero. A Peak Current vs. Time-
out chart is depicted below. This chart can be used
to calculate the excessive duty cycle time for cur-
rents above the continuous current rating of the am-
plifier.

Servo Drive

Example:
Amplifier continuous rating is 4 amperes.
Amplifier peak current is 8 amperes.
IXT timeisset to 3 seconds (default)

Continuous Current | Current | Timeout
(Amperes) (%) (seconds)
4.2 525 60
4.4 55 30
48 60 15
5.2 65 10

5.6 70 75
6.0 75 6
6.4 80 5
6.8 85 4,286
7.2 90 3.75
7.6 95 3.333
8.0 100 3

IXT trip point = (rated peak current * .5) * IXT time
IXT trip point = (8 * .5) * 3 =12 amp seconds

Timeout (secs)=IXT trip point/(current — cont. rated)
Timeout (secs)= 12/(6-4) = 6 seconds for 6 amperes

PEAK CURRENT vs TIMEOUT

20.0 60

15.0 45

10.0 30

Timeout Factor
Default Timeout (seconds)

5.0 15

\

1.0 3

50 60 70 80 90 100

Peak Current (%)

255

9.2 —Servo Drive Command Listing

FOLERR
ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

256

M otion Parameter

Sets or returns the maximum position error allowed during motion,
herein referred to as "following error.”

FOLERR(axis)=expression

FOLERR=expressionl, number2, .. ., number8
FOLERR(axis, ... , axis)=expression, ... , expression
FOLERR (axis) - Usedin an expression

Note: ENCFOL can be substituted for FOLERR.
The axis specifies the number of the axis (1-8).

The expression specifies the maximum position error allowed during
motion in units.

Position error = absolute position - encoder position.

FOLERR(2)=.4
Sets the following error of axis 2 to .4 units.

FOLERR=4,, .3
Setsthe following error of axis 1to .4 units and axis 3 is set to .3 units.

FOLERR(1,3)=.4,.3
Sets the following error of axis 1 to .4 units and axis 3 is set to .3 units.

Servo Drive

INTLIM

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Servo Drive

Servo Parameter

Setsthe Integral limit for the servo output. Thisisthe limit of the contri-
bution to the servo output from the integral of the position error.

INTLIM (axis)=expression
INTLIM=expressionl, ..., expression8

INTLIM (axis,...,axis)=expression, ... ,.expression
INTLIM (axis) - used in an expression

The axis specifies the number of the axis (1-8).

The setting limits the contribution of the integral term to the servo loop's
output. This limit is imposed on the interna calculation within the con-
troller, and is used to prevent excessive buildup of the integrator output
which can occur if a constant error is allowed to exist for extended peri-
ods of time. Too low an integral limit may reduce the effectiveness of the
integrator by limiting its contribution to the output torque command.
This would cause a constant steady state error. Too high an integral limit
may allow the integrator to build up alarge error stored in the controller
memory. This error would then be “unwound” a the end of a move
causing excessive overshoot and along settling time. The limit can be set
between 0 and 319 volts. A setting of 100 is a good midrange starting
point, and this parameter rarely needs adjustment.

If the input valueis out of range, the previous setting isretained. Read-
ing INTLIM returns the present setting in volts.

INTLIM(2) =5 ‘ setstheintegral limit for axis 2 to 5 volts.
X =INTLIM(2) ‘ sets x to theintegral limit of axis 2.

257

| XT

ACTION:
PROGRAM SYNTAX:

REMARKS:

EXAMPLES

258

Servo Parameter

Sets or returns the Excessive Duty Cycle Shutdown time in seconds.

IXT(axis) = expression

IXT(axis, ... , axis) =expression, ... , expression
IXT = expression, ... , expression

IXT(axis) - used inan expression
The axis specifies the number of the axis (1-8).

The expression specifies the time the servo peak current can be main-
tained. The time value isin seconds and the default value for each axisis
3 seconds. Setting the expression equal to 0 will disable the Excessive
Duty Cycle Shutdown check.

Caution: Disabling the Excess Duty Cycle or setting the time too
large may result in damage to the servo drive and/or motor if the
duty cycle of the servo amplifier is exceeded.

The IXT(axis)=expression program command should precede the
WNDGS(axis)=1 command.

The default value for IXT is set each time a project is loaded or executed.
Thus, adding an IXT basic command to atask is the only way to change
the default value.

If an Excessive Duty Cycle Shutdown occurs the user task will error trap
and all motors in the task will be stopped. The servo axis with the exces-
sive duty cycle will be disabled resulting in the motor shaft spinning
freely unlessit is held by and external brake. Error code 26, | XT Servo
Error will be generated for this axis.

IXT(1) =5

* sets the Peak Current time for axis 1 to 5 secs.
WNDGS(1)=1

‘ enable the servo drive on axis 1.

IXT(1,3) =5,6

* setsthe Peak Current time for axis 1 to 5 secs and axis 3 to 6 secs.
WNDGS(1,3)=1,1

‘ enable the servo drive on axis 1 and axis 3.

IXT =5, ,6

* setsthe Peak Current time for axis 1 to 5 secs and axis 3 to 6 secs.
WNDGS(1,3)=1,1

‘ enable the servo drive on axis 1 and axis 3.

time=I1XT(1)
* return the Peak Current time setting of axis 1

Servo Drive

KAFF Servo Parameter

ACTION: Sets or returns the acceleration feed forward gain for a servo axis.
PROGRAM SYNTAX: K AFF(axis)=expression

KAFF=expressionl,..., expression8
KAFF(axis,...,axis)=expression,...,expr ession
KAFF(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression is the acceleration feed forward gain of the servo axis.
The expression value must be positive.

The KAFF units arein volts'encoder count/msec?.

EXAMPLES: KAFF(2)=5

Sets the accel eration feed forward gain of axis 2 to .5 volts/encoder
count/msec’.

KAFF=.2,0
Sets the acceleration feed forward gain of axis 1 to .2 volts/encoder
count/msec’ and axis 3 is set to 0 volts/encoder count/msec®.

KAFF(1,3)=.2,0
Sets the accel eration feed forward gain of axis 1 to .2 volts/encoder
count/msec” and axis 3 is set to 0 volts/encoder count/msec’.

KD Servo Parameter
ACTION: Sets or returns the derivative gain for the servo axis.
PROGRAM SYNTAX: KD(axis)=expression

KD=expressionl, ..., expression8
KD(axis, ... ,axis)=expression, ... ,expression
KD(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression is the derivative gain value of the servo axis. The expres-
sion value must be positive.

The KD units are milliseconds.

KD must be non-zero for system stability. Setting KD affects the gains
for the velocity and feed forward terms. Reading KD returns the present
Setting.

EXAMPLES: KD(2)=4
Sets the derivative gain of axis 2 to 4 milliseconds.

KD=10,,8
Sets the derivative gain of axis 1 to 10 milliseconds and axis 3 is set to 8
milliseconds.

KD(1,3)=10,8
Sets the derivative gain of axis 1 to 10 milliseconds and axis 3 isset to 8
milliseconds.

Servo Drive 259

Kl

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES

260

Servo Parameter

Sets or returns the integral gain of aservo axis.

Kl(axis)=expression

Kl=expressionl, ... , expression8

Kl(axis, ... ,axis)=expression, ... ,expression
Kl(axis) - usedin an expression

The axis specifies the number of the axis (1-8).

The expression is the Integral gain value of the servo axis. The expres-
sion value must be positive.

The K| units are milliseconds.

K| determines how fast the integral term grows with a non-zero position
error. The growth rate isinversely related to the value of KI. For exam-
pletheintegral term grows 5 times faster with K1=10 than with KI=50.
A special caseisKi=0, which disablesthe integral action and set the in-
tegral term to zero. When the drive is disabled, theintegral termis set to
zero. Setting K1 only affects the gain for the integral term. Reading K
returns the present setting.

Kl1(2)=4
Setsthe Integral gain of axis 2 to 4 milliseconds.

KI=1,4

Sets the Integral gain of axis 1 to 1 milliseconds and axis3is set to 4
milliseconds.

K1(1,3)=1,4
Sets the derivative gain of axis 1to 1 milliseconds and axis 3isset to 4
milliseconds.

Servo Drive

KP

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Servo Drive

Servo Parameter

Sets or returns the proportiona gain of the servo axis.

K P(axis)=expression

KP=expressionl, ..., expression8

KP(axis, ... ,axis)=expression, ... ,eXpression
KP(axis) - used in an expression

The axis specifies the number of the axis (1-8).

The expression is the proportional gain value of the servo axis. The ex-
pression value must be positive.

The KP units are millivolts/encoder count.

KP determines the size of the proportional term for a given position er-
ror. Setting KP affect the gainsfor the proportional, integral, velocity
and feed forward terms. Reading KP returns the present setting.

KP(2)=20
Sets the Proportional gain of axis 2 to 20 millivolts/encoder count.

KP=18,,20
Sets the Proportional gain of axis 1 to 18 millivolts/encoder count and
axis 3 is set to 20 millivolts/encoder count.

KP(1,3)=18,20
Sets the Proportional gain of axis 1 to 18 millivolts'encoder count and
axis 3 is set to 20 millivolts/encoder count.

261

KVFF

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

OUTLIMIT
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES

262

Servo Parameter

Sets or returns the vel ocity feed forward gain for the servo axis.

KV FF(axis)=expression

KVFF=expressionl, ..., expression8
KVFF(axis, ... ,axis)=expression, ... ,expression
KVFF(axis) - used in an expression

The axis specifies the number of the axis (1-8).

The expression is the velocity feed forward gain value of the servo axis.
The expression value must be positive.

The KVFF units are percent.

KV FF can be used to reduce the position error during motion. It does not
affect system stability. The minimum error occurs with KVFF near
100%. Setting KVFF only affects the gain for the velocity feed forward
term. Reading KV FF returns the present setting.

KVFF(2)=95
Setsthe Velocity feed forward gain of axis 2 to 95%.

KVFF=98,,95
Setsthe Velocity feed forward gain of axis1to 98% and axis 3 isset to
95%.

KVFF(1,3)=98,95
Setsthe Velocity feed forward gain of axis1to 98% and axis 3 isset to
95%.

Servo Parameter

Sets or returns the servo command voltage limit.

OUTLIMIT (axis)=expression
OUTLIMIT=expressiond, ..., expression8

OUTLIMIT (axis, ... , axis)=expression, ... , expression
OUTLIMIT(axis) - used in an expression

The axis specifies the number of the axis (1-8).
The expression isthe OUTLIMIT value set for the designated axis.

Limits the magnitude of the servo loop's output voltage. OUTLIMIT is
set to 10 volts at power up. OUTLIMIT can be set between 0 and 10
voltsinclusive. Setting it to a value outside this range will cause it to be
Set to the nearest valid value.

OUTLIMIT(2)=5
Limitsthe magnitude of the servo output voltage for axis2 to £ 5 volts.

OUTLIMIT=5,,10
Limitsthe magnitude of the servo output for axis1to £ 5 voltsand axis3to
+ 10 volts.

OUTLIMIT(1,3)=5,10
Limitsthe magnitude of the servo output for axis1to x5 volts (50% torque
output) and axis3to £ 10 volts (100% torque output).

Servo Drive

STOPERR

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

Servo Drive

M otion Parameter

Sets or returns the maximum position error allowed when motion is
stopped, referred to herein as " position error band.”

STOPERR(axis) =expression
STOPERR=expressionl, ... , expression8
STOPERR(axis, ... , axis)=expression, ... , expression
STOPERR(axis) - Used in an expression

The axis specifies the number of the axis (1-8).
The expression specifies the maximum position error allowed.

The STOPERR specifies the maximum position error allowed when mo-
tion is stopped for a servo motor without causing an error.

STOPERR(3)=.1
Sets the maximum position error for axis 3to .1 units

STOPERR=.1,,,.15
Sets the maximum position error for axis 1 to .1 units and axis 4 to .15
units.

STOPERR(1,4)=.1,.15
Sets the maximum position error for axis 1to .1 units and axis 4 to .15
units.

263

WNDGS

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES

264

M otion Parameter

Enables or disable a servo drive.

WNDGS(axis)=expression

WNDGS=expressionl, ... ,expression8
WNDGS(axis, ... , axis)=expression, ... , expression
WNDGS(axis) - used in an expression

The axis specifies the number of the axis (1-8).

The expression enables or disables the specified servo drive, a zero dis-
ables the servo drive and a non-zero enables the servo drive.

The WNDGS command is set to zero on power up. This ensures a safe
condition for aservo drive.

Although the WNDGS command can be executed at any time, it be-
comes effective when no motion is taking place on an axis.

When a servo drive axis is disabled, the servo loop’s integral term is ze-
roed and the servo loop output voltage is O volts. When the servo drive
axis is enabled, the commanded position (ABSPOS) is set equal to the
encoder position (ENCPOS). Thisforces the position error to zero so that
the servo loop output does not cause unexpected motion.

WNDGS(2)=1
Disables the servo drive on axis 2.

WNDGS=0,,1
Disables the servo drive on axis 1 and enables the servo drive on axis 3.

WNDGS(1,3)=0,1
Disables the servo drive on axis 1 and enables the servo drive on axis 3.

Servo Drive

Section 10
Stepper Drive

10.1 — Stepper Features

The MX2000 provides some additional stepper drive
controls features.

* Allows a starting speed for the stepper to be
programmed.

¢ Reducing motor heating at standstill.
* Ability to increase motor current during motion.

* Configurable as an open loop or closed loop
stepper drive.

® Position Verification and Correction capability
on aclosed loop stepper.

The starting speed of the stepper can be controlled
using the LOWSPD command. A good starting
point is 1.5 revolution/second. This is important if
low speed mechanical resonance is encountered
during acceleration or deceleration of the load.

A stepping motor can get hot when no motion is
taking place, the selected drive current is flowing in
the windings at standstill causing heating. This
heating can be reduced by enabling the REDUCE
current feature of the stepper, this reduces the drive
current to 50% when the motor is standing still. An-
other method of reducing heating of the motor is
turning off the current to the windings at standstill.
Some caution should be taken under certain condi-
tions when doing this since the motor has no holding
torque. The WNDGS command is used to control
this.

A stepping motor may require some additional
torque during acceleration or deceleration of the
load. A 50% increase in current can be realized dur-
ing motion with the use of the BOOST command.
This should be used with caution since it produces
additional motor heating during motion. A consid-
eration to duty cycle should be taken into account
when using this feature.

A stepper motor without an encoder must be config-
ured as an open loop stepper in the System Configu-
ration. The default configuration settings for the
open loop stepper can be selected in the Open L oop
Stepper folder in the user program configuration.
Some of these setting can be modified during pro-
gram execution. The Low speed setting can be modi-
fied by the LOWSPD command. Motor standstill
current can be modified by the REDUCE or
WNDGS command. The Motor Boost current setting
can be altered by the BOOST command. The Steps
per motor revolution and Motor current delay are
only selectable in the Open Loop Stepper folder.

266

A stepper motor with an encoder can be used for
position verification and or position correction. This
feature can be selected in the user program configu-
ration System folder by assigning this motor axis as
aclosed loop stepper. The default configuration for a
closed loop stepper can be selected in the Closed
Loop Stepper folder in the user program configura-
tion. Some of these setting can be modified during
program execution. The Low speed setting can be
modified by the LOWSPD command. Motor stand-
still current can be modified by the REDUCE or
WNDGS command. The Motor Boost current setting
can be altered by the BOOST command. Error Ac-
tion can be changed using the ENCMODE com-
mand. Following error can be modified using the
FOLERR command and the Position Error can be
modified using the STOPERR command. The Steps
per motor revolution, Motor current delay, Correc-
tion attempts and Time between attempts are only
selectable in the Closed Loop Stepper folder. The
Encoder folder is used to configure the stepping
motor encoder, the Encoder direction and Line count
items are used to configure the stepper motor en-
coder.

10.2 - Open Loop Stepper Folder

This folder sets the steps per motor revolution,
Low speed, Motor standstill current, Motor boost
current and Motor current delay for an open loop

stepper drive.
Open Loop

Stepper

Steps per Low speed Motor Motor Boost Motor current
motor (units/sec) standstill current delay (sec)
revolution current

Axis 1 | 2000 1.5 normal 100% | 4| normal 100% | 4| 0.05

Axis 2 | 2000 15 | normal 1100% normal 100% 0.05

Steps per motor revolution specifies the stepping
motor drive setting for each axis.

Low speed specifies the starting speed of each axis
in units/second.

Motor standstill current specifies the state of the
motor current at standstill for each axis. The choices
are normal (100%), reduced (50%) and off (0%).

Motor boost current enables or disables the boost
current feature of the stepper drive during motion.
The choices are normal (100%) and boost (150%).

Motor current delay specifies the time delay be-
tween current modes in seconds. This alows time
for the drive to respond to the changein current level
as a result of the BOOST or REDUCE command
(see Program Command section).

Sepper Drive

10.3 —Closed L oop Stepper Folder

This folder sets the Steps per motor revolution,
Starting speed, Motor standstill current, Motor
boost current, Motor current delay, Error Ac-
tion, Following error, Position error, Correction
attempts and Time between attempts for a closed

loop stepper drive.
P Stepp Closed Loop

Stepper

Steps per Low speed motor
motor revolution (units/sec) standstill
current

Motor Boost Motor current
current delay (sec)

Axis 1 | 2000 1.5 | normal 1100% |4 | normal 1100% |4| 0.05

Axis 2 | 2000 15 normal 100% normal 100% 0.05

Stepper

Closed Loop

Error action Following error | Position error | Correction Time between
(units) (units) attempts attempts (sec)

Axis 1 disabled |i 0.05 0.005 10 0.1

Axis 2 disabled 0.05 0.005 10 0.1

Steps per motor revolution See open loop Stepper
Folder for description.

L ow speed See open Low Speed Folder for descrip-
tion.

Motor standstill current See Open Loop Stepper
Folder for description.

Motor boost current See Open Loop Stepper
Folder for description.

Motor current delay See Open Loop Stepper
Folder for description.

Error action selects what action, if any, is taken by
the controller when the commanded motor position
does not match the encoder position within the range
set by the FOLERR command (see programming
commands). Thisis also referred to as a stall condi-
tion. Once the FOLERR range is exceeded, one of
four things can happen according to the Error Ac-
tion selected.

If Error action is disabled, the controller takes no
action.

If Error action isstop on error, the motor will stop
and a controller error will result (see ERR com-
mand). The fault light will illuminate.

Sepper Drive

If Error action is correct on error, separate cor-
rection attempts (moves) will be commanded to try
and re-align the motor. The user may specify how
many cor rection attempts will occur, and the Time
between attempts. If after the specified maximum
number of correction attempts the motor till is not
aligned, motion stops and a controller error will re-
sult.

If Error Action is Restart on error, the entire
move is restarted. The motor returns to the starting
position of the move in progress, and attempts to
repeat the move. If during thisrepeat cycle the motor
stalls, the motor will again return to the start position
and retry the move. Each stall and restart counts as a
correction attempt. This continues until the motor
reaches the desired position, or the maximum num-
ber of correction attemptsis reached. In the case of
the latter a controller error results and the fault light
illuminates.

Correction attempts specifies the maximum num-
ber of consecutive attempts allowed when error ac-
tion is set to correct on error or restart on error
mode and the motor stalls.

Time between attempts. Specifies the time be-
tween correction attempts when error action is set
to correct on error or restart on error mode and
the motor stalls.

10.4 - Encoder Folder

This folder sets the Encoder direction and Encoder
resolution for a closed loop stepper. ’7
Encoder

Encoder type Encoder Line count pulse count
direction (lines / rev) (pulses/rev)

Axis 1 | quadrature |_L normal direction |&| 500 2000

AXxis 2 | quadrature normal direction 500 2000

Encoder direction determines how the encoder ro-
tation direction isinterpreted. The choices are nor-
mal direction or reverse direction.

Encoder line count defines the encoder resolution
in lines. An Encoder with 1000 lines will provide
4000 counts/revolution, or quadrature counts. Set
this value to the encoder line count of the motor.

267

10.5 - Special Programming Notes for Closed-L oop Stepper Operation

The parameters for closed loop are set in the project
configuration of the user’s program. These parame-
tersare:

Encoder resolution

Number of lines the encoder has. The line count
times four is the equivalent of encoder pulses/ revo-
[ution. The direction for this parameter controls the
guadrature detection direction value.

Encoder position error (units)
Allowable error at standstill before a correctionis
required.

Encoder following error (units)

Allowable error during motion before an error is
reported. Thisvalue should be a minimum of 1/20
of amotor revolution.

Number of correction attempts allowed
How many consecutive corrections cycles are al-
lowed.

Time between correction attempts (seconds)
Time between correction attempts. Allows motor to
settle out before correcting.

Error action

This setting selects what action, if any, is taken by
the controller when the commanded motor position
does not match the encoder position within the range
set by the FOLERR command (see programming
commands). Thisis also referred to as a stall condi-
tion. Once the FOLERR range is exceeded, one of
four things can happen according to the Error Ac-
tion selected. This can be changed during program
execution using the ENCM ODE command.

If Error action is disabled (ENCMODE=0), the
controller takes no action.

If Error action is stop on error (ENCMODE=1),
the motor will stop and a controller error will result
(see ERR command). The fault light will illuminate.

268

If Error action is correct on error
(ENCMODE=2), separate correction attempts
(moves) will be commanded to try and re-align the
motor. The user may specify how many correction
attempts will occur, and the Time between at-
tempts. If after the specified maximum number of
correction attempts the motor ill is not aligned,
motion stops and a controller error will result.

If Error Action is Restart on error (ENCMODE
=3), the entire move is restarted. The motor returns
to the starting position of the move in progress, and
attempts to repeat the move. If during this repeat
cycle the motor stalls, the motor will again return to
the start position and retry the move. Each stall and
restart counts as a correction attempt. This continues
until the motor reaches the desired position, or the
maximum number of correction attempts is
reached. In the case of the latter a controller error
results and the fault light illuminates.

Testing closed loop operation

1) Send the following Host commands:
ABSPOS(axis)=0
ENCMODE(axis)=0

MOVE(axis)= 1 ‘ 1 rev of motor

2) After the motion is completed send:
ABSPOS(axis) : ENCPOS(axis)

3) If the absolute position and encoder position val-
ues and signs are alike the closed loop stepper is set

up properly.

4) If the values are the same and the directions are
reversed toggle the Encoder direction setting in the
program Configuration. Recompile the program and
download project and repeat steps 1-3.

5) If the values are different the encoder line count
is not correct or the encoder is misswired.

Sepper Drive

10.6 - Stepper Command Listing

BOOST

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

Sepper Drive

Stepper Parameter

Enables or disables the Boost Current feature or returns the boost enable
status for the specified stepper axis. When enabled the stepper drive
BOOST output turns on during motion. This causes the stepper drive to
boost the motor current by 50% during motion.

BOOST (axis)=expression

BOOST=expressionl, ... , expression8

BOOST (axis, ... , axis)=expression, ... , eXxpression
BOOST (axis) - used in an expression

The axis specifies the number of the axis (1-8).

If the expression is true (non-zero) then the BOOST feature is enabled
for the specified axis. If the expression is false (zero) then the BOOST
feature is disabled for the specified axis.

BOOST(7)=1
Enables the Boost feature for axis 7.

BOOST=1,,0
Enables the BOOST feature for axis 1 and disablesthe BOOST feature
for axis 3.

BOOST(1,3)=1,0
Enables the BOOST feature for axis 1 and disables the BOOST feature
for axis 3.

269

ENCMODE

ACTION:

PROGRAM SYNTAX:

REMARK:

EXAMPLE:

270

Closed Loop Stepper Parameter

Sets or returns the operating mode of a closed loop stepper axis.

ENCMODE(axis)=expression
ENCMODE=expressionl, ... , expression8
ENCMODE(axis, ... ,axis)=expression, expression
ENCMODE(axis) - used in an expression

The axis specifies the number of the axis (1-8).

The operating mode are:
0 closed loop disabled - operates open loop.
1 halt execution on excessive following error.
2 correct position on excessive following error.
3 restart move on excessive following error.

Note: Thiscommand isonly used for a Closed L oop Stepper.

ENCMODE(1)=0
Sets axis 1 to open loop operation.

ENCMODE=1,,2
Sets axis 1 to halt execution on excessive error and axis 3 to correct po-
sition on excessive following error.

ENCMODE(1,3)=1,2
Sets axis 1 to halt execution on excessive error and axis 3 to correct po-
sition on excessive following error.

Sepper Drive

FOLERR

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES:

LOWSPD

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Sepper Drive

Closed Loop Stepper Parameter

Sets or returns the maximum position error alowed during motion,
herein referred to as "following error.”

FOLERR(axis)=expression

FOLERR=expressionl, number2, . . ., number8
FOLERR(axis, ... , axis)=expression, ... , expression
FOLERR (axis) - Usedinan expression

Note: ENCFOL can be substituted for FOLERR.
The axis specifies the number of the axis (1-8).

The expression specifies the maximum position error allowed during
motion in units.

Position error = absolute position - encoder position.

FOLERR(2)=.4
Sets the following error of axis 2 to .4 units.

FOLERR=4,, .3
Setsthe following error of axis 1to .4 unitsand axis 3 is set to .3 units.

FOLERR(1,3)=.4,.3
Setsthe following error of axis 1to .4 unitsand axis 3 is set to .3 units.

Stepper Parameter

Sets or returns the Low Speed (starting speed) value of a stepping motor
axis.

LOWSPD (axis)=expression
LOWSPD=expressionl, ... ,expression 8
LOWSPD(axis, ... ,axis)=expression, ... ,expression
LOWSPD(axis) - used in an expression

The axis specifies the number of the axis (1-8).

The expression set the LOWSPD value of the specified axisin
units/second.

This command is only used by a stepper axisand is zeroed if the axisisa
Servo.

LOWSPD(2)=1.5 ‘ set axis 2to 1.5 units/second.

LOWSPD=1.3,, 1.5 ‘ setsaxis 1 to 1.3 units/second and axis 3 to
1.5 units/second.

LOWSPD(1,3)=1.3,1.5 * setsaxis1to 1.3 units/second and axis 3 to
1.5 unitg/second.

271

REDUCE

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

272

Stepper Parameter

Enables, disables the Reduce current or returns the enable status.

REDUCE(axis)=expression

REDUCE=expressionl, ... , expression8
REDUCE(axis, ... , axis)=expression, ... , eXxpression
REDUCE(axis) - used in an expression

The"axis" specifies the number of the axis (1-8).

When enabled, the stepper drive REDUCE output turns on when there is
no motion. This causes the drive to reduce the motor current to 50%.
Thisfeature requires a compatible stepper motor drive.

If the expression is true (non-zero) then the REDUCE feature is enabled
for the specified axis. If the expression is false (zero) then the REDUCE
feature is disabled for the specified axis.

REDUCE(7)=1
enables the REDUCE feature for axis 7

REDUCE=1,1,,0,0,0,1,0
enables the REDUCE feature for axis 1,2,7, and disables the feature for
axis4,5,6,8.

Sepper Drive

STOPERR

ACTION:

COMMAND SYNTAX:

REMARKS:

EXAMPLES

Sepper Drive

Closed Loop Stepper Parameter

Sets or returns the maximum position error allowed when motionis
stopped, referred to herein as " position error band.”

STOPERR(axis) =expression
STOPERR=expressionl, ... , expression8
STOPERR(axis, ... , axis)=expression, ... , expression
STOPERR(axis) - Used in an expression

Note: ENCBAND can be substituted for STOPERR.
The axis specifies the number of the axis (1-8).
The expression specifies the maximum position error allowed.

STOPERR specifies the position dead band allowed for a Closed Loop
Stepper Drive. If thisvalue is exceeded at standstill it creates a correction
motion cycle, and moves to the zero error position.

STOPERR specifies the maximum position error alowed when motion is
stopped for a Stepper Drive.

STOPERR(3)=.1
Sets the maximum position error for axis 3to .1 units

STOPERR=.1,,,.15
Sets the maximum position error for axis 1to .1 units and axis 4 to .15
units.

STOPERR(1,4)=.1,.15
Sets the maximum position error for axis 1 to .1 units and axis 4 to .15
units.

273

WNDGS

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES

274

Stepper Parameter

Enables or disables a stepper motor drive, winding current controlled.

WNDGS(axis)=expression

WNDGS=expressionl, ... ,expression8
WNDGS(axis, ... , axis)=expression, ... , expression
WNDGS(axis) - used in an expression

The axis specifies the number of the axis (1-8).

The expression specifies the state of the windings for the specified axis.

A zero indicated normal current or reduced current and a non-zero turns
the stepper motor winding current off.

The WNDGS command is set to zero on power up. This insures a safe
condition for a stepper drive on powered up.

Although the WNDGS command can be executed at any time, it be-
comes affective when no motion is taking place on an axis.

WNDGS(2)=1
Setsthe WNDGS state to 1 (Windings Off) on axis 2.

WNDGS=0,,1
Sets the WNDGS state on axis 1 to a0 (Windings On) and axis 3
WNDGS state is 1 (Winding Off).

WNDGS(1,3)=0,1
Setsthe WNDGS state on axis 1 to a 0 (Windings On) and axis 3
WNDGS state is 1(Windings Off).

Sepper Drive

Section 11
Data L ogging

11.1 - Data L ogging

The controller has the capability to perform data
logging of eight items when the selected trigger
occurs. Each logged item has 200 points. The Data
Logging is accessible from the Utility menu.

An MX2000 project in the PC needs to be open to
perform data logging. Data logging can be triggered
by either Host or program execution commanded
motion.

Terminal ...

Servo Tuning ...

Logging ... Parameters & Trigger Setup

Debug ...

11.1.1 - Parameter & Trigger Setup

The parameter & trigger setup is accessed by
clicking on the Utility menu, L ogging item and then
Parameter & Trigger Setup item. A maximum of
eight parameters, independent of the number of axes,
may be selected for data logging. To select or
desdlect a datalogging item click on the desired axis
of the parameter check box.

l A maximum of eight parameters may be selected

Parameters AXIS 1 [AXIS 2

Position error (units)

Absolute position (units)

Encoder position (units)

Integration error (volts)

Analog command (torque) (volts)

Analog input 1 (volts)

Analog input 2 (volts)

Encoder velocity (units/sec)

Event 1 state (state)

Event 2 state (state)

+Limit state (state)

-Limit state (state)

O|jg|jojo|jojo|joo|jojo|jo|jo|jo
O|jg|jojo|jojo|joo|jojo|jo|o|lo

Command Velocity (units/sec)

Trigger Axis Display Time Trigger Delay
Ok Cancel
1 A 2.048 o secs (0.0 A
E E msecs
v v v

The parameter selection list is: Position error,
Absolute position, Encoder position, Integration
error, Analog command, Accel feed forward, Analog
input 1, Analog input 2, Encoder velocity, Event 1
state, Event 2 state, +Limit state, —Limit state and
Command Velocity.

Trigger Axis selects the axis that will trigger the
logging. The trigger occurs when the selected axis
motion starts.

Display Time select the logging period for data
logging in seconds.

276

Trigger Delay selects the delay, in millisecs, after
the trigger occurs and data logging begins.

Cancel exits the logging Parameter & Trigger setup
without saving the values.

Ok sends the parameter listing, trigger axis, display
time, Trigger delay to the controller and arms the
motion trigger for data logging. The termina mode
window opens at this time allowing motion to be
commanded.

11.1.1.1 Parameter List Descriptions

Position error isthe position difference between the
commanded position and the encoder position. This
waveform isin units.

Absolute position is the commanded position of an
axis. Thiswaveformisin units.

Encoder position isthe encoder position of an axis.
Thisisthe actual position of a closed loop stepper or
servo axis. Thiswaveformisin units.

Integration error is the integration error
contribution to the analog output voltage for a servo
drive. Thiswaveformisin volts.

Analog command (torque) is the commanded
torque voltage for a servo drive axis or the
commanded analog output voltage of an axis. This
waveformisin volts.

Analog input 1 is the IN+ input voltage referenced
to AGND if single ended mode is selected or the
differencia input voltage of an axis. This waveform
isinvolts.

Analog input 2 is the IN- input voltage referenced
to AGND if single ended mode is selected. This
waveformisin volts.

Encoder velocity is the measured velocity of the
encoder input. Thiswaveform isin units/sec.

Event 1 state is the state of the event 1 input of the
axis.

Event 2 state is the state of the event 2 input of the
axis.

+Limit state is the state of the +limit input of the
axis.

-Limit state is the state of the -limit input of the
axis.

Data Logging for Mx2000 revision 4.0

Command Velocity is the commanded velocity of
the axis. Thiswaveform isin units/sec.

11.1.2 - Data Transfer

After the selected motion trigger has occurred the
individual logged parameter data transfer can be
enabled, disabled and scaled. To sdlect Data
Transfer click on the Utility menu, Logging item
and then Data Transfer item.

Data logging - Data transfer

Parameters Enable data transfer [Data scaling [Full scale Offset
Axis 1 Position error (units) Zero center (0.0 0.0
Axis 1 Absolute position (units) Zero center (0.0 0.0
Axis 1 Encoder position (units) Zero center |0.0 0.0

No selection O Zero center 0

No selection O Zero center 0

No selection O Zero center 0

No selection O Zero center o

No selection O Zero center 0

€1 [

Enable data transfer allows the individual logged
parameters transfer to be enabled or disabled.
Clicking on the check box will toggle the transfer
setting. Data can be selected or deselected for later
viewing.

Data scaling scales the individual logged parameter
for zero-centered, min-max or manual.

Full scale is only allowed if manua scaing is
selected. This sets the peak value for the logged
data.

Offset is only allowed if manual scaling is selected.
This sets the offsetvalue which represents the
vertical center of the displayed graph.

Cancel exits the data transfer without transferring
logged data.

Ok transfers the selected logged data from the
controller. The View Data window opens alowing
the transfered datato be viewed.

Data Logging for Mx2000 revision

11.1.3 - View Data

The individual logged parameter can be viewed by
clicking on the Utility menu, L ogging item and then
the View Data item.

View Logged Data

Left cursor - — Right cursor
‘AXIS 1 Position error (pulses) l l
512.000 ms

1536.000 ms

76.8359
Zoom

Save graph

0.0

Graph setup

Print

Quit

-76.8359

0.0 1024.000 2048.0ms

Zoom toggles displaying the graph between the two
cursors and the full screen on the view port.

Save Graph saves the currently displayed graph.

Graph setup alows for the selection of color and
style for each logged item.

Print prints the currently displayed graph.
Quit exitsthe View logged Data environment.

Display Drop list selects the logged item to be
displayed.

The cursors can be dragged to any horizontal
position on the waveform. The elapsed time
from the start of the waveform for the current
cursor position is displayed above the logged
waveform.

277

This page left intentionally blank

278 Data Logging for MX2000 version 4.0

Section 12
DEBUG
Environment

12.1 - Setting Project Debugging

To set the debug mode click on the Compile menu
and then on the Debug mode item. The project must
be compiled and downloaded before task debugging
can begin. To cancd the debugging mode selection
click on the Compile menu and then the Release
mode item. To complete this cancellation the proj-
ect must now be compiled and downloaded.

Compile project

v/ Release mode

Debug mode

Command Buttons

I
v v

12.2 - Task Debugging

A project that is loaded into the controller can be
debugged if the project has been compiled in Debug
mode and downloaded. The project to be debugged
must be open. To enter the debug environment click
on the Debug command button. This environment
consist of an Exit command button, Step command
button, Halt command button, Break command
button, List Breakpoints command button, Instant
Watch command button, Run command button,
Toggle breakpoints command button, Watch
command button, Update Watch command button,
program status indicator, Terminal window, Watch
window and Program window.

Instant watch

Exit Step Halt | Break [List Breakpoints

Program status V<— Status Indicator

Run Toggle breakpoints Watch Update watch STOPPED
V'S
Terminal Window —» -<4+—— Watch Window
v
4 | [»
V'S
Program Window —»
|
< | >

280

Debug Environment

12.2.1 - Debug program execution

A program can be executed in different ways from
the Debug Environment. Single line execution of the
current line can be initiated by clicking on the Step
command button. The >>>>>> symbol preceding
the line number indicates the line to be executed.
The program can be executed to the next breakpoint
encountered or end of program by clicking on the
Run command button. Clicking on the Halt com-
mand button will stop a Running program. A pro-
gram that is running can aso be placed in the Single
line execution mode by clicking on the Step or
Break command button.

Note: The program statusindicator showsthe
status of program execution. Theonly timethis
statuswill indicate Stopped iswhen the program
ishalted or has executed an end statement in the
program. Theindicator isgreen for running and
red for stopped.

12.2.2 - Breakpoint Setting/Clearing

Up to five breakpoints can be set in debug mode. To
change the breakpoint setting of a line, click on the
desired line and then click on the Toggle break-
points command button. When a line is set as a
breakpoint, a (BRK) will precede the line. The
breakpoint line numbers can be listed or cleared by
clicking on the List breakpoints command button
and than the appropriate command button.

12.2.3 - Terminal Window

The terminal window allows host command execu-
tion without leaving the Debug Environment. The
Terminal Window is selected by clicking inside the
Terminal window. A blinking cursor indicates that
the Terminal window is selected for host commands.

Debug Environment

12.2.4 - Watch variables

The watch variable alows the programmer to view
the values of selected variables. To add or remove a
watch variable from the watch window click on the
Watch command button.

Variable watch list

Variable list Add watch Watch list

Add all

Remove watch

Remove all

OK

To add a specific variable to the watch list, select the
variable from the Variable list and then click on the
Add watch command button. To remove a specific
variable from the watch list, select the variable from
the Watch list and then click on the Remove watch
command button. To add all the variables to the
watch list click on the Add all command button. To
remove all variables from the watch list click on the
Remove all command button. To return to the De-
bug Environment screen click on the Ok command
button. The variable in the watch list will appear in
the Watch Window and its current value will be

displayed.

Another method of watching a variable is to high-
light the variable and then click on the Instant
Watch command button. The variable name and
value will be displayed. This variable can be added
to the watch window by clicking on the Add watch
command button.

Instant watch menu

Variable
X

Value

Add watch

12.2.5 - Exit Debug Environment

The debug environment can be exited by clicking on
the Exit command button.

281

This page left intensionally blank

282 Debug Environment

Section 13
Application Examples

13.1 —Using a Joystick to teach an Arbitrary shape program

13.1.1 - M X2000 Joystick connection

A joystick is easily interfaced to the MX2000 analog in-
puts to control two motors. This allows positioning of a
device for setup, or capturing positions for an arbitrary
shape prior to machining, etc. The following diagram
shows the method of connecting a two axis joystick to the
MX 2000 controller.

The analog inputs of the joystick axes must be configured
as differential inputs in the user projects. The JOY STICK
basic command is used to enable the joystick mode of
operation in the user program. The joystick mode can be
canceled in the user program by execution of a STOP
basic command on the joystick axes.

Each axis will run at a speed proportiona to the input
voltage and in the direction determined by the polarity of
the input voltage. There is a £0.25 volt dead band at the
center of the input range, from +4.75 volts to +5.25 volts,
and represents a speed of 0. The axis will run in the nega-
tive direction when the input voltage range is 0 volts to
+4.75 volts. The speed it will attainis:

((4.75 = VIN) / 10) * SPEED(axis). The axis will run in
the positive direction when the input voltage range is
+5.25 voltsto +10 volts. The speed it will attainis:

((VIN —5.25) / 10) * SPEED(axis).

— - — - - - — ‘|

| MX2000 Axis Card
- | Analog inputs
| |
| | 10V
| | ? Q +10V
| 2N2222

IN+ 15K
| S | () —\—
| @ | \Tj 5K |

o |
| = | AGND .
| @) | e 12 Bit A/D |
;:< ! \IJ J_ configured as differential
|~ | L 10K 10K | 5K — |
| | IN-
| | »—Q AN |
| 2N2222 15K
| | IN+ 15K
5K
12 Bit A/D

configured as differential

284

Application Examples

13.1.2 - Example Description

The example program alows an arbitrary shape to be
taught, printed or executed. Four inputs on the axis card
are used to accomplish this. Axis 1 (A side) Event 1 input
is assigned as the Teach input. Axis 1 (A side) Event 2
input is assigned as the Print input. Axis 2 (B side) Event
1 isassigned as the Register input. Axis 2 (B side) Event
2 input is assigned as the Executeinput. The Teach input
switch must be a toggle switch and the remaining inputs
can be momentary switches.

A two axis Joystick is connected to the designated axes
analog input. This joystick is used to teach the arbitrary
path to the controller. The circuit above should be used if
possible to accomplish this.

The Program is broken into four distinct sections. The
sections are main, execute taught program, print taught
program, and teach program. These sections are described
in detail below.

A sample program is included on the next page of this
manual.

13.1.3 - Main Section

Moves the axes to the mechanical home positions and
scans the Teach, Print and Execute inputs. When an input
becomes active start executing the selected section.

13.1.4 - Teach section

This subroutine allows the user to trace an arbitrary shape
by positioning, under joystick control, points on the
shape’s periphery. With one task running a maximum of
700 points are allows for a PATH command.

First the joystick is used to position the motors to the
starting position for the desired shape. This position is
recorded in NVR(1) and NVR(2) and becomes the start-
ing position for the shape when the Register button is
pressed.

Application Examples

Thereafter, pressing the Register button and then releasing
it records the different points on the arbitrary shape. The
coordinates of each point are automatically recorded into
the MX2000 non-volatile memory. The X coordinates are
captured in the even NVR elements and the Y coordinates
are captured in the odd elements starting at element 4.
NVR (3) contains the ending element of the coordinates
captured.

The recording session is ended when the Teach input
switch is open circuited.

13.1.5 - Print program section

Transmits ASCII text on the Auxiliary serial port that can
be used as the program text to execute the arbitrary shape
profile. Thus, this program will free up the non-volatile
ram for another shape.

13.1.6 - Execute program section

This section alows the arbitrary shape program to be
tested. The program ends after the arbitrary shape pro-
gramis executed. If the shape needs a correction, print out
the program and adjust the data in the appropriate NVR
locations. Then restart the program and execute the arbi-
trary shape again.

285

kkkkhkhkkkkhkkhkhhkkkhkhkhkhkkkkkhkx EXAM PLE PROGRAM khkkkhkkhkhhkkkhkkhkhhkhhhkhhkhhkdkhkhkxkxdxkxkx

“***** This example program allows a two axis arbitrary path Pattern to be taught, executed or printed.
“* Event 1 input, toggle switch, on axis 1 selects the Teach mode.

“xxxx Event 2 input, momentary switch, on axis 1 prints the resulting program.

“Rxxx Event 1 input, momentary switch, on axis 2 registers the pattern points.

“xxkx Event 2 input, toggle switch, executes the taught pattern.

“rxxxx NVR(1-2) isthe x-y coordinates for the starting position of the pattern

“rxxxx NVR(3) is the ending element of the point array

“xxxxx NVR(4-5) isthe first coordinate points of the Pattern

‘*x%** egch additional set of pointsarein pairs

#DEFINE AX1 1 ‘x axis defined
#DEFINE AX2 2 'y axis defined
#DEFINE DCNT 10 ‘input debounce count (msec)
POSMODE(AX1,AX2)=1,1 ‘set absolute position mode
MOVEHOME(AX1,AX2)=-1, -1 ‘GOTO Mechanical Home in -direction
WAITDONE(AX1,AX2) ‘wait until mechanical cycle complete
E1 1=0 ‘initialize variable state
E1l 2=0 ‘initialize variable state
E2 1=0 ‘initialize variable state
E2 2=0 ‘initialize variable state
SPEED=10,10 ‘joystick speed for 10 volt differential voltage
DO
state=0
PRINT#1,” Select Teach Program, Print Program or Execute Program”
DO
GOSUB debounce E1 1 ‘test Teach input
GOSUB debounce E2 1 “test Print input
GOSUB debounce E2 2 ‘test Execute input
IFE1 1=1 THEN
GOSUB teach ‘Teach input true
state=1

ELSE IF E2_1=1 THEN
GOSUB prt_program ‘Print input true

state=1
ELSE IFE2 2=1THEN
state=1 ‘Execute input true
END IF
LOOP UNTIL state=1 ‘wait for an input being true
LOOPUNTIL E2 2=1 ‘wait for Execute input being true
IF NVR(3) > 700 then ‘prevents operating system crash
END
END IF
“x*x%% Execute Program and End
MOVE(AX1,AX2)=NVR(1),NVR(2) ‘goto starting position of pattern
WAITDONE(AX1,AX2) ‘wait until at starting position
element=4 ‘starting element for points
PATH=AX1,AX2 ‘define path axes

DO WHILE element < NVR(3)
POINT=NVR(element), NVR(element + 1)
element = element + 2
LOOP
PATH END
END

286 Application Examples

prt_program:
PRINT#2,"#DEFINE AX1 1"
PRINT#2,"#DEFINE AX2 2’
PRINT#2,
PRINT#2,”POSMODE(AX1,AX2) =1,1"
PRINT#2,”"MOVEHOME(AX1,AX?2) =-1,-1"
PRINT#2,”WAITDONE(AX1,AX2)"
PRINT#2,”"MOVE(AX1,AX2)=";NVR(1);",”;NVR(2)
PRINT#2,”WAITDONE(AX1,AX2)"
PRINT#2,” PATH=AX1,AX2"
FOR X=4 TONVR(3) STEP 2
PRINT#2,” POINT=";NVR(X);",”;NVR(X+1)
NEXT X
PRINT#2,” PATH END”
PRINT#2,”END”
state=1
DO
GOSUB debounce E2 1 ‘test Print switch
LOOPUNTIL E2_1=0 ‘wait for Print switch to open
RETURN

‘r*xx%xx debounce Teach Input
debounce E1 1:

cnt = DCNT ‘debounce delay in msec
DO
IF EVENT1(AX1) = state THEN
RETURN ‘return if same state
ELSE
cnt=cnt—1
wait=.001 ‘wait 1 msec
END IF
LOOPUNTIL cnt< 1 ‘wait for debounce switch state change
IF state=1 THEN
El11=0 ‘change state
ELSE
El11=1 ‘change state
END IF
RETURN ‘return with different state

Application Examples 287

“exx %% debounce Register Input
debounce E1 2:

cnt = DCNT ‘debounce delay in msec
DO
IF EVENT1(AX?2) = state THEN
RETURN ‘return if same state
ELSE
cnt=cnt—1
wait=.001 ‘wait 1 msec
END IF
LOOPUNTIL cnt< 1 ‘wait for debounce switch state change
IF state=1 THEN
E12=0 ‘change state
ELSE
El12=1 ‘change state
END IF
RETURN ‘return with different state

“rxxxxx debounce Print Input
debounce E2 1:

cnt = DCNT ‘debounce delay in msec
DO
IF EVENT2(AX1) = state THEN
RETURN ‘return if same state
ELSE
cnt=cnt—1
wait=.001 ‘wait 1 msec
END IF
LOOPUNTIL cnt< 1 ‘wait for debounce switch state change
IF state=1 THEN
E2 1=0 ‘change state
ELSE
E2 1=1 ‘change state
END IF
RETURN ‘return with different state

“*kxxx%% debounce Execute Input
debounce E2 2:

cnt = DCNT ‘debounce delay in msec
DO
IF EVENT2(AX?2) = state THEN
RETURN ‘return if same state
ELSE
cnt=cnt—1
wait=.001 ‘wait 1 msec
END IF
LOOPUNTIL cnt<1 ‘wait for debounce switch state change
IF state=1 THEN
E2 2=0 ‘change state
ELSE
E2 2=1 ‘change state
END IF
RETURN ‘return with different state

288

Application Examples

teach:
JOYSTICK(AX1,AX2)
NVR(1)=0
NVR(2)=0
NVR(3)=4

PRINT#1,” Move to pattern starting position”
PRINT#1,” and press Register button”
PRINT#1,” or’
PRINT#1,” open Teach Switch to exit”
DO
DO
state=0
GOSUB debounce E1 2
state=1
GOSUB debounce E1 1
IFE1 1=0 THEN
STOP(AX1,AX2)
RETURN
END IF
LOOPUNTIL E1 2=1

NVR(1)=ABSPOS(AX1)
NVR(2)=ABSPOS(AX?2)

‘ enable 2 axis joystick

‘ default starting position
* default starting position
* default element

‘test Register button
‘test Teach input

‘disable 2 axisjoystick
“teach complete

‘wait for register switch closing

‘register starting position
‘register starting position

PRINT#1,” Start Position”,NVR(1),NVR(2)

DO
GOSUB debounce E1 2
LOOPUNTIL E1 2=0

X=4
Y=1
DO
state=0
GOSUB debounce E1 2
state=1
GOSUB debounce E1 1
IFE1 1=0 THEN
STOP(AX1,AX2)
NVR@R)=X -1
RETURN
END IF

LOOPUNTIL E1_2=1

NVR(X) = ABSPOS(AX 1)
NVR(X+1) = ABSPOS(AX2)

‘state=1 from above
‘test Register button
‘wait for Register switch opening

‘starting element
‘point number

‘test Register button

‘test Teach input

‘disable 2 axisjoystick
‘save last element number

“teach complete

‘wait for Register switch closing

‘register position
‘register position

PRINT#L,” Point ;Y ,NVR(X),NVR(X +1)

X=X+2
Y=Y+1
DO
GOSUB debounce E1 2
LOOPUNTIL E1_2=0
LOOP UNTIL 1=2

Application Examples

‘next element

‘next point

‘state=1 from above

‘test Register button

‘wait for Register switch opening
‘loop indefinitely

289

13.2 - Arbitrary Continuous Motion

This program illustrates the simplicity of using an arbi- then activates a cycle start switch (IN101). The cutting
trary continuous motion path in any application. blade moves to a starting position, lowers, and then cuts a

predetermined shape sponge. After a sponge is cut, the
In this application, the operator places a sheet of sponge blade is raised and returned to a home position.

material on a sponge cutting machine and

290 Application Examples

13.2.1 — EXAMPLE PROGRAM

POSMODE =1,1 ‘enabl e absolute mode
DO : LOOP UNTIL IN(101)=1 'loop until input 101 ishigh
MOVE=2,1 'move to starting position
OuUT(111)=1 'turn output 111 on (high)
PATH=1,2 'begin continuous motion path

LINE=6,1 first coordinate of the path

POINT=7,2 'second coordinate of the path

LINE=7,8

POINT=6,9

LINE=2,9

POINT=1,8

LINE=1,2

POINT=2,1
PATH END ‘end of continuous motion path
OUT(111)=0 ‘turn output 111 off (low)
MOVEHOME=1,1 'return to home position
END

Y
A
10 —

: X

SO B N W » 00 O N 00 ©

(N A O e
01 2 3 456 7 8 9 10

HOME POSITION

Application Examples 291

13.3 - Changing Velocity during motion

This program illustrates changing velocity of an axis
during a path motion and the velocity change is based on
position.

13.3.1 — Example Program

POSMODE(1,2)=1,1 ‘ sets absol ute position mode
SPEED(1)=10000 'set velocity to 10000 steps/sec
ACCEL (1,2)=20000,20000 'set accel eration to 20000 steps/sec’
MOVEHOME(1,2)=1,1 'go to home position
WAITDONE (1,2) 'wait until axes 1 and 2 are at home position
PATH=1,2
FEEDRATE=0.5 'set velocity to 50% its value (0.5 x 10000 steps/s = 5000 steps/sec)
LINE=10000,0 'move to 10,000 steps
FEEDRATE=1.5 ‘change velocity to 1.5 x 10000 steps/s = 15000 steps/sec
LINE=90000,0 'move to 90,000 steps
FEEDRATE=1 'set velocity back to 100% (10000 steps/sec)
LINE=150000,0 'move to 150,000 steps
PATH END 'stop motion
END
A / Position 90,000 steps
15,000 —
)
()
£
a
g 10,000 —
L
2
o
o
o 5,000 —
> \Position 10,000 steps /Position 150,000 steps
0o — >

(N O A I I
0 1 2 3 4 5 6 7 8 91011 1213 14

Time (seconds)

292 Application Examples

13.4 -Glue application on a Gasket

This program generates a complex continuous motion
path for applying glue on a gasket.

An operator activates a cycle start switch (EXIN111), the
glue head returns to a home position, and an absolute po-
sition is set to zero. The glue head is moved 5" from
home to a starting position, and absolute position is set to
zero again (all path coordinates are relative to

Gasket Pattern:
Y
A

12 =

this point). Next the glue head is lowered (EXOUT102)
and waits for .25 seconds. Then glue is applied along the
pattern, which is described by the x-y coordinates of the
lines, arcs, and paths in the Gluing Subroutine section of
the program. Finaly, the glue is turned off and the glue
head is raised (EXOUT101 and 102).

11—

10—

-1
13.4.1 —-Example Program

O -
=
N
W —
D o

T 1T X

I
6 7 8 9 10 11 12

fkkkkkkx*x Parameter %tup khkkkhkkhkkhkkkkhkhkkhkhkkhkkhkkhkkhkkhkhkhkkkkhkhkhkkkkkkhkkkk*%

RADIUS=0
VELOCITY=5
ACCEL=10,10
DECEL=10,10
SOFTLIMIT=0,0
HARDLIMIT=1,1
POSMODE=1,1

Application Examples

'radius for path blending
'path speed = 5in/sec

‘accel eration rate = 10in/sec?
‘deceleration rate = 10in/sec?
'disable software limits
‘enable hard limits

‘ enabl e absol ute mode

293

thkkkkkkkk* 1 kkhkkkhkkkhkkhkkhkkkkkhkkhkkhkkhkkkhkkhkkhkkkhkkkkkkkkk*x*%
Main Program

BEGIN:

DO
DO : LOOP WHILE EXIN(111)=0 'wait for cycle start input
GOSUB HOME 'go to home position
LINE=5,5 ‘offset each axis to starting position (5" from home)
WAITDONE=1,1 'wait until axes 1 and 2 are in position
ABSPOS=0,0 'reset absolute position to zero
GOSUB GLUE_PATH 'go to subroutine GLUE_PATH

LOOPUNTIL 1=2 ‘loop indefinitely

‘ . .
*kkkkkkkk GlUIng Routlne***************************************

GLUE_PATH:
EXOUT(101)=1 'head down
EXOUT(102)=1 'glue on
WAIT=.25 ‘wait for glue to start flowing
PATH=1,2 ‘beginning of path
LINE=0,8
POINT =0.5,9
LINE =3,10
ARC =4,10,+540
LINE=89
POINT =9,8
POINT =8,6
LINE =8,6
FEEDRATE=0.5 'decrease velocity to 50% = 2.5in/sec
LINE=28,3
FEEDRATE=1 'increase velocity back to 100% = 5in/sec
LINE =8,1
POINT =7,0
LINE =5,0
POINT =4.5,.5
POINT =4,1
LINE=3,1
POINT =2.5,.5
POINT =2,0
LINE=0,0
PATH END ‘end of path
EXOUT(101,2)=0 'turn glue off and raise glue head
RETURN ‘end of subroutine

' B
kkkkk*k Home I'OUtlne kkhkkhkkkhkhkkhkhhkkhkhhkkhhhkhkhhkhkkhhkhkhhkhkkhhkhkhhkhkhhkhkhhhkkhkhhkhkhkkhkhkkkikkkx*x

HOME:
EXOUT(123,2)=0 ‘glue off and head up
SPEED =2,2 'home speed = 2in/sec
MOVEHOME =-1,-1 'move to home switchx & y "-" dir
WAITDONE(1,2)
ABSPOS=0,0 'set absolute positionto 0
RETURN ‘end of subroutine
294

Application Examples

13.5 - Spring Winding M achine

In this application two motors must be moved simultane-
oudly to wind aspring. An expansion I/O board is used to
provide the required inputs to the controller.

The sequence of events for this application is as follows:
1) A cam will actuate a switch (EXIN(101)) to start the
machine cycle

2) Thewirewill befed (EXOUT(112))

3) Delay 0.1 secondsto feed enough wire out before a
clamp (EXOUT(111)), used to hold the wire in place,
isturned on.

4) Next acenter form clamp (EXIN(102)), activated by
acam, is moved into position, the winding pin
(EXOUT(113)) didesin and the wireis cut
(EXOUT(114)).

5) Thewireisstopped from being fed (EXOUT(112))

then the wire clamp and the cutter islifted up
(EXOUT(111) and EXOUT(114)).

Application Examples

6)

7)

8)

9)

The cam actuated U-bender (EXIN(103)) bends the
wire into a U shape and the spring is wound.

Once the spring has been wound, wire sensing probes
move in (EXOUT(115) & EXOUT(116)) and check
if it has been wound enough (EXIN(105) and
EXIN(106)). If not, the spring is wound one step and
checked again. This procedure is continued for a pre-
defined number of steps.

Recaoil to release the spring from the arbors, retract
the wire sensing probes (EXOUT(115) &
EXOUT(116)), and slide the winding pin out
(EXOUT(113)) to drop the spring in a bin.

Move back to absolute zero.

10) Check whether the auxiliary feed has been depleted,

if so end the cycle, otherwise go back to the begin-
ning of program and make another spring.

295

13.5.1 — Example Program

fkkkkkkkkhkhkhkkkkkhkkkx*x PARAM E'I'ER SETUP****************************

WIND=145
AUX=20
RECOIL=50
BOOST=1,1
ABSPOS=0,0

'number of stepsto wind wire
'# of steps for auxiliary wind
'# of stepsto recail

‘enable boost current function
'set absolute position to zero

fkkkkhkkkkkkhkhkkkkkhkhkx%x S'I'ART OF MAIN PROGRAM kkkkkhkkhkkkkkhkkhkkkkkkhkhkikkikkk*k

BEGIN:

DO : LOOPUNTIL EXIN(101)=1

WAIT=.1
EXOUT(111)= 1
WAIT=.1

DO : LOOP UNTIL EXIN(102)=1

EXOUT(113,2)=3
EXOUT(111,2)=0
EXOUT(114)=0

DO: LOOP UNTIL EXIN(103)=1

MOVE=WIND,WIND
EXOUT(115,2)=3

FOR X=1TO AUX

'wait for switch to be activated by cam

'wait .1 sec

‘turn clamp on(expansion output 111) to hold wire
'wait .1 sec

'wait until center form clamp isin position
‘winding pinin & cutter down

‘turn output 112 (feed) and output 111 (clamp) off
'turn output 114(cutter) off

‘wait until U-bender bends spring

'wind spring "wind" # of steps

'turn on probe x (out 115) & probey (out 116)

‘go through loop A number of times

IF EXIN(105)=0 THEN 'if input 105 is off

MOVE=1
A=X
END IF

'move X-axis 1 step
‘A = number of auxiliary feed steps

IF EXIN(106)=0 THEN 'if input 106 is off

MOVE=1
A=X
END IF
WAIT=.1
NEXT X

MOV E= -RECOIL -RECOIL
EXOUT(115,2)=0
EXOUT(113)=0
POSMODE=1,1

MOVE=0,0
WAITDONE=1,1
POSMODE=0,0

IF A=AUX THEN
END
ELSE
GOTO BEGIN
END IF
END

296

'move y-axis 1 step
‘A = number of auxiliary feed steps

'wait .1 sec

'move "recoil" # of steps

'turn output 115 (probe x) & output 116 (probey) off
‘turn out 113(winding pin) off

‘enable absolute mode

'move to absolute zero

'wait until motion stops on axes 1 and 2

'switch back to incremental mode

'if auxiliary feed equals aux then part is bad
‘'end program

'if go back to beginning and wind another spring

Application Examples

SECTION 14
TROUBLESHOOTING
GUIDE

Troubleshooting Guide

High voltages are present inside the
unit. Always disconnect the power
before performing any work on the
unit. An electrical shock hazard exists
that may cause seriousinjury or death

if thisunit is operated without its pro-
tective coversin place.

14.1 — Status I ndicator Lights

The status indicator lights (red LED's) on the front
panel of the Controller provide an invaluable trou-
bleshooting aid.

14.1.1 - Power Led

The POWER indicator light is located on the Power
Supply Card on the Controller. When lit, it signifies
the unit's power supply is energized. Should this
light fail to come on, follow this procedure:

1) Check if the AC input power is applied; if not,
apply power to the unit.

2) Check if the AC input power is within the opera-
tional range. Refer to page 12-6 for power sup-
ply specifications.

3) Check for an open fuse. Refer to the Power
Supply specifications on page 12-6 for fuse rat-
ings. If thefuse(s) are O.K., or if they fail after
being replaced, an interna failure has occurred
— contact Superior Electric. Do not apply
power again.

14.1.2 - Fault Led

The"FAULT" indicator light is located on the DSP
controller card. When lit, it signifies a programming
error, a processor error, or a motion error has oc-
curred.

14.1.3 - Busy Led

The"BUSY" indicator lights are located on the dual
axis card. When lit, they signify the control has
received or executed a motion command.

14.2 - Serial Communications

If you are unable to establish serial communications
between a host computer and the Controller:

298

1) Make surethat al hardware connections have been
made properly, cable lengths do not exceed speci-
fied limits, and that power cables are isolated from
the communications cables.

2) Make surethat auser program is not being executed
while trying to establish communications. If apro-
gram isrunning, pressing Ctrl-A from the terminal
mode can stop it.

3) Make sure that the controller's baud rate matches
that of the host computer and the correct communi-
cations protocol (RS232 or RS485) is selected.
Also, ensure that the correct com port is chosen on
the host computer.

The Controller baud rate and communications protocol
is selected with the BAUD switch located on the front
panel of the DSP card. If this switch setting has to be
changed you must cycle power to the controller, since
these switches are read only at power up.

The host computer's baud rate can be selected using the
System menu items Terminal Setting- Com Port. The
serial communications format is 8 data bits, no parity,
and 1 stop bit ("8-N-1").

Verify correct Com Port selection and pin out. Place a
jumper between pins2 & 3. Press akey on the keyboard
in termina mode. The letter pressed is the letter that will
appear on the terminal screen.

14.3 - 1f You Can Not Access Axis|/O

Make sure that the polarity jumper on the Axiscard isin
the appropriate setting, sink or source, depending on
your particular application. (Refer to section 5.11)

If a problem persists, contact

Motion Control Applications Engineering Depart-
ment at 1-800-SUPEL EC (1-800-787-3532), between
the hours of 8:00 am and 5:00 pm EST.

14.4 —No Motion Occurring

If motion is commanded, the busy LED will illuminate
for the specified axis during motion. No motion occur-
ring indicates that the CLR to COM jumper is not in
place, driveis not ready, windings are not enabled or a
servo drive has not been tuned.

Troubleshooting

SECTION 15
GLOSSARY

ABSOLUTE MODE - Motion mode in which al motor
movements are specified in reference to an electrica
home position.

ABSOLUTE POSITION - A data register in the Con-
troller which keeps track of the commanded motor
position. When the value in this register is zero, the
position is designated "Electrical Home".

ACCELERATION - The rate at which the motor speed
is increased from its present speed to a higher speed
(specified in units/second/second).

ACCURACY (of step motor) - The non-cumulative
incremental error which represents step to step error in
one full motor revolution.

ALL WINDINGS OFF - Applying an average zero
motor current at standstill to alleviate motor heating or
eliminate holding torque.

AMBIENT TEMPERATURE - The temperature of the
air surrounding the motor or drive.

ASCII - (American Standard Code for Information
Interchange). A format to represent aphanumeric and
control characters as seven-or eight-bit codes for data
communications.

ATTENTION CHARACTER - <nn, where "nn" is a
unique integer from 1-99 (set by use of the unit ID#

select switches) that is assigned to a Motion Controller

arrayed in a multi-Controller system. The Attention

Character directs the program command to the specified
Motion Controller.

BASE SPEED - Starting speed for the motor (also
known as low speed).

BAUD RATE - The rate of serial data communications
expressed in binary bits per second.

BCD - (Binary Coded Decimal), a format to represent
the digits 0 through 9 as four digital signals. Systems
using thumb wheel switches may program commands
using BCD digits. A BCD digit uses a standard format to
represent the digits O through 9 as four digital signals.

The following table lists the BCD and complementary
BCD representation for those digits. The Motion Con-
troller uses the complementary BCD codes because the
signals are active low.

Complementary

Digit BCD Code BCD Code
0 0000 1111
1 0001 1110
2 0010 1101
3 0011 1100
4 0100 1011
5 0101 1010
6 0110 1001
7 0111 1000
8 1000 0111
9 1001 0110

To represent numbers greater than 9, cascade the BCD
states for each digit. For example, the decima number
79 is BCD 0111:1001.

BOOST CURRENT - Increase of motor current during
acceleration and deceleration to provide higher torque,
which permits faster acceleration/decel eration times.

CLEAR - Input or Command to immediately hat al
motor motion and program execution.

COLLECTORS (OPEN) - A transistor output that takes
the signa to a low voltage level with no pull-up device
resistive pull-ups are added to provide the high voltage
level.

CYCLE START - Command to initiate program execu-
tion.

CYCLE STOP- Command to stop program execu-
tion.

DAISY-CHAIN- A method to interface multiple Motion
Controllers via R$485 to a single host using only one
seria port.

DAMPING - A method of applying additional friction or
load to the motor in order to alleviate resonance and ring
out. Stepper motor shaft dampers are commercially
available from severa sources, including Superior Elec-
tric.

DECELERATION - The rate in which the motor speed
is decreased from its present speed to a lower speed
(specified in units/second/second).

Glossary

DEVICE ADDRESS - A unique number used to assign
which Motion Controller in a multi-drive stepper system
is to respond to commands sent by a host computer or
terminal. Device addresses from 1 - 9 are set by means
of the ID # select switch. "0" isreserved to address all
Motion Controllers in a system. Factory default is 1.

DWELL - See"WAIT".

ELECTRICAL HOME - The motor commanded posi-
tion is zero (the Absolute Position register
is zero).

FEEDRATE - The speed or velocity (in units per sec-
ond) at which a move will occur.

FRICTION - Force that is opposite to the direction of
motion as one body moves over ancther.

FULL-STEP - Position resolution in which 200 pulses
corresponds to one motor revolution in a 200 step per
revolution (1.8 degree) motor.

HALF-STEP - Position resolution in which 400 pulses
corresponds to one motor revolution for a 200 step per
revolution (1.8 degree) motor.

HANDSHAKE - A computer communications technique
in which one computer's program links up with a-
other's. The Mation Controller uses a software "Xon,
Xoff" handshake method. See "XON" below.

HOST - The computer or terminal that is connected to
the HOST seria port on the maotion controller, and is
responsible for primary programming and operation of
the controller.

INCREMENTAL MODE - Motion mode in which all
motor movements are specified in reference to the
present motor position.

INDEXER - A Microprocessor-based programmable
motion controller that controls move distance and
speeds; possesses intelligent interfacing and input/output
capabilities.

INDEX FROM RUN — See Mark Registration.

INERTIA - Measurement of a property of matter that a
body resists a change in speed (must be overcome
during acceleration).

INERTIAL LOAD - A "flywhed" type load affixed to
the shaft of a step motor. All rotary loads (such as gears
or pulleys) have inertia. Sometimes used as a damper to
eliminate resonance.

MOVE TO MECHANICAL HOME - Function which
alows the Motion Controller to move the motor and seek

Glossary

INSTABILITY - Also frequently caled, "mid-range
instability” or "mid-range resonance,” this term refers to
a resonance that occurs in the 500 - 1,500 steps/sec
range. Mid-range instability is important because it
refers to aloss of torque or a stalled motor condition at
higher stepping rates. Since step motors do not start
instantaneously above the mid-range resonance fre-
guency, an acceleration scheme will have to be used to
pass through the troublesome region.

JOG MOVE - moves the motor continuously in a
specified direction.

LOAD - This term is used several ways in this and
other manuals.

LOAD (ELECTRICAL): The current in Amperes pass-
ing through a motor's windings.

LOAD (MECHANICAL): The mass to which motor
torque is being applied (the load being moved by the
system).

LOAD (PROGRAMMING): Transmits a program from
one commuter to another. "DOWNLOAD" refers to
transmitting a program from a host computer (where a
program has been written) to the Motion Controller
where it will be used. "UPLOAD" refers to transmitting
a program from a Motion Controller back to the host
computer.

MARK REGISTRATION - A motion process (usualy
used in web handling applications) whereby a mark
placed on the material is sensed (e.g., through the use of
an optical sensor) and, following detection of this mark,
the material is moved (indexed) a fixed length.

MECHANICAL HOME - The position where a switch
input is used as a reference to establish electrical home.

MICROSTEPPING - A sophisticated form of motor

control that alows for finer resolution than full step (200

Pulses Per Revolution PPR) or half step (400 PPR) by

adjusting the amount of current being applied to the

motor windings. Microstepping up to 250 pulses per full

step (50,000 PPR on a 200 step/rev or 1.8 degree motor)

is supported. For 200 step per revolution motors, typical

microstepping levels are 1/10-step and 1/125 step (2000

PPR and 25,000 PPR, respectively). Note: this is a
DRIVE function.

a switch to establish electrical home and set Absolute
Position = zero.

301

NESTING - The ability of an active subroutine to call
another subroutine. The Motion Controller can nest up
to 16 levels.

NONVOLATILE MEMORY - Data storage device that
retains its contents even if power is removed. Examples
are EEPROM, flash memory, and battery-backed RAM.

OPTO-ISOLATION - The electrical separation of the
logic section from the input/output section to achieve
signal separation and to limit electrical noise. The two
systems are coupled together via a transmission of light
energy from a sender (LED) to areceiver (phototransis-
tor).

PARITY -- An error checking scheme used in serial
communications (via the RS-232 or RS-485 port) to
ensure that the data is recelved by a Motion Controller is
the same as the data sent by a host computer or terminal.

REDUCE CURRENT - Reduction of motor current
during standstill to aleviate motor heating.

RESOLUTION - The minimum position command that
can be executed. Specified in steps per revolution or
some equivalent.

RINGOUT - The transient oscillatory response (prior to
settling down) of a step motor about its final position.
Note: a small wait or dwell time between moves can
alleviate ringout problems.

RS232-C - EIA (Electronic Industries Association)
communication standard to interface devices employing
serial data interchanges. Single-wire connections for
transmit and receive, etc.

RS-485 - EIA (Electronic Industries Association)
communication standard to interface devices employing
serial data interchanges. Two-wire connections (differ-
ential circuits) for transmit and receive, etc. Better than
RS-232 for long wire runs and multi-drop circuits with
many devices.

302

SINKING - An input that responds to, or output that
produces, a "low" level (signal common or low side of
the input/output power supply) when active.

SOURCING - Aninput that responds to, or output that
produces, a "high" level (the voltage used for the in-
put/output power supply) when active.

SUBROUTINE - A sequence of lines that may be a-
cessed from anywhere in a program to preclude having
to program those lines repetitively. This alows shorter,
more powerful, and more efficient programs. See also
NESTING.

TORQUE - Product of the magnitude of aforce and its
force arm (radius) to produce rotational movement.
Units of measure are pound-inches, ounce-inches, new-
ton-meters, etc.

TRANSLATOR - A motion control device (also called
"translator drive") that converts input pulses to motor
phase currents to produce motion.

WAIT - A programmed delay or dwell in program
execution (specified in seconds).

XON/XOFF - A computer software "handshaking"
scheme used by a Motion Controller. The Motion Con-
troller sends an XOFF character (ASCII Code 19) when
it receives a command string with a Carriage Return and
has less than 82 characters remaining in its host seria
port buffer. The Controller sends an Xon when available
buffer space reaches 100 characters or in response to an
ID attention with adequate buffer space remaining.
Since it isimpossible for the host device to immediately
cease transmissions, the next three characters (subject
to the total serial buffer capacity of forty characters)
received subsequent to the Motion Controller sending the
XOFF character will be stored in the Motion Controller's
serial buffer (a memory dedicated to store characters
that are in the process of transmission).

Similarly, the Motion Controller will not transmit data if
the host device has sent an XOFF character to the
Controller; Motion Controller transmissions will resume
when the Controller receives an XON charecter.

Glossary

Glossary

ASCII Table

ASCII Dec ASCII Dec ASCII Dec ASCII Dec
Char Code Char Code Char Code Char Code
Null 0 Space 32 @ 64 96
SOH 1 ! 33 A 65 a 97
STX 2 A 34 B 66 b 98
ETX 3 # 35 C 67 c 99
EOT 4 $ 36 D 68 d 100
ENQ 5 % 37 E 69 e 101
ACK 6 & 38 F 70 f 102
BELL 7 ’ 39 G 71 g 103

BS 8 (40 H 72 h 104
HT 9) 41 I 73 i 105
LF 10 * 42 J 74 j 106
\2) 11 + 43 K 75 k 107
FF 12 , 44 L 76 I 108
CR 13 - 45 M 77 m 109
SO 14 . 46 N 78 n 110
Sl 15 / 47 o] 79 0 111
DLE 16 0 48 P 80 p 112
DC1 17 1 49 Q 81 q 113
DC2 18 2 50 R 82 r 114
DC3 19 3 51 S 83 s 115
DC4 20 4 52 T 84 t 116
NAK 21 5 53 U 85 u 117

SYNC 22 6 54 \% 86 v 118
ETB 23 7 55 w 87 w 119
CAN 24 8 56 X 88 X 120
EM 25 9 57 Y 89 y 121
UB 26 58 Z 20 z 122
ESC 27 ; 59 [91 { 123

FS 28 < 60 \ 92 | 124
GS 29 = 61] 93 } 125
RS 30 > 62 n 94 ~ 126
DEL 31 ? 63 95 DEL 127

This page lft intentionally blank

304 Glossary

WARRANTY AND LIMITATION OF LIABILITY

Superior Electric (the "Company"), Bristol, Connecticut, warrants to the first end user purchaser (the "purchaser") of equipment manufactured
by the Company that such equipment, if new, unused and in original unopened cartons at the time of purchase, will be free from defects in
material and workmanship under normal use and service for a period of one year from date of shipment from the Company's factory or a
warehouse of the Company in the event that the equipment is purchased from the Company or for a period of one year from the date of
shipment from the business establishment of an authorized distributor of the Company in the event that the equipment is purchased from an
authorized distributor.

THE COMPANY'S OBLIGATION UNDER THIS WARRANTY SHALL BE STRICTLY AND EXCLUSIVELY LIMITED TO REPAIRING OR
REPLACING, AT THE FACTORY OR A SERVICE CENTER OF THE COMPANY, ANY SUCH EQUIPMENT OF PARTS THEREOF WHICH
AN AUTHORIZED REPRESENTATIVE OF THE COMPANY FINDS TO BE DEFECTIVE IN MATERIAL OR WORKMANSHIP UNDER
NORMAL USE AND SERVICE WITHIN SUCH PERIOD OF ONE YEAR. THE COMPANY RESERVES THE RIGHT TO SATISFY SUCH
OBLIGATION IN FULL BE REFUNDING THE FULL PURCHASE PRICE OF ANY SUCH DEFECTIVE EQUIPMENT. This warranty does not
apply to any equipment which has been tampered with or altered in any way, which has been improperly installed or which has been subject
to misuse, neglect or accident.

THE FOREGOING WARRANTY IS IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITA-
TION, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, and of any other obligations
or liabilities on the part of the Company; and no person is authorized to assume for the Company any other liability with respect to equipment
manufactured by the Company. The Company shall have no liability with respect to equipment not of its manufacture. THE COMPANY SHALL
HAVE NO LIABILITY WHATSOEVER IN ANY EVENT FOR PAYMENT OF ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, IN-
CLUDING, WITHOUT LIMITATION, DAMAGES FOR INJURY TO ANY PERSON OR PROPERTY.

Written authorization to return any equipment or parts thereof must be obtained from the Company. The Company shall not be responsible for
any transportation charges.

IF FOR ANY REASON ANY OF THE FOREGOING PROVISIONS SHALL BE INEFFECTIVE, THE COMPANY'S LIABILITY FOR DAM-
AGES ARISING OUT OF ITS MANUFACTURE OR SALE OF EQUIPMENT, OR USE THEREOF, WHETHER SUCH LIABILITY IS BASED
ON WARRANTY, CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR OTHERWISE, SHALL NOT INANY EVENT EXCEED THE
FULL PURCHASE PRICE OF SUCH EQUIPMENT.

Any action against the Company based upon any liability or obligation arising hereunder or under any law applicable to the sale of equipment,
or the use thereof, must be commenced within one year after the cause of such action arises.

The right to make engineering refinements on all products is reserved. Dimensions and other details are subject to change.

Distribution Coast-To-Coast and International

Superior SLO-SYN products are available worldwide through an
extensive authorized distributor network. These distributors offer litera-
ture, technical assistance and a wide range of models off the

shelf for fastest possible delivery and service.

In addition, Superior Electric sales engineers are conveniently located to
provide prompt attention to customers' needs. Call the nearest office
listed for ordering and application information or for the address of the
closest authorized distributor.

In U.S.A. and Canada

383 Middle Street

Bristol, CT 06010

Tel: 860-585-4500

Fax: 860-589-2136

Customer Service: 1-800-787-3532
Product Application: 1-800-787-3532
Product Literature Request: 1-800-787-3532
Fax: 1-800-766-6366

Web Site: www.superiorelectric.com

Superior

Electric EEOES5-A500EA<EE0E80 2136

400030-149 Rev.B ECN# 84626 Printed in U.S.A.

	Obsolete Documents Cover Page
	Installation manual
	430149tc.pdf
	Structured bookmarks
	Warner Electric reserves the right to make engineering refinements on all its products. Such refinements may affect inform...
	Table of Contents
	ACCEL 173
	POSMODE 200
	ACTSPD 224

	43014904.pdf
	Structured bookmarks
	Digital I/O Card
	Expansion I/O Card
	Programming Features

	43014905.pdf
	Structured bookmarks
	Section 5
	Equivalent Circuits
	Size: 5.34” X 10.63” X 7.48”
	Weight: 8.25 lbs
	Size: 9.34” X 10.63” X 7.48”
	Size: 19.0” X 10.63” X 7.54”
	Dual-Axis Interface board 222420-001
	Expansion I/O-BCD board 222642-001
	Daisy Chaining MX2000 Controllers
	Where: “B” is the board number, 1 through 4.
	Where: “B” is the board number, 1 through 4.
	
	 User
	Label
	5.15 – MX & SERVO AMPLIFIER CONNECTION DIAGRAM

	43014908.pdf
	Structured bookmarks
	Section 8
	ACTSPD(axis) commanded velocity of an axis
	8.1.1.2 - Encoder Following
	8.1.1.3 – Command & Variable
	 Following
	8.1.2 - Following Ratio
	FOLJOG(axis) = exp
	FOLJOG = exp, … , exp
	FOLJOG(axis, … , axis) = exp, … , exp
	FOLMOVE(axis) = exp
	FOLMOVE = exp, … , exp
	FOLMOVE(axis, … , axis) = exp, … , exp
	FOLMOVEREG(axis) = exp
	FOLMOVEREG = exp, … , exp
	FOLMOVEREG(axis, … , axis) = exp, … , exp
	STOP(axis)
	STOP=exp, … , exp
	STOP(axis, … , axis)
	Basic Following States
	8.1.4.1 - Following Trigger
	FOLTRIG(axis)=exp
	FOLTRIG=exp, … , exp
	FOLTRIG(axis, … , axis)=exp, … , exp
	8.1.4.2 - Follower Start Delay Distance
	FOLSTARTDIST(axis)=exp
	FOLSTARTDIST=exp, … , exp
	FOLSTARTDIST(axis, … , axis)=exp, … , exp
	8.1.4.3 - Follower Acceleration
	FOLACCDIST(axis) = exp
	FOLACCDIST = exp, … , exp
	FOLACCDIST(axis, … , axis) = exp, … , exp
	8.1.4.4 - Follower Synchronization
	The follower is considered in Synchronization when the follower velocity matches the master velocity times the following ra...
	FOLSYNC(axis) - used in an expression
	MOTIONSTATE(axis) - used in an expression
	FOLDCCDIST(axis) = exp
	FOLDCCDIST = exp, … , exp
	FOLDCCDIST(axis, … , axis) = exp, … , exp
	FOLOFFSET(axis)=exp
	FOLOFFSET=exp1, … , exp8
	FOLOFFSET (axis, … , axis)=exp, … , exp
	8.1.5.1 - Offset Wait Distance
	FOLSYNCDIST(axis) = exp
	FOLSYNCDIST = exp, … , exp
	FOLSYNCDIST (axis, … , axis) = exp, … , exp
	FOLMAXRATIO(axis) = exp
	FOLMAXRATIO = exp, … , exp
	FOLMAXRATIO (axis, … , axis)=exp, … , exp
	FOLMINRATIO(axis) = exp
	FOLMINRATIO = exp1, … , exp8
	FOLMINRATIO(axis, … , axis) = exp, … , exp
	FOLOFFSETDIST(axis) = exp
	FOLOFFSETDIST = exp, … , exp
	FOLOFFSETDIST(axis,…, axis)=exp, … , exp
	FOLOFFSET(axis) = exp
	FOLOFFSET = exp1, … , exp8
	FOLOFFSET(axis, … , axis) = exp, … , exp
	CAPTURE(axis)=exp
	CAPTURE=exp1, … , exp8
	CAPTURE(axis, … , axis)=exp, … , exp
	CAPTURE(axis) – used in an expression
	axis specifies the number of the axis.
	CAPPOS(axis) – used in an expression
	DELTACAPPOS(axis) – used in an expression
	8.1.8 - Cut to length Example
	The cutting cycle requires that the material and cutter be in synchronization when the material is being cut and that the c...
	Example: The material is to be cut in 11 units lengths. The cutting portion of the cycle will take 1 second and the materia...
	Cut to length Cycle
	Fig 1. Shows the Velocity Profile for this Fig 2. Shows the Positional Profile for this
	 application application.
	Ave Vel = -(11/10) + 1 = -.1 (-10%)
	Peak Vel = (-.1 * 2) – 1 = -1.2 (-120%)
	Max + direction distance traveled =
	(.5 * (1/(1 + .1)) * (10/4)) + 1 = +2.136 units
	FOLDCCDIST(FOLLOWER)=1 ‘ master travels 1 unit before follower stops
	JOG(MASTER)=1 ‘ start master axis
	DO : LOOP UNTIL FOLSYNC(FOLLOWER)=1 ‘wait for initial velocity synchronization
	DO : LOOP UNTIL FOLSYNC(FOLLOWER) = 1
	WAITDONE(FOLLOWER)
	WAITDONE(MASTER)
	WAITDONE(FOLLOWER)
	FOLACCDIST(FOLLOWER)=(144/360) * 2 ‘align knife with cutting surface
	FOLDCCDIST(FOLLOWER)=(144/360) * 2 ‘ align knife at 12 o’clock
	WAITDONE(FOLLOWER) ‘ wait for follower axis to stop
	WAITDONE(MASTER)
	FOLACCDIST(FOLLOWER)=(144/360) * 2 ‘ align knife with cutting surface 144(from start
	FOLDCCDIST(FOLLOWER)=(144/360) * 2 ‘ align knife at 12 o’clock
	FOLINPUT(FOLLOWER)=ACTSPD(MASTER)
	Program Example
	FOLACCDIST(FOLLOWER)=0 ‘ no acceleration distance
	FOLDCCDIST(FOLLOWER)=0 ‘ no deceleration distance
	FOLACCDIST(axis) - used in an expression
	Motion state 32 (Wait For Sync Distance)
	Motion state 64 (Offset Accel)

	43014909.pdf
	Structured bookmarks
	Servo Block Diagram
	9.1.1.1 - System folder
	This term reduces the error during motion. It should typically be set between 50% and 100%. The figures below show a respon...
	H1
	ACTION: Sets or returns the Excessive Duty Cycle Shutdown time in seconds.
	PROGRAM SYNTAX: IXT(axis) = expression
	REMARKS: The axis specifies the number of the axis (1-8).
	The default value for IXT is set each time a project is loaded or executed. Thus, adding an IXT basic command to a task is ...
	EXAMPLES: IXT(1) = 5
	WNDGS(1)=1
	IXT(1,3) = 5,6
	WNDGS(1,3)=1,1
	IXT = 5, ,6
	WNDGS(1,3)=1,1
	KAFF(axis) - used in an expression
	KAFF=.2,,0
	KAFF(1,3)=.2,0
	KP Servo Parameter
	KVFF Servo Parameter
	KVFF=98,,95
	KVFF(1,3)=98,95
	OUTLIMIT Servo Parameter
	OUTLIMIT=5,,10
	OUTLIMIT(1,3)=5,10
	STOPERR=expression1, … , expression8
	STOPERR(axis, … , axis)=expression, … , expression
	Sets the maximum position error for axis 3 to .1 units
	Sets the maximum position error for axis 1 to .1 units and axis 4 to .15 units.
	STOPERR(1,4)=.1,.15
	Sets the maximum position error for axis 1 to .1 units and axis 4 to .15 units.

	43014910.pdf
	Structured bookmarks
	Encoder resolution
	Number of correction attempts allowed
	Error action
	Testing closed loop operation
	ENCMODE Closed Loop Stepper Parameter
	STOPERR Closed Loop Stepper Parameter
	STOPERR=expression1, … , expression8
	STOPERR(axis, … , axis)=expression, … , expression
	Sets the maximum position error for axis 3 to .1 units
	Sets the maximum position error for axis 1 to .1 units and axis 4 to .15 units.
	STOPERR(1,4)=.1,.15
	Sets the maximum position error for axis 1 to .1 units and axis 4 to .15 units.

	43014911.pdf
	Structured bookmarks
	Section 11
	Data Logging
	11.1.2 - Data Transfer
	The cursors can be dragged to any horizontal position on the waveform. The elapsed time from the start of the waveform for ...

	43014912.pdf
	Structured bookmarks
	DEBUG
	12.2.2 - Breakpoint Setting/Clearing
	12.2.3 - Terminal Window
	12.2.4 - Watch variables
	12.2.5 - Exit Debug Environment

	43014913.pdf
	Structured bookmarks
	Section 13
	Application Examples
	13.1 – Using a Joystick to teach an Arbitrary shape program
	13.1.1 - MX2000 Joystick connection
	13.1.3 - Main Section
	13.1.4 - Teach section
	13.1.5 - Print program section
	LINE=2,9
	POSMODE(1,2)=1,1 ‘sets absolute position mode
	END

