
This is a Discontinued Product

Contact Kollmorgen Customer Support at
1-540-633-3545 or email us at support.kollmorgen.com
if assistance is required.

SLO-SYN® MODEL MX2000

PROGRAMMABLE MULTI-AXIS

MOTION CONTROLLER

(with VERSION 4.0 SOFTWARE)

INSTALLATION

AND

OPERATION

MANUAL

PRICE: $50.00

ENGINEERING CHANGES

Superior Electric reserves the right to make engineering refinements on all its products. Such
refinements may affect information given in instructions, Therefore, USE ONLY THE
INSTRUCTIONS THAT ARE PACKED WITH THE PRODUCT.

RECORD OF REVISION
Revision Date Description

A 4/30/99 Initial Release
B 6/08/00 Revise corporate identity

The MX2000-2 and MX2000-6 are UL recognized components, File No. E146240.

© Superior Electric 2000

Table of Contents i

Table of Contents

SECTION & TITLE PAGE
1 – Important Safety Information 1

1.1 – Cautions and Warnings 2

2 – Introduction 5
2.1 – How To Use This Manual 6
2.2 – What you need to know first 6
2.3 – Conventions Used In This Manual 6
2.4 – Applications Assistance 7

3 – Quick Start Installation Guide 9
3.1 – Switch and Jumper Settings 10

3.1.1 Serial Communications Baud Rate switches 10
3.1.2 HOST RS232/485 10
3.1.3 Auxiliary RS232/RS485 10
3.1.4 Unit ID switches 10
3.1.5 32 bit DSP board Inputs 11
3.1.6 Dual Axis Inputs settings 11
3.1.7 Digital I/O settings 11

3.2 – Step-by-step Start-up Procedure 11
3.2.1 Bench Set Up 11
3.2.2 Installation into Mechanical System 13

3.3 – Installation 13
3.4 – Wiring the Controller for Operation 14

4 – Overview Of System Operation 15
4.1 – Features and Functions 16
4.2 – General Overview 17

4.2.1 Serial Communications 17
4.2.2 Shutdown input & Program Select Inputs 17
4.2.3 Expansion I/O – BCD Port 17
4.2.4 Digital I/O 17
4.2.5 Stepper Interface 17
4.2.6 Analog Drive 17
4.2.7 Encoder Interface 17
4.2.8 Axis I/O and Analog I/O 18

4.3 – Use of the Serial Ports Host and Auxiliary 19

5 – Specifications and Equivalent Circuits 21
5.1 - Mechanical Specifications 22
5.2 - Environment Specifications 22
5.3 - Input Power 22
5.4 - MX2000 System 22
5.5 - Dual Axis Interface Card 24

5.5.1 Stepper Drive Connections 24
5.5.2 Servo Drive Connections 24
5.5.3 Encoder Connectors 25
5.5.4 Axis I/O Connectors 26
5.5.5 Stepper Drive Connectors 27
5.5.6 Analog Connector 28
5.5.7 Dual Axis Interface Card 29

ii Table of Contents

SECTION & TITLE PAGE
5.6 – 32 bit DSP Controller Card 30

5.6.1 Auxiliary Serial Port 30
5.6.2 Host Serial Port 31
5.6.3 DSP Card Inputs 33

5.7 – Expansion I/O Board 35
5.7.1 EXIN/EXOUT assignments 35
5.7.2 BCD assignments 36

5.8 – Digital I/O Board 40
5.8.1 Input Connector 40
5.8.2 Output Connector 41
5.8.3 Internal Power Supply 42

5.9 – MX2 and MX6 Power Supply Board 44
5.9.1 AC Input 44
5.9.2 EXIN/EXOUT assignments 44
5.9.3 BCD assignments 44

5.10 – MX2A and MX6A Power Supply Board 45
5.10.1 AC Input 45
5.10.2 Input Connector 45
5.10.3 Output Connector 45
5.10.4 Internal Power Supply 45

5.11 – MX8 Power Supply Board 46
5.11.1 AC Input 46

5.12 – MX2 Outline 47
5.13 – MX6 Outline 48
5.14 – MX8 Outline 48
5.15 – MX & Servo Amplifier Connection Diagram 49

6 – Motion Controller Programming Interface 51
6.1 – Programming 52

6.1.1 General Description of Programming 52
6.1.1.1 What is Programming? 52
6.1.1.2 What’s in a Program 52
6.1.1.3 How is the Controller Programmed? 52

6.1.2 What are “Host Commands”? 53
6.1.3 Memory Types and Usage 53
6.1.4 References 53

6.2 – Multi-Tasking Operations 53
6.2.1 Multi-Tasking timing 54

6.3 – Motion Controller Programming Interface (MCPI) 54
6.3.1 Software Installation 54
6.3.2 Starting the MCPI Environment 54

6.3.2.1 The MCPI opening screen 55
6.3.3 Setting communication parameters 55
6.3.4 Creating a new project 55
6.3.5 The Task Editor 56

6.3.5.1 Document settings 57
6.3.5.2 Editor Tool Box 57

6.3.6 Terminal Emulation 58
6.3.6.1 Configuring Buttons 58
6.3.6.2 Configuring Fonts & colors 58

Table of Contents iii

SECTION & TITLE PAGE
6.3.7 Configuration & Setup Folders 59

6.3.7.1 Controller type Folder 59
6.3.7.2 System Folder 59
6.3.7.3 Profile Folder 59
6.3.7.4 Analog Inputs Folder 60
6.3.7.5 Encoder Folder 60
6.3.7.6 Open Loop Stepper Folder 60
6.3.7.7 Closed Loop Stepper Folder 60
6.3.7.8 Servo Drive Folder 60
6.3.7.9 Travel Limit Folder 60
6.3.7.10 Mechanical Home & Mark Registration Folder 61
6.3.7.11 I/O Folder 61

6.3.8 Preparing User Project for Execution 61
6.3.8.1 Project Source Code 61
6.3.8.2 Compiling a Project 61
6.3.8.3 Downloading a Project 62
6.3.8.4 Uploading Source Code 62

6.3.9 Downloading an Operating System 62
6.3.10 Other Menus 62

6.3.10.1 Project Menu 62
6.3.10.2 Utility Menu 63
6.3.10.3 Window Menu 63
6.3.10.4 Help Menu 63

6.3.11 Project Command Buttons 63

7 – Software Reference Guide 65
7.1 – SEBASIC Conventions 66

7.1.1 Arithmetic Operators 66
7.1.2 Logical Operators 66
7.1.3 Relationship Operators 66
7.1.4 Basic Data Types 66
7.1.5 Case Sensitivity in Statements & Commands 66
7.1.6 Program Limits 67
7.1.7 Numeric Formats and Range 67
7.1.8 Program Comments 67
7.1.9 Axis Related Command Syntax 67

7.1.9.1 Definitions Used in the Syntax Description 67
7.1.9.2 Syntax Descriptions 68

7.2 – Programming Command Grouped by Functions 69
7.3 – Programming Command Summary (alphabetical list) 73
7.4 – Alphabetical List of Programming Commands with Syntax and Examples 78

& 78
| 78
^ 78
>> 79
<< 79
ABS 79
ABSPOS 80
ACCEL 81
ACTSPD 81
ANALOG 82
AND 83
ARC 84
ASC 84
ATN 85

iv Table of Contents

Alphabetical List of Programming Commands with Syntax and Examples CONTINUED

SECTION & TITLE PAGE
ATN2 85
BCD 86
BOOST 86
BUSY 86
CAPPOS 87
CAPTURE 88
CHR$ 89
COMMON 89
COS 89
DATA 90
DECEL 90
#DEFINE 91
DELTACAPPOS 92
DIM 93
DIST 93
DO … LOOP 94
DONE 95
DRVREADY 96
ENCBAND 97
ENCERR 97
ENCFOL 97
ENCMODE 98
ENCPOS 98
ENCSPD 98
END 99
ERR 100
ERRAXIS 102
ERRTRAP 102
EVENT1 103
EVENT2 104
EXIN 105
EXOUT 106
FEEDRATE 107
FOLACCDIST 107
FOLDCCDIST 107
FOLERR 108
FOLINPUT 108
FOLJOG 108
FOLMAXRATIO 109
FOLMINRATIO 109
FOLMOVE 109
FOLMOVEREG 110
FOLOFFSET 110
FOLOFFSETDIST 110
FOLRATIO 111
FOLRATIOINC 111
FOLSTARTDIST 111
FOLSYNC 112
FOLSYNCDIST 112
FOLTRIG 112
FORMAT 113
FOR … NEXT … STEP 114
GETCHAR 115

Table of Contents v

Alphabetical List of Programming Commands with Syntax and Examples CONTINUED

SECTION & TITLE PAGE
GOSUB … RETURN 115
GOTO 116
HARDLIMIT 117
HARDLIMNEG 118
HARDLIMPOS 118
HEX$ 118
HVAL 119
IF … THEN … ELSE IF … ELSE … END IF 120
IN 121
INCHAR 121
#INCLUDE 122
INPUT 122
INSTR 123
INTLIM 123
JOG 124
JOGSTART 124
JOYSTICK 125
KAFF 126
KD 126
KI 126
KP 126
KVFF 127
LCASE$ 127
LEFT$ 127
LEN 127
LINE 128
LOF 129
LOG 129
LOWSPD 129
MAXSPD 130
MID$ 130
MOD 131
MOTIONSTATE 131
MOVE 132
MOVEHOME 133
MOVEREG 135
NOT 137
NVR 137
NVRBIT 138
NVRBYTE 139
OPTION DECLARE 139
OR 140
OUT 141
OUTLIMIT 142
PATH … PATH CLOSE … PATH END 143
POINT 144
POSERR 144
POSMODE 145
PRINT 146
PRINT USING 147
PROFILE 150
RADIUS 151
READ 151

vi Table of Contents

Alphabetical List of Programming Commands with Syntax and Examples CONTINUED

SECTION & TITLE PAGE
REDUCE 152
REGLIMIT 152
REM ‘ 153
RESET 153
RESTORE 153
RIGHT$ 154
SETCOM 154
SHIFT 155
SIGN 155
SIN 155
SOFTLIMIT 156
SOFTLIMNEG 157
SOFTLIMPOS 158
SPEED 159
SQRT 160
STOP 160
STOPERR 160
STR$ 161
STRING$ 161
TAN 161
TIMER 162
TIMER2 162
TOLERANCE 163
UCASE$ 163
VAL 164
VELOCITY 164
WAIT 164
WAITDONE 165
WARNING 166
WNDGS 166

7.5 Host Commands Grouped by Functions 167
7.6 Host Commands Summary (alphabetical list) 169
7.7 Host Commands – Alphabetical Listing 172

<n 172
? 172
ABSPOS 173
ACCEL 173
ANALOG 174
ARC 174
AXISBRD 174
AXSTAT 175
BACKSPACE 175
BCD 175
BUSY 176
CAPPOS 176
CAPTURE 177
CTRL-A 177
CTRL-C 177
DECEL 178
DELTACAPPOS 178
DIR 179
DRVREADY 179
ENCBAND 180

Table of Contents vii

Host Commands – Alphabetical Listing CONTINUED

SECTION & TITLE PAGE
ENCERR 180
ENCFOL 181
ENCMODE 181
ENCPOS 182
ENCRES 182
ENCSPD 182
ERASE 183
ERR 183
ERRAXIS 184
ERRM 185
ESC 186
EVENT1 186
EVENT2 187
EXIN 187
EXOUT 188
FILTER 188
FOLERR 189
FREE 189
FREEMEM 190
HARDLIMNEG 190
HARDLIMPOS 190
IN 191
INTLIM 191
JOG 192
JOGSTART 192
KAFF 192
KD 193
KI 193
KP 194
KVFF 194
LINE 195
LOAD 195
LOWSPD 195
MAXSPD 196
MOVE 196
MOVEHOME 197
MOVE REG 197
NVR 197
NVRBIT 198
NVRBYTE 198
OUT 198
OUTLIMIT 199
POSERR 199
POSMODE 200
PROFILE 200
REGLIMIT 201
RESET 201
REVISION 201
RUN 202
SNVR 202
SOFTLIMNEG 203
SOFTLIMPOS 203
SPEED 204

viii Table of Contents

Host Commands – Alphabetical Listing CONTINUED

SECTION & TITLE PAGE
STOP 204
STOPERR 205
UNIT 205
VELOCITY 206
WARNING 206
WNDGS 207
XON XOFF 207

8 – FOLLOWING 209
8.1 – Following Description 210

8.1.1 Follower Definition 210
8.1.1.1 Analog Following 210
8.1.1.2. Encoder Following 210
8.1.1.3 Command & Variable Following 210

8.1.2 Following Ratio 211
8.1.3 Follower Motions 211
8.1.4 Basic Following States 212

8.1.4.1 Following Trigger 212
8.1.4.2 Follower Start Delay Distance 212
8.1.4.3 Follower Acceleration 212
8.1.4.4 Follower Synchronization 212
8.1.4.5 Follower Deceleration 212

8.1.5 Advance/Recede Cycle 213
8.1.5.1 Offset Wait Distance 213
8.1.5.2 Offset Velocity Limits 213
8.1.5.3 Offset Distances 213

8.1.6 Following Program Template 215
8.1.7 Distance Measurements 215
8.1.8 Cut to Length Example 216

8.1.8.1 Cut to Length Program Example 217
8.1.9 Rotating Knife Example 218

8.1.9.1 Rotating Knife Cycle 218
8.1.9.2 Rotating Knife Program Example (advance cycle) 221
8.1.9.3 Rotating Knife Program Example (recede cycle) 222

8.1.10 Gear Box Following Example 223
8.1.11 Following Command Listing 224

ACTSPD 224
ENCSPD 224
FOLINPUT 225
FOLTRIG 226
FOLSTARTDIST 227
FOLACCDIST 228
FOLDCCDIST 229
FOLRATIO 230
FOLRATIOINC 231
FOLJOG 232
FOLMOVE 233
FOLMOVEREG 234
STOP 235
FOLSYNC 235
MOTIONSTATE 236
FOLMAXRATIO 238
FOLMINRATIO 239

Table of Contents ix

Following CONTINUED

SECTION & TITLE PAGE
FOLOFFSET 240
FOLOFFSETDIST 242
FOLSYNCDIST 243

8.1.11 Follower Exercise 244

9 – Servo Drive 249
9.1 – Servo Control 250

9.1.1 Servo Tuning 250
9.1.1.1 System Folder 251
9.1.1.2 Encoder Folder 251
9.1.1.3 Servo Drive Folder 251
9.1.1.4 Servo Tuning Environment 252
9.1.1.5 Auto Tuning 253
9.1.1.6 Manual Tuning Adjustment 256

9.1.1.6.1 Adjustment based on auto tuning calculation 257
9.1.1.6.2 Fully Manual Adjustment 257

9.2 – Servo Drive Command Listing 261
FOLERR 261
INTLIM 262
KAFF 262
KD 263
KI 264
KP 265
KVFF 266
OUTLIMIT 266
STOPERR 267
WNDGS 268

10 – Stepper Drive 269
10.1 - Stepper Features 270
10.2 - Open Loop Stepper Folder 270
10.3 - Closed Loop Stepper Folder 271
10.4 - Encoder Folder 271
10.5 - Special Programming Notes for Closed Loop Stepper Operation 272
10.6 - Stepper Command Listing 273

BOOST 273
ENCMODE 274
FOLERR 275
LOWSPD 275
REDUCE 276
STOPERR 277
WNDGS 278

11 – Data Logging 279
11.1 – Data Logging 280

11.1.1 Parameter & Trigger Setup 280
11.1.1.1 Parameter List Descriptions 280

11.1.2 Data Transfer 281
11.1.3 View Data 281

x Table of Contents

 SECTION & TITLE PAGE
12 – Debug Environment 279
12.1 – Setting Project Debugging 280
12.2 – Task Debugging 280
12.2.1 Debug Program Execution 281
12.2.2 Breakpoint Setting/Clearing 281
12.2.3 Terminal Window 281
12.2.4 Watch Variables 281
12.2.5 Exit Debug Environment 281

13 – Application Examples 283
13.1 – Using Joystick to Teach an Arbitrary Shape Program 284
13.1.1 MX2000 Joystick Connection 284
13.1.2 Example Description 285
13.1.3 Main Section 285
13.1.4 Teach Section 285
13.1.5 Print Program Section 285
13.1.6 Execute Program Section 285
13.2 – Arbitrary Continuous Motion 289
13.2.1 Example Program 290
13.3 – Changing Velocity During Motion 291
13.3.1 Example Program 291
13.4 – Glue Application on a Gasket 292
13.4.1 Example Program 292
13.5 – Spring Winding Machine 294
13.5.1 Example Program 295
13.6 – Two Axis Conveying System 296
13.6.1 Example Program 296
13.7 – Optional Programming Environments 296
13.7.1 MX2000 CAD-To-Motion 296

14 – Troubleshooting Guide 297
14.1 – Status Indicator Lights 398
14.1.1 Power LED 398
14.1.2 Fault LED 398
14.1.3 Busy LED 398
14.2 – Serial Communications 398
14.3 – If you can not access Axis I/O 398

15 – Glossary 299

Table of Contents xi

List of Illustrations
Illustration or Chart Section Page
PC receiver Baud Rate Chart 3 10
General Application Overview 4 18
MX 2000 System Block Diagram 5 23
Dual Axis Board

Dual Axis Interface board selection chart 5 24
Stepper Drive Connection Diagram 5 24
Servo Drive Connection Diagram 5 24
Encoder Connector signal description & electrical specification chart 5 25
Encoder Equivalent Circuit Diagram 5 25
Encoder Pulse and Direction connection Diagram 5 25
Axis I/O Connector signal description & electrical specification chart 5 26
Axis I/O Equivalent Circuit Diagram 5 26
Axis I/O Connection Diagram 5 26
Stepper Drive Connector signal description & electrical specification chart 5 27
Stepper Drive Equivalent Circuit Diagram 5 27
Analog Drive Connector signal description & electrical specification chart 5 28
Analog Drive Equivalent Circuit Diagram 5 28
Dual Axis Interface Panel and Card Diagram 5 29

32 bit DSP Board
Auxiliary Serial Port signal description chart 5 30
Auxiliary Serial Port Equivalent Circuit Diagram 5 30
Auxiliary Serial Port RS485 connections to a control panel 5 30
Auxiliary Serial Port RS232 connections to a control panel 5 30
Host Serial Port dip switch setting chart 5 31
Host Serial Port signal description chart for RS485 connector 5 31
Host Serial Port signal description chart for RS232 connector 5 31
Host Serial Port Equivalent Circuit Diagram RS232/RS485 position 5 31
Daisy Chaining MX2000 Controllers Diagrams 5 32
Auto Execute selection chart (SEL inputs) 5 33
DSP Card Inputs signal description & electrical specification chart 5 33
DSP front Panel Diagram 5 34
DSP Input connections for Sinking & sourcing chart 5 34
DSP card Inputs equivalent Circuit Diagram 5 34

Expansion I/O Board
Expansion I/O assignment chart 5 35
Expansion I/O Connector pin outs Diagram 5 35
Expansion I/O connection to OPTO-22 Module rack Diagram 5 36
OPTO-22 Manufacturer’s chart 5 36
Expansion I/O BCD bank assignment chart 5 36
Expansion I/O BCD bank Connection diagram 5 36
Expansion I/O BCD bank Connection diagram (BCD switch banks) 5 37
Expansion I/O BCD bank Signal Description & Electrical Specification chart 5 38
Expansion I/O Equivalent Circuit Diagram 5 38
Expansion I/O front Panel & Card Diagram 5 39

Digital I/O Board
Digital I/O Sink/Source Jumper Position Diagram 5 40
Digital I/O Input Signal Description & Electrical Specification chart 5 40
Digital I/O Input Sink/Sourcing Connection Diagrams 5 40
Digital I/O Output Signal Description & Electrical Specification chart 5 41
Digital I/O Output Sink/Sourcing Connection Diagrams 5 41
Digital I/O Internal Supply Signal Description chart 5 42
Digital I/O Equivalent Circuit Diagram 5 42
Digital I/O Panel and Circuit Card 5 43

xii Table of Contents

Illustration or Chart Section Page
MX2 & MX6 Power Supply Board

MX2 & MX6 panel 5 44
AC input Description and Lead color chart 5 44
EXIN & EXOUT assignments chart 5 44
BCD assignment chart 5 44
MX2 outline 5 47
MX6 outline 5 48

MX2A & MX6A Power Supply Board
MX2A & MX6A panel 5 45
AC input Description and Lead color chart 5 45
Input connector description and electrical specification chart 5 45
Output connector description and electrical specification chart 5 45
Internal Power Supply description chart 5 45
MX2 outline 5 47
MX6 outline 5 48

MX8 Power Supply Board
MX8 panel 5 46
AC input Description and Lead color chart 5 46
MX8 outline 5 48

MX & Servo Amplifier Connection Diagram 5 49
MCPI

Multi Tasking diagram 6 54
MCPI Opening Screen 6 55
New Project Screens 6 55 & 56
Task Editor Screens 6 56
Document setting Screen 6 57
Editor Tool Box diagram 6 57
Terminal Emulation setup screen 6 58
Button configuration screens 6 58
Font & color configuration screen 6 58
System Folder screen 6 59
Profile Folder screen 6 59
Analog Inputs Folder screen 6 60
Travel Limit Folder screen 6 60
Mechanical Home & Mark Registration Folder screen 6 61
I/O Folder screen 6 61
System Folder screen 9 251
Encoder Folder screen 9 & 10 251 & 271
Servo Drive Folder 9 251
Open Loop Stepper Folder screen 10 270
Closed Loop Stepper Folder screen 10 271
Source Code selection screen 6 61
Upload Source Code screen 6 62
Download Operating System screen 6 62
Project Menu screen 6 62
Utility Menu Screen 6 63
Window Menu Screen 6 63
Help Menu Screen 6 63

Software Reference Guide
Arithmetic Operators 7 66
Logical Operator 7 66
Relationship Operator chart 7 66
Case sensitivity chart 7 66
Program limit charts 7 67
Numeric Format and Ranges 7 67

Table of Contents xiii

Software Reference Guide Continued

Illustration or Chart Section Page
ANALOG input chart 7 82
AND operator truth table chart 7 83
CAPTURE trigger chart 7 88
JOG Cycle diagram 7 124
LINE Cycle diagram 7 128
MOVE Cycle diagram 7 132
MOVEHOME Cycle diagram 7 133
MOVEREG Cycle diagram 7 136
NOT operator truth table chart 7 137
OR operator truth table chart 7 140
PROFILE velocity response diagram 7 150
SPEED change during motion diagram 7 159

Following
Basic Following States diagram 8 212
Basic Advance/Recede Velocity Profile diagram 8 214
Following Program Template chart 8 215
Cut to Length Cycle Velocity Profile Diagram 8 216
Cut to Length Cycle Positional Profile Diagram 8 216
Rotary Knife Cycle diagram 8 219
Rotary Knife advance cycle diagram 8 220
Rotary Knife recede cycle diagram 8 220
FOLTRIG diagram 8 226
FOLSTARTDIST diagram 8 227
FOLACCDIST diagram 8 228
FOLDCCDIST diagram 8 228
FOLRATIO diagram 8 230
FOLRATIOINC diagram 8 231
FOLMOVE Cycle diagram 8 233
FOLMOVEREG Cycle diagram 8 234
MOTIONSTATE diagram 8 236
FOLMAXRATIO diagram 8 238
FOLMINRATIO diagram 8 239
FOLOFFSET diagrams 8 240 & 241
FOLSYNCDIST diagram 8 243
Follower Exercise chart & diagram 8 244 & 245
Exercise Answers 8 246 & 247

Servo Drive
Servo Block Diagram 9 250
System Folder screen 9 251
Encoder Folder screen 9 251
Servo Drive Folder screen 9 251
Servo Tuning Environment screen 9 253
Auto Tuning screen 9 253
Stable response with integration during motion disabled diagram 9 255
Stable response with integration during motion disabled diagram 9 255
Response with different KVFF values diagrams 9 255 & 256
Stable and Unstable response diagrams 9 256
Manual adjustment response diagrams 9 258-260

Stepper Drive
Open Loop Stepper Folder screen 10 270
Closed Loop Stepper Folder screen 10 271
Encoder Folder 10 271

xiv Table of Contents

Illustration or Chart Section Page
Data Logging Environment

Data Logging entry screen 11 280
Parameter & Trigger Setup screen 11 280
Data Transfer screen 11 281
View Data screen 11 281

Debug Environment
Debug setup screen 12 284
Debug Environment screen 12 284
Watch Variable screens 12 285

Application Examples
Joystick connection diagram 13 288
Arbitrary Continuous Motion machine diagram 13 294
Arbitrary path Positional Profile diagram 13 295
Changing Velocity during Motion diagram 13 296
Glue Application diagram 13 297

Glossary
ASCII Table chart 15 307

Cautions & Warnings 1

Section 1
Important

Safety Information

2 Cautions & Warnings

1.1 – Cautions and Warnings

Before installing and operating your MX2000 motion
control product, it is extremely important both to you and
us that you read this section very
thoroughly and carefully. Your Slo-Syn product will de-
liver years of reliable, trouble-free, and most importantly,
safe operation if you heed the cautions and warnings out-
lined in this section, and follow the subsequent instruc-
tions in the remainder of this manual.

Throughout this section, and the remainder of this man-
ual, two very important symbols will be used to identify
hazardous and potentially dangerous situations. These
symbols are the electrical shock indicator and the excla-
mation point. Both are always surrounded by a triangle as
shown.

The electrical shock symbol shown to the
left is used to indicate situations where
ELECTRICAL SHOCK hazards may
exist. These warnings must be followed to
ensure that YOU avoid electrocution that
could result in serious injury or death.

The exclamation point symbol shown to
the left is used to indicate situations other
than electrical hazards that may be poten-
tially dangerous to either YOU or to the
product. Follow these warnings carefully
to avoid injury to you and damage to the
product.

The following is a partial list of precautions that must be
followed to ensure safe operation of the unit. Other more
specific precautions are indicated in the appropriate sec-
tions of this manual. As you read through the manual, pay
particularly close attention to these cautions and warnings
as they could save your life.

High voltages are present inside this unit.
An Electrical shock hazard exist that may
cause serious injury or death if this unit is
operated without its protective cover in
place.

Be certain the power has been removed
for a minimum of 5 minutes before any
service work or circuit board configura-
tion changes are performed. This assures
that the power supplies are at zero.

Do not exceed the voltage or current rat-
ings of the various inputs and outputs;
Please read the electrical specification in
Section 5. This will protect the circuitry
and components from accidental damage.

In order to provide the correct level of
protection in the unit, replacement fuses
must be the same exact style and ratings
as those originally installed in the unit.

Secure mounting and proper grounding of
both the MX2000 controller and the mo-
tors are essential for proper operation of
the system.

Be sure to mount the unit so there is ade-
quate space around it for cooling airflow,
and observe the environmental limitations
for temperature and humidity.

The 24-volt dc power supply is limited to a
total current output of 0.75 amperes. Do
not exceed this rating, or the Controller
may shut down or work erratically as
the power supply’s current limiting cir-
cuitry operates to protect the unit from
overload.

Please follow good wiring practices and
keep low-level signal lines away from
power and motor wiring. It is best to use
shielded, twisted-pair cables for signal
lines, being sure to ground the shields at
one end. Doing this will help to avoid elec-
trical noise interference problems.

If the unit is opened or disassembled, be
sure to treat the circuit cards as static-
sensitive components to avoid damage due
to electrostatic discharge (ESD). Work
only in ESD protected areas, and it is best
not to touch the circuit conductors or
components unless you are wearing an
ESD-protective grounding strap.

It is your responsibility to follow the ap-
propriate federal, state, and local electrical
and occupational safety codes in the appli-
cation of this product.

NEVER wire the unit with the
power on! Serious injury as
well as damage to the unit may
result.

NONE of the inputs to the unit are to be
used as an EMERGENCY STOP in ANY
application. Although activation of certain
inputs will discontinue motion or disable
motor current, these are NOT designed as
fail-safe E-STOP inputs. Relying exclu-
sively on inputs to the unit to cease motion
that could cause dangerous conditions is a
violation of Machine Safety Code (ref,
IEC204-1). Other measures such as me-
chanical stops and fail-safe brakes must be
used in these situations.

W arning

W arning

W arning

!
Caution

!
Caution

!
Caution

!
Caution

!
Caution

!
Caution

!
Caution

!
Caution

!
Caution

!
Caution

!
Caution

!
Caution

Introduction 3

Section 2
Introduction

4 Introduction

2.1 - How To Use This Manual
Congratulations on the purchase of your new
MX2000 motion control product! Your programmable
motion controller is a full-featured and flexible
product, yet it is fairly simple to apply it to your machine
control application. This manual is designed to guide and
assist you through the installation, programming, and op-
eration of the controller. If you’re reading this, you under-
stand the importance of familiarizing yourself with how
this product should be installed and operated. We strongly
recommend that you read through this manual until you are
comfortable with electrical connections and operating con-
cepts of this unit.

Section 1, Important Safety Information, has cautions
and warnings information. This section should be read first
and the cautions and warnings should be followed.

Section 2, Introduction, has user prerequisite require-
ments, conventions used in the manual and Applications
Assistance information.

Section 3, Quick Start Installation Guide, contains the
minimum steps necessary to get up and running. The refer-
ences to the appropriate manual sections where further
details can be found are included.

Section 4, Overview of System Operation, contains fea-
tures and functions, along with a general overview of the
MX2000 system.

Section 5, Specification and Equivalent Circuits, has
specifications, setup requirements, connection diagrams,
and equivalent circuits for each board in the MX2000 sys-
tem.

Section 6, Motion Control Programming Interface,
contains general Programming information. PC software
installation and execution, communications with the
MX2000 controller, and user project creation.

Section 7, Software Reference Guide, contains the basic
command conventions used and a listing with descriptions
of the Basic Program commands and Host Commands.

Section 8, Following, contains detailed information on
following, description of follower commands, application
examples, and listing and descriptions of the individual
follower commands.

Section 9, Servo Drive, contains general information on
servos, tuning, testing performance. Also a listing and de-
scriptions of the individual servo commands.

Section 10, Stepper Drive, contains general information
on stepper drives, closed and open loop stepper setups.
Also a listing and descriptions of the individual stepper
commands.

Section 11, Data Logging, describes how to data log
MX2000 parameters.

Section 12, Debug Environment, describes how to debug
a user’s task.

Section 13, Application Examples, contains descrip-
tions of applications with example programs for them.
Section 14, Troubleshooting Guide, has helpful hints
on troubleshooting problems.

Section 15, Glossary, contains a glossary of terms used
in the manual.

2.2 – What you need to know first
This manual is written in a simple and easy to follow
format that should be suitable for both new and experi-
enced motion control users. In order to get the most out
of your SLO-SYN Programmable Motion Controller, we
assume the user will be knowledgeable in the following
areas:

Basic electrical and electronics skills, including prepar-
ing and following an equipment wiring diagram or
schematic.
The basics of motion control system applications, such
as torque, speed, move distance, and how to structure a
motion task into move segments and input/output con-
trol.
Some familiarity with elementary computer program-
ming, including defining the problem to be solved and
coding it in a computer language.

2.3 – Conventions used in this manual
Motor rotation direction (CW and CCW) is properly
oriented when viewing the motor from the end opposite
the mounting flange.

Please refer to the Glossary section for detailed descrip-
tions of terms such as sink and source I/O, various mo-
tion terms, etc.

2.4 - Applications Assistance
Although this manual represents a detailed compilation
of information regarding your SLO-SYN control prod-
uct, sometimes questions may arise which will require
that you contact us, You now have a few options avail-
able to you when you need information regarding your
product or its application.

On the Internet at www.danahermotion.com. Our multi-
media enabled web site offers you information such as:
Free Software
TechFax fax on demand documents (1-800-234-3369)
HTML Product Selector, HTML Brand Selector
Product News and Links
Sales and Distribution Information
Product information and specifications
Many more features

2. By Phone. You may reach us by phoning our Motion
Control Application Engineering Department at tele-
phone (800)787-3532 ext. 4751. Or call our main num-
ber at (860)585-4510. Both may be reached between the
hours of 8:00 AM and 5:00 PM (Eastern Time), Monday
through Friday. Technical personnel are available to as-
sist you in getting your application up and running.

Quick Start Installation Guide 5

Section 3
Quick Start

Installation Guide

6 Setup & Installation

3.1 – Switch and Jumper Settings

Before mounting and installing the MX controller, it is
best to set the switches and internal jumpers that govern
various operating features.

3.1.1 – Serial Communication
 Baud Rate switches

The "BAUD" DIP switch located on the 32 bit DSP con-
troller panel needs to be set to match the baud rate of the
host computer or terminal to which it is connected. The
factory default is 9600 baud; if this is not what is desired,
then set the switches toward one of the appropriate values
shown on the label. Valid selections are "9.6" (9600),
"19.2" (19,200), and "38.4" (38,400). If all switches are
"off" (toward the right), then the baud rate is set to 4800.
These switches are only read at power-up, hence changing
the baud rate requires a power-down, power-up cycle be-
fore the change takes effect.

Although the controller's serial ports are configurable for
up to 38.4K baud, the serial communications may be lim-
ited by the PC. A PC may not be able to receive data
from the controller at baud rates above 9600. This limi-
tation is due to the PC's inability, at the higher baud rates,
to read the received character in time, before another
character is received. If this happens, an OVERRUN
ERROR will occur. This problem will not exist if the
serial port's UART has hardware buffering. The follow-
ing is a list of UART’ s commonly used on PC serial port
cards. The UART’ s marked with an * are buffered.

UART’ s: 8250, 16450, 16451, 16452, *16550, *16552

The following is a table of controller operations vs.
Maximum PC receiver baud rate.

OPERATION
UART

(no buffer)
UART
(buffer)

Load operating system 38400* 38400

Load user program 38400* 38400

Extract source code 9600 38400

Host commands 9600 38400

* The unbuffered UART will perform the first two
operations at the higher baud rate, since during these
operations, the controller does not transmit multiple
characters in succession.

3.1.2 – Host RS232/RS485

The RS232/RS485 switch located on the 32 bit DSP con-
troller panel needs to be set to match the communication
protocol of the host device, RS-232 or RS-485, to which
the Controller is connected. The factory default is for
"232" (RS-232); if RS-485 is desired, set the switch to-
ward "485".

Serial communications format for the host port is "N-8-1",
or No parity, 8 data bits, and 1 stop bit.

3.1.3 – Auxiliary RS232/RS485

The communication protocol (RS232 or RS485) for the
Auxiliary Serial Port on the 32 bit DSP Card is selected
via a jumper on the card, immediately behind the port
connector. The factory default is for RS485; if RS232 is
desired, the DSP Card must be removed and the jumper
setting changed to the RS232 setting. Baud rate for this
port is set at 9600; if another Baud rate is desired, select it
via software using the "SETCOM" command. See Sec-
tion 7 for further details on this command.

Serial communications format for the auxiliary port is "N-
8-1", or No parity, 8 data bits, and 1 stop bit.

3.1.4 – Unit ID switch

The Controller is capable of being operated in a
"daisy-chain" fashion, with up to 9 units connected to a
single host. A connection diagram is depicted in Section
5.6.2 of this manual. Each unit in the chain requires a
unique identification number (ID #); this value is selected
by the "UNIT ID" selector switch on the DSP controller
board. The unit is shipped from the factory with 1 se-
lected (the first unit in the chain). If needed, set the se-
lector switch to a different value by using a small screw-
driver. Set the pointer on the switch to the desired value, 1
to 9.

The controller scans the Unit ID switch during power up
or when a system Reset command is issued.

3.1.5 – 32 bit DSP Board Inputs

The four optically isolated inputs can either be sinking or
sourcing. A jumper on the card controls the selection,
located behind the DSP input connector. The factory set-
ting is sinking; if sourcing is desired, the DSP card must
be removed and the jumper setting changed to the Source
position.

Hint: A CLR to COM jumper is required for motion
to occur.

3.1.6 – Dual Axis Inputs settings

The eight dedicated inputs on the Dual Axis Interface
Card can either be sinking or sourcing. A jumper on the
card controls the selection, located behind the AXIS I/O
connector. The factory setting is sinking; if sourcing is
desired, the Dual Axis card must be removed and the
jumper setting changed to the Source position.

3.1.6.1 – Dual Axis I.D. switches

Each axis card must be assigned a unique ID (1-4) and ID
1 must always be assigned to one of the boards. The axis
ID switch settings assign this ID. A table for the different
assignments is illustrated in Section 5.5 of this manual.

3.1.7 – Digital I/O settings

Setup & Installation 7

The digital I/O board inputs and outputs can either be
sinking or sourcing. Two jumpers on the card controls the
selection, located in the lower left corner of the board.
The factory setting is sinking; if sourcing is desired, the
Digital I/O card must be removed and the jumpers setting
changed to the Source position.

3.2 - Step-by-Step Start-Up Procedure

The MX2000 stepper/servo motor positioning system is a
sophisticated and versatile product. Setting up the system,
however, can be simple and straight-forward if the proper
steps are followed. Please use the step-by-step set up
guide below.

3.2.1 - Bench Set Up.

Before connecting your MX2000 and motors to your me-
chanical system or machine, we recommend that you
“bench test” the system. This will allow you to become
familiar with the wiring, programming and operation of
the system before installing it into your machine. This
may also prevent inadvertent damage to your mechanical
system if you make programming errors that cause unex-
pected motion. The bench set up can be used to perform
simple motions with an unloaded motor. To perform a
bench test, do the following:

1) Wire it up. Connect the servo drives as illustrated in
section 5.5.2, connect the stepper drives as illustrated
in section 5.5.1, connect the AC power, I/O and other
required signals per the wiring diagrams and instruc-
tions in section 5. BE SAFE!! Do not apply AC
power to the unit until you are sure of all connec-
tions. Initially, there is no need to connect all of the
wiring of your system together. Wire the AC line in-
put, drives, motors and HOST communication ports.
This will be all you need to establish communications
to the unit and perform simple motion.

HINT: Don’t forget to wire the Enable and Ready
signals to the servo drive, see section 5.5.6 Analog
Drive Connector .

2) Load Software. You will need to use a PC to pro-
gram the unit according to your requirements. First
you must load the MCPI software onto the PC from
the floppy disks provided with your unit. Simply in-
sert disk #1 and run the file SETUP.EXE. Once the
software is loaded, run it by double clicking on the
MCPI icon. See Section 6.3.1 for more details on the
MCPI installation process.

3) Create your Project. You can now create your new
Project. Your Project will contain Configuration in-
formation for your particular system, and also your
program Task’s that holds the user program written
in BASIC-like language. Read section 6 of this man-
ual, and then step through the Configuration folders
and enter the appropriate data for your system, saving
the configuration when you are done. Don’t forget to
set up the serial port for your PC to the correct port
number and baud rate.

HINT: The Drive type for each axis must be se-
lected in the System folder. Now the axes must be
assigned to a specific task. The Task assignment
item in the System folder is used for this purpose.

HINT: If the axis is a servo drive or closed loop
stepper the line count of the encoder must be entered
into the Encoder folder.

HINT: Motion is commanded in User Units . The
User Units per motor revolution item in the System
folder allows you to enter the value. Initially, it is
easiest to set this to 1. This will mean that move dis-
tances are in motor revolutions (e.g. move=1 moves
one revolution), speeds will be in revs/sec, and accel-
erations will be in revs/sec/sec. Later this can be
changed (e.g. to allow programming in inches on a
lead screw) to allow ease of programming once the
motor is installed into the mechanical system. All
move distances, speeds, and accelerations (or
decelerations), and encoder information are provided
in User Units, so be sure you understand this before
continuing.

4) Compile and Download the project into the con-
troller using the command buttons of the MCPI. Note
that initially, you can leave the Task blank and com-
mand motion using the Host Commands. Host
commands are entered in Terminal Mode from the
MCPI. Enter the terminal mode by clicking on the
Terminal command button on you screen. If your
system consists of stepper drives only go to step 8.
See Section 6.3.8.2 of this manual.

5) Tune the Servo axes . Before running the motor, the
controller compensation parameters (gains) must be
set. To aid in this task an automatic servo tuning
procedure is available. To enter the servo tuning
screen click on the servo tuning button. The default
values for auto-tuning procedure should work fine for
now. The motor may be tuned on the bench with no
load. Ensure that the motor is properly secured to
your work surface (bench). Note: Do not clamp the
motor anywhere except at the mounting flange.

Begin the auto-tuning process by selecting the servo
axis you desire to tune and then by clicking on the
Auto Tune button. A screen with the default values
will appear. Click on the OK button to use these set-
tings. Next, click on the Measure System Gain but-
ton. The motor should bump , then the System Gain
value should update on the screen. Now click on the
Calculate Servo Gains button and the calculated
servo gain values will be displayed on the screen.
Click the Update Gains button, the servo should now
be locked in position. Verify this by manually trying
to turn the motor shaft. The servo should fight to stay
in position.
It’s now time to try a test move by entering profile
parameters. First click the Motion Setup button and
enter the desired Acceleration, Deceleration, Speed
and Move Distance in user units (e.g. revolutions by

8 Setup & Installation

default). When finished click the Done button. Now
make the motor move by clicking the Move Re-
sponse button. The motor should complete the pro-
grammed profile and the position error plot should
appear on the screen. You may have to adjust the dis-
play time in order to see the whole move.

6) Repeat step 5 for all servo axes. Then click on the
Exit command button and OK when save parameter
screen appears.

7) Compile and Download the project into the unit by
clicking on the Compile and then the Download
command buttons of the MCPI. This will save the new
servo parameters to the MX2000 controller. Note that
initially, you can leave the Task blank and command
motion using the HOST Commands . Host commands
are entered in the Terminal Mode from the MCPI.
Enter the terminal mode by clicking on the Terminal
command button.

8) Make it move! Now that you have compiled and
downloaded your project into the unit, you are ready to
make the motor move. First you must enter the speed
at which you wish the motor to turn, such as 1 rev/sec.
Do this by typing speed(axis)=1<CR> (<CR> means
the Return or Enter key). Now enter the acceleration,
for example 50 revs/sec/sec by typing accel(axis)=
50<CR>. Set the deceleration to match by typing de-
cel(axis)=50<CR>. Make sure to connect CLR to
COM for sinking I/O or CLR to +24V for sourcing
I/O on the DSP board or no motor motion will occur.
With the motor secured to the bench, you can now
command a move. If the axis you want to move is a
servo drive you must enable the drive first. This is ac-
complished by typing wndgs(axis)=1<CR>. To com-
mand an incremental move of 10 revolutions type
move(axis)=10<CR>. The designated axis motor
should now move 10 revolutions. If it does not, check
your wiring. Also verify your configuration settings.
In addition, check the motor direction to insure it
meets your requirements. The motor direction can be
reversed in the System folder if necessary.

Note: Axis is the desired axis you want to address.

9) Write a BASIC Program. Now that you have made
a simple move, you are ready to write your Task in
the MCPI BASIC-like language. Refer to Section 7
for a complete description of all of the Program
Commands. You can start by opening your Task and
entering the commands. First, let’s enter the exact
same commands that you used in the Terminal HOST
mode. Enter speed(axis)=1<CR>, accel(axis)=
50<CR>, decel(axis)=50<CR>, and move(axis)=10
<CR> commands as you did in step 8). If the axis is a
servo drive enter the WNDGS(axis)= 1<CR> com-
mand before the move command as you did in step
8). You must enter two more commands to tell the
unit that the program is done after it performs the
move. Type WAITDONE(axis)<CR> and
END<CR> as the last lines of the program. Since
your program has changed, you must compile and

download it into the unit again for the changes to take
effect. If you receive compilation errors, check your
spelling and syntax with the information in Section 7.

10) Execute the Program. From the Terminal Host
Mode, click on the RUN button to make the motor
move 10 revolutions. If desired you can now add
lines to the program to perform more sophisticated
motion. For example, type x=10 <CR>. This assigns
the REAL variable “x” a value of 10. Change the
MOVE(axis)=10 line to MOVE(axis)=x. Now the
motor will move the designated axis whatever dis-
tance has been assigned to x. Recompile and down-
load your program, then run it. It should operate the
same as before, but now the program is now using x
as the move distance in place of 10 as before. Change
the value of x to different distance values to verify
that it works correctly.

11) Expand the Program and Debug it. Now that you
have written a simple program, you can add more
complexity by adding more commands. You can do
complex looping, access I/O, and motion functions as
required. It will be helpful now to use the DEBUG
feature of the MCPI environment. Again, refer to
Section 12 for a detailed description of the debug
mode. If you compile your program in Debug Mode,
you can enter the debug screen as your program runs
and step through your code to verify proper opera-
tion. Once the code is functioning correctly, you
should re-compile in Release Mode as this will speed
up program execution.

3.2.2 - Installation into Mechanical
 System

Once you have tested everything out in a controlled envi-
ronment, you may complete the installation into your
system. This will require making all the necessary wiring
connections for limit switches, additional I/O, analog in-
puts, encoder, etc. The first thing that must be done is to
retune your servo axes, repeat steps 5 to 7. Start simple!!
Just as you started with a simple move on the bench, you
should start simple here as well, slowly adding comple x-
ity as you debug your code and gain more confidence in
programming. You may use the Debug Mode to help in
this process. See Section 12 Debug Environment for
more information.

Setup & Installation 9

3.3 - Installation

It is important to select a mounting location for you con-
troller that will meet the environmental specifications
listed in Section 5.2. Avoid locations that expose the unit
to extremes of temperature, humidity, dirt/dust, or vibra-
tion.

Also, it is best to avoid areas with high "electrical noise."
This will help to prevent misoperation due to electromag-
netic interference. Please refer to Section 3.4.1 for gen-
eral guidelines on selecting a location for your controller
where it will be less susceptible to EMI/RFI problems.

When mounting the unit near other apparatus, such as
inside an electrical cabinet or enclosure, please leave at
least 2 inches of space on all sides for proper cooling.
Mounting brackets are supplied to attach the controller to
a vertical surface. The MX2000-8 can also be mounted in
a standard 19 inch rack configuration by removing the
mounting brackets and rotating them 180E. Please refer
to section 5.12, 5.13, and 5.14 for overall dimensions and
mounting hole locations for the MX2000-2, -2A, -6, -6A,
and -8 respectively.

3.4 - WIRING THE CONTROLLER
 FOR OPERATION

Section 5 Specifications and Equivalent Circuits shows
how to wire up the individual connectors, depicts equiva-
lent circuits for each connector, describes connector la-
bels, defines connector signal characteristics, defines AC
electrical ratings of the System, and defines mechanical
and environmental specifications. Be sure to observe the
listed electrical ratings of the ac input and the various I/O
circuits; this will ensure proper, reliable operation of your
controller.

3.4.1 – General Wiring Guidelines

 SLO-SYN 2000 controls and drives use modern solid-
state digital electronics to provide the features needed for
advanced motion control applications. Some user equip-
ment may produce electromagnetic interference (EMI, or
electrical noise) that can cause inappropriate operation of
the digital logic used in the control, drive, or other com-
puter-type equipment in the user =s system.

In general, any equipment that causes arcs or sparks or
that switches voltage or current at high frequencies can
cause interference. In addition, ac utility lines are often
polluted with electrical noise from sources outside a user=s
control (such as equipment in the factory next door).
Some of the more common causes of electrical interfe r-
ence are:

� power from the utility ac line
� relays, contactors and solenoids
� light dimmers
� arc welders
� motors and motor starters
� induction heaters
� radio controls or transmitters
� switch-mode power supplies
� computer-based equipment
� high frequency lighting equipment
� dc servo and stepper motors and drives

The following wiring practices should be used to
reduce noise interference.

1) Solid grounding of the system is essential. Be sure
that there is a solid connection to the ac system earth
ground. Bond the drive case to the system enclosure.
Use a single-point grounding system for all related
components of a system (a Ahub and spokes@ arrange-
ment). Keep the ground connections short and direct.

2) Keep signal and power wiring well separated. If
possible, use separate conduit or ducts for each. If the
wires must cross, they should do so at right angles to
minimize coupling.

Note: Power wiring includes ac wiring, motor wires,
etc. Signal wiring is inputs and outputs (I/O), encoder
wiring, serial communications (RS232 lines), etc.

3) Use shielded, twisted-pair cables for the drive to
motor wiring. BE SURE TO GROUND THE
SHIELD AT THE DRIVE END.

4) Suppress all relays to prevent noise generation.
Typical suppressors are capacitors or MOV =s. (See
manufacturer =s literature for complete information).
Whenever possible, use solid-state relays instead of
mechanical contact types to minimize noise genera-
tion.

In some extreme cases of interference, it may be nec-
essary to add external filtering to the ac line(s)
feeding affected equipment, or to use isolation
transformers to supply their ac power.

NOTE: We make a wide range of ac
power line conditioners that can help solve electrical
interference problems. Contact 1-800-SUP-ELEC
(1-800-787-3532) for further assistance.

10 Setup & Installation

(This page intentionally left blank)

Overview 11

SECTION 4
OVERVIEW OF

SYSTEM OPERATION

12 Overview

4.1 – Features and Functions

The controller is based on the Texas Instruments
TMS320C31 32 bit, 33MHZ Digital Signal Processor
(DSP). It can control from 2 to 8 stepper or servo drives,
plus 350 I/O points. Each pair of axes is supervised by a
powerful Application Specific Integrated Circuit (ASIC) that
is custom programmed for the controller. This state-of-the-
art computer hardware gives the controller plenty of
processing power to coordinate motion and simultaneously
execute multi-tasks up to seven complex motion and input-
output (I/O) user tasks. The basic two-axis system consists
of three major circuit cards that communicate via a passive
back plane and are housed in a rugged enclosure.

MX2 or MX6 system
! 90 to 265 VAC 50/60 Hz input.
! Built-in AC line filter and MOV’s.
! Power-on LED.
! Built in 24-volt dc @ 750 ma. supply for I/O.
! 50-pin header for interfacing to as many as 24 OPTO-

22 style I/O, or up to 4 BCD switch banks.

MX2A or MX6A system
! 90 to 265 VAC 50/60 Hz input.
! Built-in AC line filter and MOV’s.
! Power-on LED.
! Built in 24-volt dc @ 750 ma. supply for I/O..
! 16 optically isolated inputs.
! 8 optically isolated outputs.

MX8 system
! Dual Ac voltage range.
! 90 to 132 VAC 50/60 Hz input.
! 175 to 264 VAC 50/60 Hz input.
! Built-in AC line filter and MOV’ s
! Power-On LED
! Built in 24-volt dc @ 750 ma. supply for I/O.

DSP Controller Card
! 256 Kbytes of Flash memory available for user

program storage.
! Two serial ports configurable as an RS232 or RS485

device.
! 4 optically isolated inputs.

Dual Axis Card
! 2 analog outputs capable of a ±10 volt DC swing.
! 4 analog inputs capable of a ±10 volt DC swing.
! 8 dedicated optically isolated inputs for limits and

triggers.
! 2 servo or stepper drive interfaces.
! 2 encoder interfaces.

Digital I/O Card
! 24 optically isolated inputs.
! 16 optically isolated inputs.
! Removable connectors with screw terminals.
! 24 volt power supply access.

Expansion I/O Card
! 50-pin header for interface to as many as 48 OPTO-22

style I/O, or up to 8 BCD switch banks.

Programming Features
! English language, BASIC-like coding.
! Full math capability, including trig functions, logs, and

square root.
! Boolean logic functions (and, or, xor, not).
! Complex motions (arc, path, line).
! Simple Motions (move, jog).
! Trigger motions (movehome, movereg).
! Position Following.
! Changing Velocity during motion.
! Position Capture from a trigger.
! Subroutines , nested up to 16 levels.
! Multi-tasking of up to 7 concurrent tasks.
! String manipulation (for message handling).
! Program control functions (for-next, if-then-else if-

else, goto, do-while, etc).
! Macro substitution (#define) for user-friendly text

naming of I/O, etc.
! Complex expressions (using parentheses).
! Multi dimension Arrays.
! 2 Timers per task.
! Complete error handling and warning messages.

Overview 13

4.2 - General Overview

The Programmable Motion Controller is a powerful, DSP-
based machine controller that is capable of far more than
simply moving motors. This section is intended to give the
user an overview of the controller's many capabilities
including all the functions and features users expect for
controlling motion. There are a wide variety of inputs and
outputs and software features that, in many cases, allow the
controller to operate an entire sophisticated machine. Figure
4.1 shows a typical 2-axis application. Section 5 has details
on setting up and wiring the unit.

Of special note is the ease of communication with either
"intelligent" or "dumb" operator interfaces. The controller
does not require the use of any operator interface panel or
host computer to operate as a stand-alone system. Simple
switch interfaces via axis I/O or expansion I/O will often
suffice for controlling a machine that does not need
extensive interaction with the operator for setup information
or message display. BCD switches are often used to enter
numeric data for simple setup. However, using a panel with
a keypad and display gives more flexibility and sometimes
easier and more "user-friendly" machine operation.

4.2.1 - Serial Communications

Communication with the MX2000 controller is via two
serial ports on the DSP Card. These serial ports can be
operated as an RS232 or RS485 device. The Host port is
used for programming and operating the unit. The Auxiliary
Port is used to communicate with an external serial device
during program execution. Use of these ports is covered in
more detail in Sections 5.6.1 and 5.6.2.

4.2.2 - Shutdown Input & Program
 Select Inputs

The 32 bit DSP interface has four optically isolated inputs.
One of these inputs is used as a system shutdown or "motion
clear" input. The 3 remaining inputs allow selection of any
one of up to seven user programs that will be executed at
power-up or when a Reset command is issued. These inputs
can be sinking or sourcing. See Section 5.6.3 for more
details.

4.2.3 - Expansion I/O - BCD Port

An expansion I/O port is provided on the MX2 or MX6
Power Supply or optional Expansion I/O board. The I/O is
designed to interface to industry-standard "OPTO-22" style
high-power inputs and outputs.

Alternatively, this port can be used to read BCD switches

(seven digits plus sign per bank). We provide
standard switch banks for use with the controller. Users may
also combine BCD's and expansion I/O. See Sections 5.7
and 5.9 for more details.

4.2.4 – Digital I/O

A digital I/O port is provided on the MX2A or MX6A
Power Supply or optional Digital I/O board. The I/O is
designed to operate with switches and relays. These inputs
and outputs can be sinking or sourcing. See Sections 5.8 and
5.10 for more details.

4.2.5 - Stepper Interface

Standard pulse and direction signals are provided on the
Axis Card for controlling most types of stepper drives.
Signals are compatible with drives up to 50,000 pulses per
revolution (1/250 micro-stepping), since the maximum pulse
rate is 1.99 MHz. See Sections 5.5.1 and 5.5.5 for more
details.

It is important to note that the controller can be easily
programmed in user units, such as inches or revolutions,
based on the motor/drive resolution and the machine's
characteristics. This is possible because of the controller's
extensive math functions. See Section 7 Software
Reference Guide for more details.

4.2.6 – Analog Drive

The analog outputs can be used as the torque command for
a servo drive. In addition a pair of drive enable output and
drive ready inputs have been provided.

4.2.7 - Encoder Interface

Inputs from two incremental encoders are provided on the
Axis Card. The maximum count rate is 2 MHz. There is
5Vdc power available on this connector to power the
encoders. Wiring to this port is covered in Section 5.5.3.

4.2.8 - Axis I/O and Analog I/O

Inputs are provided on the Axis Card for two axes worth of
limit switches, home switches, and mark registration sensors.
 (The latter two are connected to the "Event 1" and "Event
2" pins.) These can be configured for sink or source
operation. Also, there are two sets of analog inputs that can
be read under program control. These inputs may be used
for reading various types of sensors (temperature, pressure,
etc.) and then controlling index distance or motor speed
based on the value read. See section 5.5.4 for more details.

14 Overview

4.3 - Use of the Serial Ports,
 "HOST" and "AUXILIARY"

The controller has two serial ports, which are identified as
"HOST" and "AUXILIARY". The "HOST" port, as its name
implies, is typically connected to a host computer such as an
IBM PC or compatible. The "AUXILIARY" port is intended
for use with an operator interface panel.

The "HOST" port is used for downloading the user's
application program and for direct control of the controller.
When using the MCPI programmable Interface, all
communication with the controller is via the "HOST" port.
In addition, all on-line debugging is accomplished using this
port. The "HOST" port also has the capability to "DAISY
CHAIN" to other controllers; this requires only one serial
port on a user's host computer to communicate to multiple
controllers. While the user's program could use the "HOST"
port for communication with any device that has a serial
port, it is recommended that the "HOST" port be reserved
for debugging the user's program and for communication
with the host computer.

The "AUXILIARY" port, while intended for use with an
operator interface panel (O.I.P.), can in fact communicate
with any device that has a serial port, such as counter units,
etc. The "AUXILIARY" port can send and receive standard
ASCII characters. The user's application program can
transmit a prompt or message using the "PRINT" statement
and wait for a response using the "INPUT" statement.

Example:

PRINT #2,"Enter 6 digit part number"
INPUT #2, PART$

A message is displayed on the OIP screen prompting the
machine operator to enter a part number. The string variable
PART$ can now be examined (by the controller program) to
determine what type of process to perform. The information
provided by the operator can then be used to control the
process flow, ie. move distance, velocity, dwell, etc., for the
desired part number that the machine is processing.

While the process is in operation, messages can also be sent
back to the OIP, telling the operator the status of the
process. For example,

PRINT #2, "Coarse grind"
PRINT #2, "Finish grind"

will display the indicated messages on the OIP regarding the
grinding operation that is occurring.

Overview 15

Figure 4.1, General Application Overview

16 Overview

This page left intentionally blank

Specifications 17

Section 5
Specifications

And
Equivalent Circuits

18 Specifications

5.1 – Mechanical Specification

MX2000-2
Size: 5.34” X 10.63” X 7.48”

135.6 mm X 270 mm X 190 mm
Weight: 8.25 lbs

3.75 Kg
MX2000-6

Size: 9.34” X 10.63” X 7.48”
237.3 mm X 270 mm X 190 mm

Weight: 11.0 lbs
5.0 Kg

MX2000-8
Size: 19.0” X 10.63” X 7.54”

482.6 mm X 270 mm X 191.6 mm
Weight: 12.0 lbs

5.45 Kg

5.2 – Environmental Specification

Operating Temperature: +32° F to +122° F
0° C to +50° C

Storage Temperature: -40° F to +167° F
-40° C to +75° C

Humidity: 95% max. non-condensing
Altitude: 10,000 feet maximum

3048 meters maximum

5.3 – Input Power

MX2000-2 or MX2000-2A
voltage: 90 to 265 VAC, 50/60 hz
current: < 0.5 Amps @ 115 VAc
fuse: 2 Amp (normal blow), 250VAC,

3AG type (2 required)
MX2000-6 or MX2000-6A

voltage: 90 to 265 VAC, 50/60 hz
current: < 0.5 Amps @ 115 VAc
fuse: 2 Amp (normal blow), 250VAC,

3AG type (2 required)
MX2000-8

voltage: 90 to 132 VAC, 50/60 hz
175 to 254 VAC, 50/60 hz

current: < 3 Amps @ 115 VAc
fuse: 3 Amp (slow blow), 250VAC

5.4 – MX2000 System

When ordering an MX2000 system a number of factors
must be taken into account. The number of axes, number
of I/O points and whether the I/O requires optical isola-
tion. The MX-2 and MX-6 power supplies have 24 expan-
sion I/O points that are not optically isolated but can be
interfaced to an OPTO-22 rack module. The MX-2A and
MX-6A power supply has 16 optically isolated inputs and
8 optically isolated outputs. The MX-8 power supply has
no I/O on it.

An Isolated 24 volt supply has been provided which has a
maximum current capability of 750 ma.

Another consideration for the I/O connections is the con-
nector style. The MX-2, MX-6 and any additional expan-
sion I/O cards have 50 pin mass termination connections
and are not optically isolated. The MX-2A, MX-6A and
any additional digital I/O card have plug-in screw termi-
nations and are optically isolated.

A System Block diagram with all the different combina-
tion to make up an MX2000 controller has been provided
on the next page.

Specifications 19

A list of the part numbers for the discrete part of the system has been provided for your convenience.
Dual-Axis Interface board 222420-001
(2 axis stepper and or servo interface with dedicated I/O)
Digital I/O board 222421-001
(24 inputs, 16 outputs optically isolated)
Expansion I/O-BCD board 222642-001
(48 I/O points non-optically isolated)

SLOT
1

SLOT
2

SLOT
3A 3B

SLOT
4A 4B

SLOT
5A 5B

SLOT
6A 6B

SLOT
7A 7B

SLOT
8A 8B

SLOT
8C

MX-2 and
MX-6

Contains:
Power Supply

Board
Including
I/O-BCD
Interface

MX-2A &
MX-6A

Contains:
Power

Supply Board
Including
Digital I/O
Interface

MX-8
Contains:

Power Supply

Contains:

32 Bit DSP
Controller

Contains:

Dual-Axis
Interface

Board

MX2000-2(A), -6(A), -8
Base System

Contains:
1 of the

following

Dual-Axis
Interface

Board

Digital I/O
Board

Expansion
I/O-BCD
Board

and 1 inch
filler panel

2 Expansion
I/O-BCD
Boards

2 Inch
filler panel

Contains:
1 of the

following

Dual-Axis
Interface

Board

Digital I/O
Board

Expansion
I/O-BCD
Board

and 1 inch
filler panel

2 Expansion
I/O-BCD
Boards

2 Inch
filler panel

Contains:
1 of the

following

Dual-Axis
Interface

Board

Digital I/O
Board

Expansion
I/O-BCD
Board

and 1 inch
filler panel

2 Expansion
I/O-BCD
Boards

Contains:
1 of the

following

Digital I/O
Board

Expansion
I/O-BCD
Board

and 1 inch
filler panel

2 Expansion
I/O-BCD
Boards

2 Inch
filler panel

Contains:
1 of the

following

Digital I/O
Board

Expansion
I/O-BCD
Board

and 1 inch
filler panel

2 Expansion
I/O-BCD
Boards

2 Inch
filler panel

Contains:
1 of the

following

Expansion
I/O-BCD
Board

and 1 inch
filler panel

1 Inch
filler panel

MX2000-6(A) Expansion
MX2000-8 Expansion

MX 2000 System

Notes: 1) Up to 4 Dual Axis Interfaces Boards allowed in the System.

 2) Up to 4 Expansion I/O-BCD Board allowed in the
 System. This includes the Expansion I/O-BCD section

 on the Power Supply Board in an MX-2 or MX-6 system.
 3) Up to 4 Digital I/O Boards allowed in the System. This
 includes the Digital I/O section on the Power Supply Board
 in an MX-2A or MX-6A system.

20 Specifications

5.5 -Dual Axis Interface Card

This card contains the interfaces necessary to connect 2
motor drives to the MX2000 controller. A stepper drive
or servo drive can be interfaced to the controller. In ad-
dition 4 dedicated inputs and up to 2 analog inputs can
be interfaced to each axis.

Up to four Axis cards can be plugged into an MX2000-8
back plane. Each axis card must be assigned a different
id (1-4) and id 1 must always be assigned to one of the
boards. The factory setting is board Id 1. For proper op-
eration, a Dual Axis board must always be plugged into

the MX2000 controller. The ID switches are located
behind the Analog output connector on the Dual Axis
card.

The 4 dedicated inputs for each axis are optically iso-
lated and can be either sinking or sourcing inputs. This
selection is made on the Dual Axis Interface card by
plugging the select jumper into the desired position. See
the card layout diagram to locate the jumper. The factory
setting is Sink.

SW1 switch positionsBoard
Id C B A

Axes
Assigned

MX2000-2
System

MX2000-6
System

MX2000-8
System

1 On On On 1 & 2 Yes Yes Yes
2 On On Off 3 & 4 Not available Yes Yes
3 On Off On 5 & 6 Not available Yes Yes
4 On Off Off 7 & 8 Not available Not available Yes

Note: The “A” side is the odd axis connector and the “B” side is the even axis connector.

5.5.1 – Stepper Drive Connections

The stepper drive connections are made to the STEPPER
DRIVE connector. If an encoder is attached to the step-
per motor the Encoder connections are made to the EN-
CODER connector. An illustration of this is provided.
The signal descriptions and equivalent circuits of each
connector will be covered later on in this section.

5.5.2 – Servo Drive Connections

The servo drive connections are made to the ANALOG
DRIVE connector. The encoder connections from the
motor are made to the ENCODER connector. An illus-
tration of this is provided. The signal descriptions and
equivalent circuits of each connector will be covered
later on in this section.

S
T

E
P

P
E

R
 D

R
IV

E

O P T O

P U L S E

D IR

A W O

R D C E

B O O S T

R E A D Y

D R IV E
S tep p er

M oto r

S tep p er
D rive

D ua l A x is In te rfa ce
C ard

W N D G S

+ 5V

G N D

S H L D

A +

A -

B +

B -

B -

B -

E N C O D E R

E
N

C
O

D
E

R

O n ly R eq u ired F o r
C lo se d Lo op S te pp e r

1 00 m illia m ps m a x im um

A
N

A
LO

G
 D

R
IV

E

OUT

AGND

EN +

EN -

RDY +

RDY -

Command

Dual Axis Interface
Card

Servo
Drive

Control

Sensors

Windings
Servo
Motor

Encoder

E
N

C
O

D
E

R

+5V

GND

SHLD

A +

A -

B +

B -

I +

I -

100 milliamps maximum

Thermal Switch*

Customers
Control

Scheme/Circuit

Thermal Switch +

Thermal Switch -

* If the Servo Motor has thermal switches included it is recom-
mended that these connections be made to a control circuit (Stop)
to indicate when a Motor Overtemp condition exists.

Specifications 21

5.5.3 –Encoder Connectors

The Encoder connector provides a means to interface an
encoder or pulse and direction input to the controller.
There are two identical connectors provided, one for
each axis. The encoder 5 volt output is restricted to 100
milli-amps of current per axis. We highly recommend

the use of twisted-pair (approximately 6 twists per foot)
shielded cable for all encoder wiring to minimize inter-
ference problems. The following signal should be
twisted together A+ with A-, B+ with B-, I+ with I- and
+5V with GND.

Encoder Connector
Signal Name Description Electrical Specification

+5V +5 volts for the encoder 5 ±0.2 volts @ 100 ma per encoder
GND Signal ground for encoder Not applicable
SHLD Connection to shield Not applicable

A+ Encoder channel A+ input
7.3 ma @ +5 volts
7.3 ma @ 0 volts

A- Encoder channel A- input
 0 ma @ +5 volts
7.3 ma @ 0 volts

B+ Encoder channel B+ input
7.3 ma @ +5 volts
7.3 ma @ 0 volts

B- Encoder channel B- input
 0 ma @ +5 volts
7.3 ma @ 0 volts

I+ Encoder channel I+ input
7.3 ma @ +5 volts
7.3 ma @ 0 volts

I- Encoder channel I- input
 0 ma @ +5 volts
7.3 ma @ 0 volts

+5V
G N D

S H LD

A +

A -

B +

B -

I +

I -

680680680

Encoder Equivalent C ircuit
Dual Axis Interface

+5V

+

-

1 o f 6 iden tica l c ircu its

75175

Dual Axis Interface

B -

I +

I -

G N D

SH LD

A +

A -

B +

+5V

G N D

Pu lse

D ir

Encoder Configered as Pulse & Direction
Pulse and Direction Input

22 Specifications

5.5.4 – Axis I/O Connectors

The Axis I/O connectors provides a means of interfacing
4 dedicated digital signals and an analog input for each
axis. The dedicated inputs are opto-isolated and can be
selected as sinking or sourcing on the axis card. The
dedicated inputs are labeled +LIM, -LIM, EVNT1 and
EVNT2. The two limit inputs can be configured as hard
limits or general purpose inputs. The two event inputs
are used for mechanical home and mark registration
triggers. The COM and 24V terminals have been pro-
vided as return paths for the optical isolator circuits. The
COM terminal is used for sinking and the +24V terminal

is used for sourcing. The analog input terminals, IN+
and IN-, can be configured as single ended or differen-
tial input. If configured as single ended these signal be-
come independent inputs with the AGND signal as a
signal common. The voltage range for the analog input
is ±10 volts. The 10V, AGND and SHLD terminals are
intended to be used with the analog inputs. The 10V
terminal provides a +10 volt reference output signal for
the analog inputs.

Signal Name Description Electrical Specification
COM Return for input sinking mode. Not Applicable
24V Return for input sourcing mode. Not Applicable

SHLD Connection to Shield . Not applicable

+LIM
Positive travel limit or general pur-
pose input.

Sink mode: 10.5 ma @ 0v, 0v to +3v on state, 24v off state.
Source mode: 10.5 ma @ 24v, 4.5 ma @ 12v, +12v to +24v on
state, 0v to +3v off state.

-LIM
Negative travel limit or general
purpose input.

Sink mode: 10.5 ma @ 0v, 0v to +3v on state, 24v off state.
Source mode: 10.5 ma @ 24v, 4.5 ma @ 12v, +12v to +24v on
state, 0v to +3v off state.

EVNT1
Home, mark registration or general
purpose input.

Sink mode: 10.5 ma @ 0v, 0v to +3v on state, 24v off state.
Source mode: 10.5 ma @ 24v, 4.5 ma @ 12v, +12v to +24v on
state, 0v to +3v off state.

EVNT2
Home, mark registration or general
purpose input.

Sink mode: 10.5 ma @ 0v, 0v to +3v on state, 24v off state.
Source mode: 10.5 ma @ 24v, 4.5 ma @ 12v, +12v to +24v on
state, 0v to +3v off state.

10V +10 volt reference 10 ± .07 volt @ 20 ma maximum load.
AGND Analog Ground Not applicable

IN+
Analog non-inverting differential
or single ended input

12 bit resolution, 1950 samples/sec, ± 10 volt range, 20K ohms
input impedance, ±0.1 volt full scale accuracy, ±0.035 volt zero
input accuracy.

IN-
Analog inverting differential or
single ended input

12 bit resolution, 1950 samples/sec, ± 10 volt range, 20K ohms
input impedance, ±0.1 volt full scale accuracy, ±0.035 volt zero
input accuracy.

+ L IM

E VN T1

E VN T2

10V

IN -

IN +

S H LD

C O M

+ L IM

- L IM

E VN T1

E VN T2

A G N D

IN +

IN -

S H LD

24V

- L IM

+24V 24V C O M

so
u

rc
e

si
n

k

2K

5K
15K

15K

5K
12 b it
A /D

1 o f 8 iden tica l c ircu its

5K 5K

15K

15K

+10V

Axis I/O Equivalent C ircu it
Dual Axis Interface

A
X

IS
 I

/O
A

N
A

L
O

G
 D

R
IV

E

C O M

+ L IM

- L IM

E V N T1

E V N T2

A G N D

IN +
A N A LO G

D ua l A x is In te rface
C ard

IN -

S H LD

A N A LO G
IN PU T S

I/O se t fo r S ink in g M od e
(Factory se tting)

O U T

A G N D

E N +

E N -

R D Y +

R D Y -

A N A LO G
A N A LO G

O U T P U TS

C an O n ly B e U sed If
A x is is de fine d as a

S teppe r D rive

Th is conn ectio n is on ly o n the
"B" co nne ctor side . T h is com m on
is used fo r bo th s id es A and B .+24

10 V

+ L IM

- L IM

E V N T1

E V N T2

IN +

IN -

S H LD

O U T

A G N D

E N +

E N -

R D Y +

R D Y -

Th is conn ectio n is on ly o n the
"A" co nne ctor side . T h is 24 vo lts
is used fo r bo th s id es A and B .

Specifications 23

5.5.5 – Stepper Drive Connectors

The stepper drive connector provides a means of con-
necting the controller to a stepper drive. There are two

identical connectors provided for this means, one for 1st

axis (Side “A”) and one for the 2nd axis (Side “B”).

Signal Name Description Electrical Specification
OPTO 5 volt source for opto-isolators. 100 ma maximum load

PULSE
0 to 1.99 Mhz square wave when motion
is commanded.

Open drain output, +30v maximum high level voltage,
+0.7v @ 40 ma low level voltage.

DIR Motor direction control.
Open drain output, +30v maximum high level voltage,
+0.7v @ 40 ma low level voltage.

RDCE
Reduce motor current by 50% at stand-
still. A Low level output reduces the mo-
tor current.

Open drain output, +30v maximum high level voltage,
+0.7v @ 40 ma low level voltage.

BOOST
Increase motor current by 50% when run-
ning. A low level output increases motor
current during motion.

Open drain output, +30v maximum high level voltage,
+0.7v @ 40 ma low level voltage.

AWO
Turns winding off when at standstill. A
low level output turns windings off.

Open drain output, +30v maximum high level voltage,
+0.7v @ 40 ma low level voltage.

READY
Indicates the status of drive. A high level
input indicates a drive ready condition.

Input loading 10K ohms, low level voltage 0v to +0.9v,
high level voltage +3.5v to +5.0v

+5V
P U LS E

D IR

A W O

R D C E

B O O ST

R E AD Y

Stepper Drive Equivalent C ircuit
Dual Axis Interface

O PTO

10K

7406

7406

7406

7406

7406

74HC14

24 Specifications

5.5.6 – Analog Drive Connector

The Analog drive connector provides a means of con-
necting a servo drive to the controller. There are two

identical connectors provided for this means, one for 1st

axis (Side “A”) and one for the 2nd axis (Side “B”).

Signal Name Description Electrical Specification

OUT

Analog output voltage that can be
used as a torque command for a servo
drive or an analog output if axis is not
a servo drive.

± 10v output @ 5 ma maximum (2K ohm load).
Output accuracy: 0v output ±0.03v, Full scale error
±0.11v.

AGND Analog Ground. Not applicable

EN+

Collector output of an optically iso-
lated device. When servo drive is en-
abled the opto-isolator transistor is
conducting.

Maximum Collector–Emitter voltage 70 volts, Saturation
voltage .4v @ 15ma

EN-

Emitter output of an optically isolated
device. When servo drive is enabled
the opto-isolator transistor is con-
ducting.

Maximum Collector–Emitter voltage 70 volts, Saturation
voltage .4v @ 15ma

RDY+
+ side of an opto-isolated input. The
drive is ready when current flows
through opto-isolator.

On current 11.5 ma @ 24 volts (2 K ohm load), Off current
< 40 ua @ 0 to 1.3 volts

RDY-
- side of an opto-isolated input. The
drive is ready when current flows
through opto-isolator.

On current 11.5 ma @ 24 volts (2 K ohm load), Off current
< 40 ua @ 0 to 1.3 volts

A G N D

E N +

E N -

R D Y +

R D Y -

Analog Drive Equivalent Circuit
Dual Axis Interface

O U T

2K

+

-

A G N D

E N +

E N -

R D Y +

R D Y -

Analog Drive Connector
Dual Axis Interface

O U T

2K
Drive

Ready

Vext
+

-

Drive
Enable

Servo Drive

Specifications 25

5.5.7 – Dual Axis Interface Card

 Sink/Source
 Select Jumpers

 Board ID Board ID
 Setup Table Dip Switches

User
Axis Labels

 SLO-SYN
 2000
 Dual Axis Interface

BA
BUSY

+LIM

COM

-LIM

EVNT1

EVNT2

AGND

IN+

IN-

SHLD

24V

10V

AXIS I/O

SHLD

+5

GND

A+

A-

B+

B-

I+

I-

A B

E
N

C
O

D
E

R

OPTO

PULSE

DIR

AW O

RDCE

BOOST

READY

S
T

E
P

P
E

R
 D

R
IV

E

OUT

AGND

EN+

EN-

RDY+

RDY-A
N

A
L

O
G

 D
R

IV
E

A B

A B

BUSY

SLO-SYN
 2000

Dual Axis Interface

26 Specifications

5.6 – 32 bit DSP Controller Card

This card contains the interfaces to serially communicate
with a host port and auxiliary port, and controls the en-
tire set of cards plugged into the MX2000 system.

5.6.1 – Auxiliary Serial Port

This port can communicate serially with an external port
as an RS232 or RS485 serial device. The type of device
is jumper selectable (J10) on the board and the factory
setting is RS485. The serial protocol for this port can be
modified by the SETCOM command. The default setting
is 9600 baud, no parity, 8 bit and 1 stop bit. This port is
referred to as Port #2 when used in the user generated
program.

Signal Name Description
GND Signal Ground reference
RX+ Differential receiver non-inverting input.
RX- Differential receiver inverting input or RS232 receiver input.
TX+ Differential transmitter non-inverting output.
TX- Differential transmitter inverting output or RS232 transmitter output.

SHLD Connection to Shield

USER
CONTROL PANEL

RS485

120

TX+

TX+

TX-

TX-

RX+

RX+
RX-

RX-

GNDGND

MX
AUX PO RT

RS485

HOST CONTROL PANEL RS485
MX AUX PORT RS485

120

SHLD

1

2

3

4

5

6

MX
AUX PO RT

RS232

USER
CONTROL PANEL

RS232

RX

TX

GND

TX-

RX+

GND
1

3

5

NOTE: Please reference your User
Control Panel manual for pinout .

USER CONTROL PANEL RS232
MX AUX PORT RS232

2

RX-
4

6

TX+

SHLD

NOTE: MX Aux Port
Pins 2 & 4 not used

RS485RS232

RS485
Device

RS232
Device

Jum per

IN

O UT

UART

TX+

TX-

Auxiliary Port Equivalent Circuit

SHLD

20K

+5V

2.2K

RS485
Device

RX-

RX+

G ND

2.2K2.2K

100

Specifications 27

5.6.2 – Host Serial Port

This serial port is used to program the unit or communi-
cate with the host device. There are two serial interfaces
for the host port, RS232 and RS485. The RS232 inter-
face uses a 9-pin D female connector. The RS485 inter-
face connection is provided on a 6-position removable
terminal strip. The device that communicates with the
host computer can be either RS232 or RS485. This se-
lection is made with the 232/485 dip switch on the front
panel. MX2000 units can be daisy chained using the
RS485 interface. The Unit ID switch is used to set a

unique number for each unit for this purpose. This port
is referred to as Port #1 when used in a user generated
program.

The data format for serial communications is no parity, 8
data bits and 1 stop bit. The baud rate is switch select-
able for 4800, 9600, 19200 or 38400. The baud rate
switches and host device selection are only read on
power turn-on or when a RESET command is issued.

Dip switch Setting
232/485
switch

9.6
switch

19.2
switch

38.4
switch

Comments

232 ON OFF OFF Host communicates RS232, Daisy chaining is RS485, 9600 baud
232 OFF ON OFF Host communicates RS232, Daisy chaining is RS485, 19200 baud
232 OFF OFF ON Host communicates RS232, Daisy chaining is RS485, 38400 baud
232 OFF OFF OFF Host communicates RS232, Daisy chaining is RS485, 4800 baud
485 ON OFF OFF Host communicates RS485, Daisy chaining is RS485, 9600 baud
485 OFF ON OFF Host communicates RS485, Daisy chaining is RS485, 19200 baud
485 OFF OFF ON Host communicates RS485, Daisy chaining is RS485, 38400 baud
485 OFF OFF OFF Host communicates RS485, Daisy chaining is RS485, 4800 baud

Host RS485 Connector
Signal Name Description

GND Signal Ground reference
RX+ Differential receiver non-inverting input.
RX- Differential receiver inverting input.
TX+ Differential transmitter non-inverting output.
TX- Differential transmitter inverting output

SHLD Connection to Shield

Host RS232 Connector
Pin Signal Name Description
1 GND Signal Ground reference
2 TX MX2000 Transmitter terminal
3 RX MX2000 Receiver terminal
4 GND Signal Ground reference
5 GND Signal Ground reference

6-9 NC No connection

SHLD

100

TX+

TX-

RX-

RX+

GND

UART

OUT

IN

5

2

3

GND

TX

RX

R
S

2
3

2
R

S
4

8
5

Host Serial Port Equivalent Circuit
RS485 Position selected

RS232

RS232

RS485

RS485

TXEN

SHLD

100

TX+

TX-

RX-

RX+

GND

UART

OUT

IN

5

2

3

GND

TX

RX

R
S

2
3

2
R

S
4

8
5

Host Serial Port Equivalent Circuit
RS232 Position selected

RS232

RS232

RS485

RS485

28 Specifications

Daisy Chaining MX2000 Controllers

120

HOST
CONTROLLER

RS485

120

TX+TX+TX+TX+

TX+

TX-

TX-

TX- TX- TX-

RX+

RX+

RX+ RX+ RX+

RX-

RX-

RX- RX- RX-

GNDGNDGNDGNDGND

MX
HOST RS485

ID 1

MX
HOST RS485

ID 2

MX
HOST RS485

ID 3

MX
HOST RS485

ID 9

HOST CONTROLLER RS485
MX CONTROLLERS ID 1-9 RS485

MX
HOST RS232

ID1

USER
CONTROLLER

RS232

RX

TX

GND

TX

RX

GND

2

3

5

9 Pin 'D' Cable

NOTE: Please reference your user
controller m anual for pinout .

USER CONTROLLER RS232
MX CONTROLLER RS232

120

120

TX+ TX+ TX+ TX+

TX-TX-TX-
TX-

RX+RX+RX+RX+

RX-RX-RX-RX-

GND GND GND GND

MX
HOST RS485

ID 1

MX
HOST RS485

ID 2

MX
HOST RS485

ID 3

MX
HOST RS485

ID 9

HOST
CONTROLLER

RS232

MX
HOST RS232

ID1

9 Pin 'D"

HOST CONTROLLER RS232
MX CONTROLLERS (ID 1 RS232) (ID'S 2-9 RS485)

Specifications 29

5.6.3 – DSP Card Inputs

There are four optically isolated inputs to the DSP card.
These inputs can either be sinking or sourcing and the
selection are controlled by a jumper (J11) on the DSP
board. The factory setting is sinking.

The CLR terminal is a fail safe input that will terminate
program execution and or motion if open circuited. This
input must be active to allow auto-execution to occur
on power turn-on or if a RESET command is issued.

The program that will be auto-executed is selected by
the input states of the SEL 4, SEL 2 and SEL 1 inputs.

Note: In Order for motion to occur, a CLR to COM
jumper is required.

Projects are loaded sequentially into the MX2000 con-
troller memory after an ERASE DIR command is issued
and are labeled projects 0 to 6.

Auto-Execute selection Chart
Project selected SEL 4 SEL 2 SEL 1

1st Project (Project 0) Inactive Inactive Inactive
2nd Project (Project 1) Inactive Inactive Active
3rd Project (Project 2) Inactive Active Inactive
4th Project (Project 3) Inactive Active Active
5th Project (Project 4) Active Inactive Inactive
6th Project (Project 5) Active Inactive Active
7th Project (Project 6) Active Active Inactive
1st Project (Project 0) Active Active Active

Signal Name Description Electrical Specification

CLR
Stop program execution and
motion if open circuited.

Sink mode: On state 0 to +12 volts, 3.2 ma @ +12v,
6.8 ma @ 0v
Source mode: On state +12 to +24 volts, 3.2 ma @ +12v, 6.8 ma
@ +24v

SEL 4 Auto-execute program select

Sink mode: On state 0 to +12 volts, 3.2 ma @ +12v,
6.8 ma @ 0v
Source mode: On state +12 to +24 volts, 3.2 ma @ +12v, 6.8 ma
@ +24v

SEL 2 Auto-execute program select

Sink mode: On state 0 to +12 volts, 3.2 ma @ +12v,
6.8 ma @ 0v
Source mode: On state +12 to +24 volts, 3.2 ma @ +12v, 6.8 ma
@ +24v

SEL 1 Auto-execute program select

Sink mode: On state 0 to +12 volts, 3.2 ma @ +12v,
6.8 ma @ 0v
Source mode: On state +12 to +24 volts, 3.2 ma @ +12v, 6.8 ma
@ +24v

+24 Return for input sourcing mode Not applicable
COM Return for input sinking mode Not applicable

30 Specifications

485232
9.6

19.2
38.4

HOST
BAUD
RATE

8

0
1

2
4
5
6

7
9

3

U
N

IT
 I

D

GND

RX+

RX-

TX+

TX-

SHLD

H
O

S
T

 R
S

4
8

5

GND

RX+

RX-

TX+

TX-

SHLD

A
U

X
IL

IA
R

Y

FAULT

 SLO -SYN
 2000
32 bit DSP controller

CLR

SEL 4

SEL 2

SEL 1

+24

COM

H
O

S
T

 R
S

2
3

2

CLR

SEL 4

SEL 2

SEL 1

+24

COM

1

2

3

4

5

6

DSP Card
Jumper in SINK Position

CLR

SEL 4

SEL 2

SEL 1

+24

COM

1

2

3

4

5

6

DSP Card
Jumper in SOURCE Position

OUTPUT
INPUT

3.3K

+24V

+24V COM

+24V

COM

Jumper

SOURCE

SINK

DSP Input Equivalent Circuit

Specifications 31

5.7 – Expansion I/O Board

The Expansion I/O-BCD board has been designed to
interface to BCD switches and/or to an OPTO 22 mod-
ule rack. There are two ports on each board and each
port has 24 bi-direction I/O points. The odd pins 1-47 on
the 50-pin header are signal pins. The even pins 2-50 are
signal grounds.

If the MX2000 controller is an MX2 or MX6 the first
expansion I/O board is on the Power supply board and
there are only 24 I/O points available (100-124). Up to 4
boards can be interfaced to an MX2000-8 controller.
The ID for each board is selected using two dip
switches.

5.7.1 – EXIN/EXOUT assignments

The EXIN and EXOUT commands can be used to access
the expansion board I/O. Up to 48 I/O pins can be ac-
cessed with these commands. The pin assignment and
connector assignment for each I/O point is depicted in
the following table.

I/O Pin Connector I/O Pin Connector
B00 47 Top B24 47 Bottom
B01 45 Top B25 45 Bottom
B02 43 Top B26 43 Bottom
B03 41 Top B27 41 Bottom
B04 39 Top B28 39 Bottom
B05 37 Top B29 37 Bottom
B06 35 Top B30 35 Bottom
B07 33 Top B31 33 Bottom
B08 31 Top B32 31 Bottom
B09 29 Top B33 29 Bottom
B10 27 Top B34 27 Bottom
B11 25 Top B35 25 Bottom
B12 23 Top B36 23 Bottom
B13 21 Top B37 21 Bottom
B14 19 Top B38 19 Bottom
B15 17 Top B39 17 Bottom
B16 15 Top B40 15 Bottom
B17 13 Top B41 13 Bottom
B18 11 Top B42 11 Bottom
B19 9 Top B43 9 Bottom
B20 7 Top B44 7 Bottom
B21 5 Top B45 5 Bottom
B22 3 Top B46 3 Bottom
B23 1 Top B47 1 Bottom

Where: “B” is the board number, 1 through 4.

49

47

45

43

41

39

37

35

33

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3

12

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

Expansion I/O -BCD Connector PinOuts

I/O 01/25

I/O 02/26

I/O 00/24

Not Used

I/O 03/27

I/O 04/28

I/O 05/29

I/O 06/30

I/O 07/31

I/O 08/32

I/O 09/33

I/O 10/34

I/O 11/35

I/O 12/36

I/O 13/37

I/O 14/38

I/O 15/39

I/O 16/40

I/O 17/41

I/O 18/42

I/O 19/43

I/O 20/44

I/O 21/45

I/O 22/46

I/O 23/47

Signal
Com mon

32 Specifications

P
IN

 1

I/

O
 E

X
P

A
N

S
IO

N
 2

5
 -

 4
8

P
IN

 1

 I

/O
 E

X
P

A
N

S
IO

N
 1

 -
 2

4

B
C

D
 I

N
T

E
R

F
A

C
E

 1
 -

 4

B

C
D

 I
N

T
E

R
F

A
C

E
 5

 -
 8

I/O EXPANSION

SLO-SYN
2000

BANK

Specifications 33

OPTO-22
Manufacturer Part Number

Crydom PB-24
Gordos PB-24
Grayhill 7ORCK24, 7OMRCQ24 series

Potter & Brumfield ZIO24, ZIOM24 series
OPTO-22 PB-24, PB-24Q, PB-24HQ

5.7.2 - BCD assignments

The BCD commands can be used to access the expansion
board BCD switches. Each BCD switch can have up to 7
digits with a sign. Up to 8 sets of BCD switches can be

accessed with these commands. The pin assignments and
connector assignment for each BCD switch are defined in
the following table.

BCD Pin Connector BCD Pin Connector
B04 47,45,43,41 Top B08 47,45,43,41 Bottom
B03 39,37,35,33 Top B07 39,37,35,33 Bottom
B02 31,29,27,25 Top B06 31,29,27,25 Bottom
B01 23,21,19,17 Top B05 23,21,19,17 Bottom

B01-B04 15,13,11,9,7,5,3,1 Top B05-B08 15,13,11,9,7,5,3,1 Bottom

Where: “B” is the board number, 1 through 4.

Controller

EXPANSION I/O - BCD PORT
CONNECTION TO BCD SWITCH BANKS

EXPANSION
I/O-BCD
BOARD

50 CONDUCTOR
RIBBON CABLE

BCD
SWITCH

INTERFACE

W.E. P/N 223263-001

BCD BANK #
7 DIGITS + SIGN

W.E P/N 221157-002

BCD BANK #
7 DIGITS + SIGN

W.E P/N 221157-002

BCD BANK #
7 DIGITS + SIGN

W.E P/N 221157-002

BCD BANK #
7 DIGITS + SIGN

W.E P/N 221157-002

14 CONDUCTOR
RIBBON CABLE

18 INCHES LONG
INCLUDED

Expansion
I/O-BCD
Board

Module
Rack

50 conductor ribbon cable

Controller OPTO-22

I/O modules are available
for use with Logic supply
voltages 5, 15, and 24V.
The logic supply (-) terminal
is connected to even pins
2-50 which are ground.

Logic
Supply

+ -

Expansion I/O-BCD Port
Connection to OPTO-22 Module Rack

34 Specifications

Specifications 35

I/O Expansion Board
Pins Description Specification

41,43,45,47
BCD 4 or BCD 8 strobes
EXIN/EXOUT B03/27 to B00/24

Input: On state 0 to +1.5 volts, 1 ma @ 0v,
Off state +2.9 to +30 volts.
Output: open circuit +30 volt maximum,
saturation voltage +0.5 volts @ 15 ma.

33,35,37,39
BCD 3 or BCD 7 strobes
EXIN/EXOUT B07/31 to B04/28

Input: On state 0 to +1.5 volts, 1 ma @ 0v,
Off state +2.9 to +30 volts.
Output: open circuit +30 volt maximum,
saturation voltage +0.5 volts @ 15 ma.

25,27,29,31
BCD 2 or BCD 6 strobes
EXIN/EXOUT B11/35 to B08/32

Input: On state 0 to +1.5 volts, 1 ma @ 0v,
Off state +2.9 to +30 volts.
Output: open circuit +30 volt maximum,
saturation voltage +0.5 volts @ 15 ma.

17,19,21,23
BCD 1 or BCD 5 strobes
EXIN/EXOUT B15/39 to B12/36

Input: On state 0 to +1.5 volts, 1 ma @ 0v,
Off state +2.9 to +30 volts.
Output: open circuit +30 volt maximum,
saturation voltage +0.5 volts @ 15 ma.

1,3,5,7,9,11,13,15
BCD 1-4 or BCD 5-8 data bus
EXIN/EXOUT B23/47 to B16/40

Input: On state 0 to +1.5 volts, 1 ma @ 0v,
Off state +2.9 to +30 volts.
Output: open circuit +30 volt maximum,
saturation voltage +0.5 volts @ 15 ma.

INPUT

OUTPUT

I/O POINT

+5V

Expansion I/O BCD Equivalent Circuit

4.7K

36 Specifications

5.8 – Digital I/O Board

The Digital I/O-BCD board has been designed to inter-
face to switches and/or relays. There are 24 optically
isolated inputs and 16 optically isolated outputs per
board.

If the MX2000 controller is an MX2A or MX6A the first
digital I/O board is the Power supply board and there are
16 inputs and 8 outputs available (101-116). Up to 4
boards can be interfaced to an MX2000-8 controller. The
ID for each board is selected via 2 dip switches located
on the board.

5.8.1 – Input Connector

This connector has 24 optically isolated inputs that can be
configured for current sinking or sourcing. The sink-
ing/sourcing selection is done on the digital I/O card us-
ing jumpers. The factory setting is sinking.

Note: The movement of both jumpers is required for
proper operation. If only one jumper is moved the
digital inputs and outputs modes will be different.

Inputs
Signal Name Description Electrical Specification

B01 to B24 IN (B01-B24)
Sink Mode: On state 0 to +12 volts, On state current 2.3 ma @ +12v, 6.5 ma @ 0v.
Source Mode: On state +10 to +24 volts, On state current 2.3 ma @ +10 volts, 6.5 ma
@ +24 volts.

Where: B is the board number, 1 through 4.

Header
Pins

Jumpers

J7 J7

Jumper Positions
for

Sourcing I/O

Jumper Positions
for

Sinking I/O

INPUTS

1,2,13,14

3,4,15,16

5,6,17,18

7,8,19,20

9,10,21,22

11,12,23,24

24V

24V

COM

COM

INPUTS

1,2,13,14

3,4,15,16

5,6,17,18

7,8,19,20

9,10,21,22

11,12,23,24

24V

24V

COM

COM

Sinking M ode Sourcing M ode

Specifications 37

5.8.2 – Output Connector

This connector has 16 optically isolated outputs that can
be configured for current sinking or sourcing. The sink-
ing/sourcing selection is done on the digital I/O card us-
ing a jumper. The factory setting is sinking.

Note: The movement of both jumpers is required for
proper operation. If only one jumper is moved the
digital inputs and outputs modes will be different.

Outputs
Signal Name Description Electrical Specification

B01 to B16 OUT (B01-B16)

Sink Mode: Voltage rating 24 volts, On state 0 to +2 volts @ 50 ma,
Off state leakage 0.6 ma maximum @ +24v.
Source Mode: Voltage rating 24 volts, On state +20 to +24 volts @ 50 ma, Off state
leakage 0.6 ma maximum.

Where: B is the board number.

Header
Pins

Jumpers

J7 J7

Jumper Positions
for

Sourcing I/O

Jumper Positions
for

Sinking I/O

OUTPUTS

1,2,9,10

3,4,11,12

5,6,13,14

7,8,15,16

24V

24V

COM

COM

OUTPUTS

1,2,9,10

3,4,11,12

5,6,13,14

7,8,15,16

24V

24V

COM

COM

Sinking Mode Sourcing Mode

Signal
Com mon

Signal
Com mon

OUT

OUT

OUT

Relay
coil

OUT

OUT

OUT

Relay
coil

Load
Load

38 Specifications

5.8.3 – Internal Power Supply

This connector has 4 terminals for +24V @ .75 amps and
4 terminals for COM. These terminals are used as signal
returns for inputs and signal common for outputs.

Internal Power Supply
Mode Description
Sink The COM terminals are used as the return source for the inputs and the signal common for the outputs.

Source The +24 terminals are used as the return source for the inputs and the signal common for the outputs.

+24V

COM

S
in

k
S

o
u

rc
e

Out

1K

10K

+24V

COM

OUT

3.3K

IN

1K

D igital I/O Equivalent Circuit

Specifications 39

 User
Label

 SLO -SYN
 2000
 Du al Axis In terface

BA
BUSY

SLO-SYN
 2000

Digital I/O

CO M

24V

24V

CO M

24V

24V

CO M

CO M

6

2

4

8

1

3

5

7

14

10

12

16

9

11

13

15

OUTPUTS

6

2

4

8

10

12

1

3

5

7

9

11

18

14

16

20

22

24

13

15

17

19

21

23

INPUTS

40 Specifications

5.9 – MX2 and MX6 Power Supply Board

This board contains the AC input terminals and interface for 24 non-isolated bi-directional
I/O. This board is assigned Expansion I/O board #1, EXIN(100-123) and EXOUT(100,123) .
The range for the AC input is 90 to 265 VAC at 50/60 hz.

5.9.1 – AC Input

The AC input is connected to a terminal strip.

Terminal Description

Lead Color
North America

 Standard

Lead Color
European
Standard

L1 Line or Hot Black Brown
N Common or Neutral White Blue

Ground Green Green with Yellow Stripe

5.9.2 – EXIN/EXOUT assignments

The EXIN and EXOUT commands can be used to access the expansion board I/O. Up to 24
I/O pins can be accessed with these commands.

I/O Pin I/O Pin
100 47 112 23
101 45 113 21
102 43 114 19
103 41 115 17
104 39 116 15
105 37 117 13
106 35 118 11
107 33 119 9
108 31 120 7
109 29 121 5
110 27 122 3
111 25 123 1

See Section 5.7.1 for more details.

5.9.3 – BCD assignments

The BCD command can be used to access the expansion BCD switches. Each BCD switch
can have up to 7 digits with a sign. Up to 4 sets of BCD switches can be accessed with this
command.

BCD Pin
104 47,45,43,41
103 39,37,35,33
102 31,29,27,25
101 23,21,19,17

101-104 15,13,11,9,7,5,3,1

See Section 5.7.2 for more details.

P
IN

 1

I/

O
 E

X
P

A
N

S
IO

N
 2

5
 -

 4
8

B
C

D
 I

N
T

E
R

F
A

C
E

 1
 -

 4

Pow er Supply

SLO -SYN

POWER

AC INPUT

L1

N

Specifications 41

5.10 – MX2A and MX6A Power Supply Board

This board contains the AC input terminals, interface for 16 optically isolated input and 8 op-
tically isolated outputs. This board is assigned digital I/O board #1, IN(101-116) and
OUT(101,108) . The range for the AC input is 90 to 265 VAC at 50/60 hz.

5.10.1 – AC Input

The AC input is connected to a terminal strip.

Terminal Description

Lead Color
North America

 Standard

Lead Color
European
Standard

L1 Line or Hot Black Brown
N Common or Neutral White Blue

Ground Green Green with Yellow Stripe

5.10.2 – Input Connector

This connector has 16 optically isolated inputs.
Inputs

Signal Name Description Electrical Specification

101 to 116 IN (101-116)

Sink Mode: On state 0 to +12 volts, On state current 2.3
ma @ +12v, 6.5 ma @ 0v.
Source Mode: On state +10 to +24 volts, On state cur-
rent 2.3 ma @ +10 volts, 6.5 ma @ +24 volts.

See Section 5.8.1 for more details.

5.10.3 – Output Connector

This connector has 8 optically isolated outputs.
Outputs

Signal Name Description Electrical Specification

101 to 108 OUT (101-108)

Sink Mode: Voltage rating 24 volts, On state 0 to +2
volts @ 50 ma,
Off state leakage 0.6 ma maximum @ +24v.
Source Mode: Voltage rating 24 volts, On state +20 to
+24 volts @ 50 ma, Off state leakage 0.6 ma maximum.

See Section 5.8.2 for more details.

5.10.4 – Internal Power Supply

This connector has 4 terminals for +24V and 4 terminals for COM. These terminals are used as
signal returns for inputs and signal common for outputs.

Internal Power Supply
Mode Description

Sink
The COM terminals are used as the return source for the inputs and the signal
common for the outputs.

Source
The +24 terminals are used as the return source for the inputs and the signal com-
mon for the outputs.

See Section 5.8.3 for more details.

SLO-SYN
POWER SUPPLY

N

L1

POWER

AC INPUT

24V

24V

COM

COM

INPUTS

OUTPUTS

1

3

5

7

9

11

13

15

1

3

5

7

42 Specifications

5.11 – MX8 Power Supply Board

This board contains the AC input terminals with no I/O connections. The input
voltage range is 90 to 132 VAC or 175 to 264 VAC 50/60 hz. The MX8 will not
operate correctly if the input voltage is not within the two ranges. No operator
action is required, the MX8 automatically senses the input voltage and config-
ures itself to operate at either AC input voltage range.

5.11.1 – AC Input

The AC input is connected to a terminal strip.

Terminal Description

Lead Color
North America

 Standard

Lead Color
European
Standard

L1 Line or Hot Black Brown
N Common or Neutral White Blue

Ground Green
Green with

Yellow Stripe

1

3

5

7

AC INPUT

SLO-SYN
MX8 Power Supply

NL1

1

0

O N

O FF

POW ER

Specifications 43

5.12 – MX2 Outline

0.37
9.35

7.48
189.88

9.84
250.03

OVER CONNECTORS

10.63
269.88

0.93
[23.74]

0.219
[5.56] TYP

3.250
[82.55]

5.14
[130.58]

0.50
[12.70]

12.00
[304.80]

5.34
[135.66]

OVER HARDWARE

4 852 32
9 .6

1 9.2
3 8.4

H O ST
B A U D
R A TE

8

0
1

2
4
5
6

7
9

3

U
N

IT
 I

D

G N D

R X+

R X-

TX +

TX -

SH L D

H
O

S
T

 R
S

4
8

5

G N D

R X+

R X-

TX +

TX -

SH L D

A
U

X
IL

IA
R

Y

 S LO -SY N
 20 00
3 2 b it D S P con tro ller

C LR

SE L 4

SE L 2

SE L 1

+2 4

C O M

H
O

S
T

 R
S

2
3

2

FAULT

 SL O-SY N
 2 0 00
 M X2 Pow e r
 S upply

L1

N

POW ER

AC INPUT

L1

N

M 2 Pow e r
Su pply

SL O-SYN
2 00 0

P
IN

 1

I/

O
 E

X
P

A
N

S
IO

N
 2

5
 -

 4
8

B
C

D
 I

N
T

E
R

F
A

C
E

 1
 -

 4

 S LO -SY N
 20 00
 D ua l A x is In te rfa ce

A
BUSY

+LIM

C O M

-L IM

EV N T1

EV N T2

A G N D

IN +

IN -

SH L D

2 4V

1 0V

AXIS I/O

SH L D

+5

G N D

A +

A -

B +

B -

I+

I-

A B

E
N

C
O

D
E

R

O PTO

PU L SE

D IR

A W O

R D C E

B O OS T

R EA D Y

S
T

E
P

P
E

R
 D

R
IV

E

O U T

A G N D

EN +

EN -

R D Y+

R D Y-

A
N

A
L

O
G

 D
R

IV
E

A B

A B

BUSY

SL O-SYN
 2 00 0

D ua l A x is In terfa ce

44 Specifications

5.13 – MX6 Outline

5.14 – MX8 Outline

0.37
9.35

7.48
189.88

9.84
250.03

OVER CONNECTORS

10.63
269.88

7.54
[191.6]

A
U

X
IL

IA
R

Y

 SLO-SYN
 2000
32 bit DSP controller

GND

RX+

RX-

TX+

TX-

SHLD

GND

RX+

RX-

TX+

TX-

SHLD

H
O

S
T

 R
S

4
8

5

485232
9.6

19.2
38.4

HOST
BAUD
RATE

8

0
1

2
4
5
6

7
9

3

U
N

IT
 I

D

CLR

Sel 4

Sel 2

Sel 1

+24

COM

H
O

S
T

 R
S

2
3

2

FAULT

16.99
[431.5]

18.3
[465.1]

19.00
[482.6]

.28 x .53
M oun ting H ole

8 places

2.25
[57.2]

3.00
[76.2]

2.25
[57.2]

1.64
[41.7]

10.63
[269.9]

NL1
CLR

SEL 4

SEL 2

SEL 1

+24

COM

GND

RX+

RX-

TX+

TX-

SHLD

H
O

S
T

 R
S

4
8

5

 SLO-SYN

 2000

32 bit DSP controller

FAULT

GND

RX+

RX-

TX+

TX-

SHLD

A
U

X
IL

IA
R

Y

485232

9.6

19.2

38.4

HOST

BAUD

RATE

U
N

IT
 I

D

8

0

1
2

4

5
6

7
9

3

H
O

S
T

 R
S

2
3

2

 SLO-SYN

 2000

 Dual Axis Interface

A

BUSY

+LIM

COM

-LIM

EVNT1

EVNT2

AGND

IN+

IN-

SHLD

24V

10V

AXIS I/O

SHLD

+5

GND

A+

A-

B+

B-

I+

I-

A B

E
N

C
O

D
E

R

OPTO

PULSE

DIR

AWO

RDCE

BOOST

READY

S
T

E
P

P
E

R
 D

R
IV

E

OUT

AGND

EN+

EN-

RDY+

RDY-

A
N

A
L

O
G

 D
R

IV
E

A B

A B

BUSY

SLO-SYN

 2000

Dual Axis Interface

 SLO-SYN

 2000

 Dual Axis Interface

A

BUSY

+LIM

COM

-LIM

EVNT1

EVNT2

AGND

IN+

IN-

SHLD

24V

10V

AXIS I/O

SHLD

+5

GND

A+

A-

B+

B-

I+

I-

A B

E
N

C
O

D
E

R

OPTO

PULSE

DIR

AWO

RDCE

BOOST

READY

S
T

E
P

P
E

R
 D

R
IV

E

OUT

AGND

EN+

EN-

RDY+

RDY-

A
N

A
L

O
G

 D
R

IV
E

A B

A B

BUSY

SLO-SYN

 2000

Dual Axis Interface

 SLO-SYN

 2000

 Dual Axis Interface

A

BUSY

+LIM

COM

-LIM

EVNT1

EVNT2

AGND

IN+

IN-

SHLD

24V

10V

AXIS I/O

SHLD

+5

GND

A+

A-

B+

B-

I+

I-

A B

E
N

C
O

D
E

R

OPTO

PULSE

DIR

AWO

RDCE

BOOST

READY

S
T

E
P

P
E

R
 D

R
IV

E

OUT

AGND

EN+

EN-

RDY+

RDY-

A
N

A
L

O
G

 D
R

IV
E

A B

A B

BUSY

SLO-SYN

 2000

Dual Axis Interface

 SLO-SYN

 2000

 Dual Axis Interface

A

BUSY

+LIM

COM

-LIM

EVNT1

EVNT2

AGND

IN+

IN-

SHLD

24V

10V

AXIS I/O

SHLD

+5

GND

A+

A-

B+

B-

I+

I-

A B

E
N

C
O

D
E

R

OPTO

PULSE

DIR

AWO

RDCE

BOOST

READY

S
T

E
P

P
E

R
 D

R
IV

E

OUT

AGND

EN+

EN-

RDY+

RDY-

A
N

A
L

O
G

 D
R

IV
E

A B

A B

BUSY

SLO-SYN

 2000

Dual Axis Interface

 SLO-SYN

 2000

 Dual Axis Interface

BA

BUSY

SLO-SYN

 2000
Digital I/O

COM

24V

24V

COM

24V

24V

COM

COM

6

2

4

8

1

3

5

7

14

10

12

16

9

11

13

15

OUTPUTS

6

2

4

8

10

12

1

3

5

7

9

11

18

14

16

20

22

24

13

15

17

19

21

23

INPUTS SLO-SYN

 2000

 Dual Axis Interface

BA

BUSY

SLO-SYN

 2000
Digital I/O

COM

24V

24V

COM

24V

24V

COM

COM

6

2

4

8

1

3

5

7

14

10

12

16

9

11

13

15

OUTPUTS

6

2

4

8

10

12

1

3

5

7

9

11

18

14

16

20

22

24

13

15

17

19

21

23

INPUTS

ON

OFF

1

0

POWER

SLO-SYN

MX8 Power Supply

A C IN P UT

9.34
[237.26]

OVER HARDW ARE

0.219
[5.56]

TYP

3.250
[82.55]

2.935
[74.54]

0.500
[12.70]

9.14
[232.18]

12.00
[304.80]

 SLO-SYN
 2000
 MX2 Power
 Supply

L1

N

POWER

AC INPUT

L1

N

M2 Power
Supply

SLO-SYN
2000

P
IN

 1

I/

O
 E

X
P

A
N

S
IO

N
 2

5
 -

 4
8

B
C

D
 I

N
T

E
R

F
A

C
E

 1
 -

 4

CLR

SEL 4

SEL 2

SEL 1

+24

COM

GND

RX+

RX-

TX+

TX-

SHLD

H
O

S
T

 R
S

4
8

5

 SLO-SYN
 2000
32 bit DSP controller

FAULT

GND

RX+

RX-

TX+

TX-

SHLD

A
U

X
IL

IA
R

Y

485232
9.6

19.2
38.4

HOST
BAUD
RATE

U
N

IT
 I

D
8

0
1

2
4
5
6

7
9

3

H
O

S
T

 R
S

2
3

2

 SLO-SYN
 2000
 Dual Axis Interface

A
BUSY

+LIM

COM

-LIM

EVNT1

EVNT2

AGND

IN+

IN-

SHLD

24V

10V

AXIS I/O

SHLD

+5

GND

A+

A-

B+

B-

I+

I-

A B

E
N

C
O

D
E

R

OPTO

PULSE

DIR

AWO

RDCE

BOOST

READY

S
T

E
P

P
E

R
 D

R
IV

E

OUT

AGND

EN+

EN-

RDY+

RDY-

A
N

A
L

O
G

 D
R

IV
E

A B

A B

BUSY

SLO-SYN
 2000

Dual Axis Interface

 SLO-SYN
 2000
 Dual Axis Interface

A
BUSY

+LIM

COM

-LIM

EVNT1

EVNT2

AGND

IN+

IN-

SHLD

24V

10V

AXIS I/O

SHLD

+5

GND

A+

A-

B+

B-

I+

I-

A B

E
N

C
O

D
E

R

OPTO

PULSE

DIR

AWO

RDCE

BOOST

READY

S
T

E
P

P
E

R
 D

R
IV

E

OUT

AGND

EN+

EN-

RDY+

RDY-

A
N

A
L

O
G

 D
R

IV
E

A B

A B

BUSY

SLO-SYN
 2000

Dual Axis Interface

 SLO-SYN
 2000
 Dual Axis Interface

A
BUSY

+LIM

COM

-LIM

EVNT1

EVNT2

AGND

IN+

IN-

SHLD

24V

10V

AXIS I/O

SHLD

+5

GND

A+

A-

B+

B-

I+

I-

A B

E
N

C
O

D
E

R

OPTO

PULSE

DIR

AWO

RDCE

BOOST

READY

S
T

E
P

P
E

R
 D

R
IV

E

OUT

AGND

EN+

EN-

RDY+

RDY-

A
N

A
L

O
G

 D
R

IV
E

A B

A B

BUSY

SLO-SYN
 2000

Dual Axis Interface

Specifications 45

5.15 – MX & SERVO AMPLIFIER CONNECTION DIAGRAM

46 Specifications

This page left intentionally blank

Motion Controller Programming Interface 47

SECTION 6
Motion Controller

Programming Interface

48 Motion Controller Programming Interface

6.1 - Programming

6.1.1 - General Description of
 Programming

This section provides an overview to the process of pro-
gramming a Controller. Once the "logic" behind the vari-
ous commands are understood, programming your Con-
troller will be seen as a straightforward process.

Programming of any sort requires planning and fore-
thought. Programming your Controller is no exception.
This section will provide aids to facilitate your planning
process. Be patient! Allow time for mis takes, adjustments
("debugging"), and experimentation.

6.1.1.1 - What is Programming?

At its most basic level, a computer program is a means of
using electronic digital signals (simple ON and OFF) to
produce certain results from a machine. A line of code, or
"command string," is built up from the presence (On) or
absence (Off) of electrical signals. On or Off signals,
called "Bits," are bunched together to form "Bytes", or
groupings that are coded into what we recognize as al-
phabetical characters or numbers. (This character coding
is accomplished via the ASCII code - see Glossary Section
for further details.

A program is a list of discrete lines or command strings
that, taken together in sequence, provide the information
needed to get a machine to perform your predetermined
sequence of instructions. These instructions can, in the
case of a Programmable Motion Controller, cause the mo-
tor to move at certain speeds and for given distances, read
various inputs or set outputs, or send and receive mes-
sages from an operator interface panel, all used to accom-
plish different machine-related tasks.

6.1.1.2 – What’s in a Program?

A program consists of many individual lines organized in a
prescribed sequence. The Controller uses an English lan-
guage, BASIC-type computer programming language
("SEBASIC"). This makes it easy and intuitive to
write and read machine control programs. The lan-
guage we have designed supports many higher-level-
language features, such as statement labels, subrou-
tines, for-next and do-while loops for program flow
control. This makes it easy to write concise, well-
organized, easily debugged programs. Also, there
are built-in mathematical, Boolean, array, and trigo-
nometry functions to perform complex calculations.
The rich string-handling functions allow easy data
input and message writing when using external op-
erator interface panels. Finally, the motion, I/O, and

timing commands are easy to understand, remember,
and apply.

In addition to program lines, the controller needs and
stores (separate from the commands) a series of set-up
parameters in a "header file". The MCPI compiler program
automatically creates this file.

6.1.1.3 - How is the Controller
 Programmed?

There are two primary ways to set up and program your
Controller. Both involve the use of a personal computer
(PC). One is a programming environment called "MCPI",
and is supplied on diskette with your unit. Section 6.3 of
this manual gives detailed instructions on installing and
using this tool to develop your application. A second way
is to create your program using any standard text editor or
word processor. Write the SEBASIC commands, save the
file as an ASCII format then use the MCPI to compile your
code and download it.

The types of commands your Controller can accept
are pre-set. Thus each command is assigned a
"name". These commands are explained in detail in
the Software Reference Section of this Manual.

Commands are performed via the statement lines in your
program. The program is a sequence of commands that
control the motor and motion-related events you want to
happen in a particular period of time. Thus, the sequence
of commands is critical to the proper operation of your
system.

6.1.2 - What are "Host Commands"?

There are also "Host Commands" available for certain
programming needs. These commands go straight from
your input device (computer or terminal, for example), to
the Controller, and override the normal sequence of opera-
tion directed by your program. These are useful for manu-
ally controlling a machine that normally operates under
program control.

6.1.3 – Memory Types and Usage

A program is stored in Memory. There are two kinds of
memory. RAM (Random Access Memory) is called "Vola-
tile Memory" because when power is removed from the
Controller, all the electrical signals in that memory are lost,
and accordingly, the information stored in that memory is
lost. The Controller, for example, stores some transient
information in RAM.

The second kind of memory is "Non-Volatile Memo ry",
such as Flash memory, EEPROM (Electrically Programma-

Motion Controller Programming Interface 49

ble Read-Only Memory), or a BBRAM (Battery Backed
RAM). The electrical codes stored in this type of memory
are not lost when external power is removed from the Con-
troller. The Controller uses a battery backed RAM for
storing NVR variables (1-2048). The controller stores the
operating system as well as user programs in Flash mem-
ory. This memory is located on the DSP Controller card.

A program in your Controller can have hundreds, or
even thousands of program lines. Because of the
wide variety of program commands, and the variable
line lengths allowed, it is impossible to state how
many lines of code can be stored in the controller.
However, the user memory available is 2044 sectors
of 128 bytes per sector, for a total of 261,632 bytes
of program space. The FREE command may be
used to determine how much memory is available;
see Section 7 for details on using this.

6.1.4 - References

Newcomers to programming are encouraged to obtain a
copy of an elementary text on computer programming.
Since your Controller uses a modified form of the familiar
"BASIC" computer language, you may refer to a book on
using BASIC. There are a great number of such books
available in the technical or computer section of your local
library or bookstore. We have found that books by
SAM's, Microsoft Press particularly ARunning MS DOS
QBASIC,@ by Michael

Haverson & David Rygmyr, and those by the Waite Group
are among the most helpful.

Section 6.2 - Multi-Tasking Operations

A single computer can only do one thing at a time. How-
ever, a complex motion control system needs to have
many tasks done, all at once. An effective way to do this
is with a very fast microprocessor (or DSP), running a pre-
emptive multi-tasking operating system. This causes a
single computer to appear to be doing several things si-
multaneously. The computer works on one program for a
while, then switches to another program for a while, and
after all programs have been serviced, goes back to the
first, and repeats the cycle.

With a fast computer, the time slice for each program can
be small and the outward appearance is that a separate
computer is running each program.

The Controller uses this approach to give the user up to 7
"virtual" motion controllers in a single package. An addi-
tional advantage of multi-tasking is that information can
be easily shared among the 7 virtual controllers. The Con-
troller runs 1 system task and up to 7 user tasks. Task 0 is
a system task, which always runs. It processes commands
received over the Host serial port. Up to 7 user, SEBASIC,
BASIC programs (Task 1 - Task 7) may be running in addi-
tion to Task 0.

Every 256 microseconds, task execution is interrupted in
order to perform the time-critical functions associated with
motion control. Execution of the next task is resumed
upon completion of the interrupt routine. The execution
sequences for a 1-user-task system and for a 7-user-task
system are shown below.

If an application uses 7 tasks, then each task will be serv-
iced once every 2.048 ms. If fewer tasks are used, then the
service time decreases. A one-task system would be
serviced every 512 us. The service time can be calculated
by the following formula:

Tservice = (n + 1) x 256 microseconds
where n is the number of user tasks.

Large, complicated applications typically consist of sev-
eral independent operations occurring simultaneously.
Multi-tasking allows the user to program the application
as a collection of several smaller and hence simpler appli-
cations.

A typical example of the use of tasks is to break up the
system functions into logical groups. For example, control
of a large machine might assign functions to tasks as fol-
lows:

Task 1 - Motion on axes 1 and 2
Task 2 - Handling all inputs and outputs
Task 3 - Communicating with operator interface panel

Using tasks and multi-tasking allows programs to be more
modular, hence they are easier to write, debug, and main-
tain.

Task 0 Task 1

Interrupt

Task 2

Interrupt

Task 3

Interrupt

Task 4

Interrupt

Task 5

Interrupt

Task 6

Interrupt

Task 7

Interrupt Interrupt

Interrupt Interrupt

Task 0 Task 1

Interrupt

Task 0

50 Motion Controller Programming Interface

6.2.1 – Multi-Tasking timing

The Tasks are switched by the interrupt routine every 256
micro-seconds. The number of tasks being switched is
dependent on the number of tasks that are loaded for the
user project and on project execution. If program execution
is not taking place only Task 0, Host command execution
is taking place. If program execution is taking place the
active user project tasks and Task 0 will be switched by
the interrupt every 256 micro-seconds. The diagrams on
the right illustrate the timing for no program execution,
single task program execution and a seven-task project
being executed. If a task is stopped during program execu-
tion, that task will no longer be serviced.

When it is required to poll I/O through out program execu-
tion, either dedicate a task to accomplish this or poll the
I/O in a program loop.

6.3 - Motion Controller Program-
ming Interface (MCPI)

6.3.1 - Software Installation

The Motion Controller Programming Interface (MCPI)
provides the means by which an application can be fully
developed and the controller can be operated using a per-
sonal computer (PC). The application can be written, com-
piled and downloaded to the controller, using the Motion
Controller Programming Interface. In addition, a ATerminal
Mode@ is provided for operating the controller from your
computer.

Installation Instructions
1) If Windows® is not already running, type WIN at the

DOS prompt, and press ENTER.
2) Insert the MCPI Program Disk into drive A: (or B:).
3) For Windows 3.1 Click on the FILE menu in the Pro-

gram Manager.
For Windows 95/98 Click on the Start button on the
desk top.

4) Select RUN... to display the Run Dialog box.
5) Type A:setup (or B:setup) and click OK.
6) The installation program will display the MCPI File

Manager Setup screen. Follow the prompts on the
screen to complete the installation.

7) After the program files have been installed, the in-
stallation will create a new Windows group.

8) Remove the installation disk. This concludes the in-
stallation.

6.3.2 - Starting the MCPI
 Environment

1) If Windows is not already running, type WIN at the
DOS prompt, and press ENTER.

2) Double click on the MCPI Icon.
3) The opening screen will appear.

6.3.2.1 – The MCPI opening screen

Open existing project opens up an existing project.

Create new project creates a new project.

Continue enters the MCPI with no selection.

6.3.3 - Setting Communication
 Parameters

The MCPI uses the computer serial port to communicate
with the Controller. The MCPI supports the use of four
serial ports, (Com 1, Com 2, Com 3 or Com 4). To commu-
nicate, an XON - XOFF protocol is used. This protocol
needs only three wires to establish a communication link
between the computer and the controller. These wires
should be connected to transmit (TX), receive (RX) and
common (V0) as follows:

Computer Controller
 TX -------------------------------- RX
 RX -------------------------------- TX
 V0 --------------------------------- V0

Note 1: The 9-conductor cable supplied in the Controller
accessory kit (shipped with your unit) should allow easy
connection to your PC’s serial port. A 25-to-9 pin
adapter is required (user supplied) if the PC port is a 25-
pin style.

Note 2: Consult your computer manual for the correct pin
out of it’s serial port.

The MCPI supports four-baud rates: 4800, 9600, 19200 and
38400. To set up the serial port, baud rate and Terminal
Emulation Mode used for communications, select the Con-
figure Com Port item under the System menu. The serial
word length, parity, and number of stop bits are fixed
at 8, none, 1 respectively. The baud rate for the
Controller can be set via switches on the front panel.
 Both the Controller and the MCPI are set to default
to a baud rate of 9600 when shipped. The MCPI
will also default to Com 1.

Motion Controller Programming

Interface

Version 4.00

Motion Controller
Programming Interface

Continue

Open existing project

Create new project

Motion Controller Programming Interface 51

Note 3: The Terminal Emulation Mode should be set to
TTY on the Configure Com Port screen.

Selecting the Terminal item under the Utility menu allows
testing of the serial communications to the Controller.
Simply click on the Software Revision command button
and the Controller will return the software revision infor-
mation, which will be displayed on the terminal screen.

6.3.4 – Creating a new project

To create a new project either click on the Create new pro-
ject command button on the Opening screen or the New
item on the Project pull down menu.

Enter the name of the project with a .prj extension. The
directory of the project can also be selected at this time.
To accept the name and directory click on the OK com-
mand button.

The controller type can now be selected by clicking on the
desired selection and then clicking on the OK command
button.

The controller type folder screen is now accessed. This
screen allows access to the project folders by clicking on
the desired folder tab.

Save each folder that is changed by clicking on the Save
changes command button. After completing all the
changes to the configuration click on the Exit configura-
tion command button.

6.3.5 – The Task Editor

The Project program is created and edited using the Task
Editor. To select the project to be edited click on the Task
menu and either the New or Open item. The New selection
allows a new task to be developed. The Open selection
allows a previously developed task to be edited.

Task Menu Screen

Task Editor Screen

Clicking on the Edit menu and then clicking on the
desired item can access the Edit functions. The

Select New Project Name - use .PRJ extension

OK

Cancel

X

Network ...

?

*.prj

Project (*.PRJ) c:ms-dos_6

Save file as type: Drives:

c:\mcpi

Folders:

c:\
mcpi

MX - 2 axis servo/stepper control

MX 2 axis servo/stepper control

MX 4 axis servo/stepper control

MX 6 axis servo/stepper control

MX 8 axis servo/stepper control

DCS 2 axis servo/stepper control

MX-1C 2 axis servo/stepper control

TDC 1 axis servo control

SS2000D6I 1 axis stepper control

PDC 1 axis stepper control

Select Controller Type X

OK

 Axis Configuration

System Profile
Analog

inputs
Encoder

Closed loop

Stepper

Servo

Drive

Open Loop

Stepper
Controller Type

MX 2 ax is servo/s tepper cont ro l le r

Travel limits

I/O
Mechanical home

Mark registation

Exit configuration Save changes

Task

New

Open

Close

Save Ctrl+S

Save as

Print Ctrl+P

_ X

52 Motion Controller Programming Interface

Items and Actions for the Edit menu are listed be-
low.

Edit Menu

On the menu above:

Undo (Ctrl+Z) undoes the latest deletion

Cut (Ctrl+X) cuts the selected text and place it on the clip
board.

Copy (Ctrl+C) copies the selected text and place it on the
clip board.

Paste (Ctrl+V) pastes the contents of the clip board into
the file.

Delete (Del) deletes the selected text.

Find (Ctrl+F) finds the occurrence of the selected text in
the file.

Find next (F3) finds the next occurrence of the selected
text in the file.

Replace (shift+F3) replaces one set of text with another
set of text .

Insert Insert a selected file at the current position.

View line go to the selected line number.

Select all (Ctrl+A) selects all text.

6.3.5.1 – Document settings

Clicking on the System Menu and then selecting the
Document setting item can modify the document settings
for the task editor.

Save source code allows the users to save the project in
the MX2000 controller. When checked the user project
text will be compressed and sent to the controller during a
download project sequence. This text can now be re-
trieved from the controller.

Keyword checking enables or disables Keyword checking.
If Enabled it Capitalizes keywords such as program com-
mands and uses the selected colors for keywords and
comments.

Fonts and colors selects the Font name, Font Style, Font
size, background color, foreground color, Keyword color
and Comment color. Some of these functions can be dupli-
cated on the Editor Tool Box.

Document format selects the document width, height,
margins and Tab spacing. Some of these settings can be
duplicated on the Editor Tool Box.

Paragraph format selects the document margins, Align-
ment, line spacing, Tabulator type and Tab spacing. These
settings can be duplicated on the Editor Tool Box.

Tab Bar displays the Tab bar when checked.

Ruler displays the ruler when checked.

Inch selects the inch ruler when checked.

Metric selects the metric ruler when checked.

Repaginate repaginates the current task.

Edit

Undo Ctrl+Z

Cut Ctrl+X

Copy Ctrl+C

Paste Ctrl+V

Delete Del

Find Ctrl+F

Find next F3

Replace Shift+F3

Insert

View line

Select All Ctrl+A

System

Save source code

Key word checking

Terminal settings

Document settings

Document format

Fonts and colors

Paragraph format

Tab bar

Ruler

Inch

M etric

Repaginate

Motion Controller Programming Interface 53

6.3.5.2 - Editor Tool Box

The Editor Tool Box can be used to modify the text on the Editor Screen. The Font, Type, line spacing and text color can be
modified using the Editor Tool Box.

 Font Size Select Strike through Superscript
 Font Size Underline Subscript
 Font Name Select Italic
 Font Name Bold

 Left 1 Line Spacing
 Center 1.5 Line Spacing
 Right 2 Line Spacing
 Justified Color Palette

6.3.6 – Terminal Emulation

Before entering the Terminal Emulation environment, set
up the communication port parameters by clicking on the
System menu, Terminal settings item and then the Com
port item. Choose the appropriate Com port, baud rate,
terminal emulation, echo mode and RTS control from the
Com Port Screen by clicking on one of the circles in each
section.

6.3.6.1 – Configuring Buttons

To program the buttons on the Terminal Emulation screen,
Click on the System Menu and then on the Terminal set-
tings item.

1) Click on the Buttons item.

2) Click on drop list arrow and select button number.
3) Click on Caption text box and enter the button caption

text.
4) Click on Text box and enter the command line text,

command sent.
5) If motion and program execution is to be stopped after

the button’s command is executed, click on the Cntrl
C or Cntrl A check box. See the Host Command sec-
tion of this manual for a more detailed description of
Cntrl A and Cntrl C.

6) If command is to be allowed during program execution
click on Add ESC check box.

7) Click on Add CR check box if not a Cntrl C or Cntrl A
command.

6.3.6.2 – Configuration Fonts & col-
ors

To select the Font and Colors for the Terminal Emulation
screen Click on the System Menu and then on the Termi-

System

Save source code

Keyword checking

 Terminal settings

Document settings

Com port

Buttons

Fonts and colors

Com Port Settings & Terminal Emulation Mode X

Com Port

Com Port 1

Com Port 2

Com Port 3

Com Port 4

Baud Rate

 4800 Baud

 9600 Baud

19200 Baud

38400 Baud

Emulation

TTY

ANSI

VT52

VT100

Echo

Echo

No Echo

On during transmit

RTS Control

Always On

Always Off

CAUTION: Some PC's will support baud rates over 9600. Unless yours does, then use 9600;
otherwise, some characters may be lost during transmission.

OK Cancel

Button Configuration X

1 - RUNButton

RUNCaption

RUNText

xadd CR

add ESC Quit

Cntrl C

Cntrl A

54 Motion Controller Programming Interface

nal settings item. Click on the Fonts and colors item. Se-
lect the desired Font, Style, Font size, Background color
and Foreground color for the Terminal Emulation environ-
ment. When finished, click on the O.K. button.

To enter the Terminal Emulation environment click on the
Terminal command button.

6.3.7 Configuration & Setup Folders

Clicking on the Configuration command button accesses
the folders for the configuration & setup screens. These
folders allow project setup conditions to be programmed.
Clicking on its folder tab can access a specific folder.

Note: Clicking on the Save changes command button
saves the current folder data.

Clicking on the Exit Configuration command button can
be used on any folder to exit the Configuration setup. If
any of the items in the folder have been changed, a query
will occur which will give the user the option of saving the
folder data.

Clicking on another folder tab will allow changes to the
newly selected folder. The changes, which have already
been made, will not be affected. This allows you to click
between folders, set up the necessary parameters, and
save only once before exiting the configuration screen. A
description of each folder follows.

6.3.7.1 – Controller Type Folder

This folder allows the controller type to be defined for the
user program. The choices are: MX 2 axis servo/stepper
control, MX 4 axis servo/stepper control, MX 6 axis
servo/stepper control, MX 8 axis servo/stepper control,
DCS 2 axis servo/stepper control, MX1C 2 axis
servo/stepper control, TDC 1 axis servo control, and
SS2000D6I 1 axis stepper control.

6.3.7.2 – System Folder

This folder defines the axis assignments for a task, Drive
type, motor direction for a + motion and the units per mo-
tor revolution.

The Task assignment allows an axis to be assigned to a
project task.

The Drive Type defines the type of drive operation. The
choices are: open loop stepper, closed loop stepper and
servo. Open loop steppers do not have encoders.

The Motor Direction sets the motor direction for a +
move. The choices are: += cw motor direction or += ccw
motor direction. The motor direction is as viewed from the
rear of the motor.

The desired Units per motor revolution value
should be entered. A unit is the method of measurement to
be used, i.e inches, mm, degrees, etc. This sets the number
of user units for one motor revolution. Move distances
and position values are in units, Speeds are in
units/second and Acceleration and Deceleration values
are in units/second2.

Example:
If a motor is directly coupled to a lead screw, which has a
0.8” pitch, the units per motor revolution should be set to
0.8. The user may now write his program with distances in
inches.

Run Program Directory Software Revision Error Message Stop Program

Reset

 TTY Terminal com1: 9600,n,8,1 _ X

System

open loop stepper

+ = cw motor direction

1.0Axis 1

Drive Type Motor Direction Units per motor
resolution

Axis 2

Task assignment

c:\mcpi\name.tsk

c:\mcpi\name.tsk

open loop stepper

+ = cw motor direction

1.0

Motion Controller Programming Interface 55

6.3.7.3 – Profile Folder

This folder selects the motion profile, maximum accelera-
tion rate, maximum speed and Delay after motion. The
Speed, Acceleration and Deceleration item are program
execution default values that can be altered with basic
commands during program execution.

Motion Profile determines how the motor's speed
changes. Speed changes require a period of accelera-
tion/deceleration to increase/decrease the motor's speed.
The "Motion Profile" determines how this rate is applied.
There are 32 choices, and a profile setting of 1 results in a
"Trapezoidal" profile, this profile yields the minimum move
time. Settings 2 - 32 yields "S-curve" profiles with varying
degrees of smoothing. The higher the profile setting, the
more "S" like the profile becomes. Move times with profile
settings 2 - 32 are from 2 to 62 ms longer respectively than
those executed with a setting of 1. The "S-curve" profiles
usually results in smoother motion at the expense of
longer move times. Move times can be shortened, how-
ever, by raising the acceleration, deceleration, and/or
speed of the move.

Speed sets the non-coordinated speed of an axis in
units/sec.

Acceleration sets the acceleration rate of an axis in
units/sec2.

Deceleration sets the deceleration rate of an axis in
units/sec2.

Max. accel sets the maximum allowed acceleration or de-
celeration rate in units/sec2. This value is also used to

decelerate motion to a stop when a fault such as a travel
limit occurs.

Max. Speed sets the maximum allowed target speed in
units/second. Speed, Acceleration and Deceleration val-
ues can be reset within a program as long as the value
used is less than or equal to the max speed and max accel
respectively.

Delay after motion sets the minimum time, in seconds,
between two moves.

6.3.7.4 – Analog Inputs Folder

This folder defines the analog input configuration and its
filter time constant for an axis.

Input type defines the analog input configuration of an
axis. The choices are differential or single ended.

Filter 1 time constant defines the filter time constant for
analog input 1 of the axis.

Filter 2 time constant defines the filter time constant for
analog input 2 of the axis.

6.3.7.5 – Encoder Folder

This folder allows the Encoder for a Servo drive or closed
loop stepper drive. This folder is described in further detail
in the Servo Drive and Stepper Drive sections of the man-
ual.

6.3.7.6 – Open Loop Stepper Folder

This folder sets up the parameters used by an open loop
stepper and is described in more detail in the Stepper
Drive section of this manual.

6.3.7.7 – Closed Loop Stepper Folder

This folder sets up the parameters used by a closed loop
stepper and is described in more detail in the Stepper
Drive section of this manual.

6.3.7.8 – Servo Drive Folder

trapezoidal 0.05Axis 1

Motion profile

20.0

Max. speed
(units/sec)

Delay after

motion(sec)

Profile

0.0520.0

2
Speed

(units/sec)

Acceleration
(units/sec)

100.0100.0

Max. accel
(units/sec)2

Deceleration
(units/sec)2

200.0 124.0

124.0200.0100.0100.0trapezoidalAxis 2

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18
Velocity Response, "s" = 16

Samples (mS)

Velocity
(rev/
sec)

differentialAxis 1

Input type

0.005

Filter 1 time
constant (sec)

Analog inputs

0.005differentialAxis 2

Filter 2 time
constant (sec)

0.005

0.005

56 Motion Controller Programming Interface

This folder sets up the parameters used by a servo drive
and is described in more detail in the Servo Drive section
of this manual.

Motion Controller Programming Interface 57

6.3.7.9 - Travel Limit Folder

The hardware limits and software limits are controlled from
this folder.

Hardware travel limits choices are disabled, active on
switch closing and active on switch opening. Hard limit
inputs are used to stop the motor before it runs into a
physical end of travel, thus avoiding damage to the me-
chanical system.

Activating the +limit input stops the motor if it is rotating
in the + direction. Activating the –limit input stops the
motor if it is rotating in the – direction. A fault condition
is a result of the hardware travel limit activation. See the
ERR command in Section 7 to create an error handling
routine.

Hard limit deceleration, if non-zero, specifies the axis de-
celeration if a hard limit is activated. If the value is zero
than the Maximum Acceleration value will be used to stop
the motor.

Software travel limits can be enabled or disabled.

Positive software limit specifies the programmable posi-
tion limit for a positive motion. An error is generated when
this position is exceeded.

Negative software limit specifies the programmable posi-
tion limit for a negative motion. An error is generated
when this position is exceeded.

6.3.7.10 – Mechanical Home & Mark
 Registration Folder

This folder specifies the trigger for the mechanical home
(MOVEHOME), mark registration cycle (MOVEREG) and
specifies the maximum distance allowed for a mark registra-
tion cycle.

Mechanical Home trigger & Mark Registration trigger
specifies the trigger for the cycle. There are two trigger
inputs EVENT1 and EVENT2 that can be used as a trigger.

The trigger combination for mechanical home and Mark
registration are: event 1 active, event 1 inactive, event 1
active & encoder marker, event 1 inactive & encoder
marker, encoder marker active, encoder marker inactive,
event 2 active and event 2 inactive.

Registration travel limit specifies the maximum distance,
in units, allowed for a mark registration cycle. If the value
is zero a travel limit is not limited.

6.3.7.11 – I/O Folder

This folder allows an external input to generate a controller
system reset.

Input assignment allows an external input to generate a
controller system reset. The choices are none, Expansion
board 1 – input 1 and Digital board 1 – input 1.

6.3.8 – Preparing User Project for
 Execution

In order to execute a project program it must first be Com-
piled and then Downloaded to the controller. The project
source code can be recovered from the controller as well if
the save source option is utilized.

6.3.8.1 – Project Source code

The Project Source Code is the English version of the user
=s program. If the user =s program needs to be uploaded
from the controller at any time, A Save Source Code @
must be enabled. The Source code of a project can be
saved in the controller. However, the source code uses up
program memory in the controller. The selection for source
code saving is accessed by clicking on the System menu.
Clicking on the Save source code item can toggle the Save
source code setting. A check mark will appear when the
source code is to be saved.

Note: Saving the source code in the controller requires a
lot of program memory. If the user == s program is ex-
tremely long it may not be possible to save the source
code. See the FREEMEM command for more information.

 noneReset

Input assignment

I/O

event1 activeAxis 1

Mechanical home trigger Mark registration trigger

event2 active

Mechanical home

Mark registration

Registration
travel limit

(Units)

0.0

Axis 2 event1 active event2 active 0.0

active on switch closingAxis 1

Hard limit
deceleration
(units/sec)

0.0 disabled

Positive software

limit (units)

Hardware travel limits Software travel

limits

Negative software

limit (units)

0.00.0

Axis 2 0.0 disabled 0.0 0.0

2

Travel l imi ts

active on switch closing

System

Save source code

Keyword checking

Terminal settings

Document settings

58 Motion Controller Programming Interface

6.3.8.2 – Compiling a Project

Whether the project is new, or changes have been made to
the task or configuration, it MUST be compiled BEFORE
DOWNLOADING for it to be stored and implemented in
the controller. Compiling converts the users task and con-
figuration to machine code that the controller can under-
stand. A project can be compiled by clicking on the Com-
pile Command button or on the Compile menu and then
the Compile project item.

6.3.8.3 – Downloading a Project

A project can be downloaded with or without its source
code by clicking on the Download command button or
clicking on the Download menu and then the Download
project item.

6.3.8.4 – Uploading Source Code

The projects source code can be uploaded from the con-
troller to the PC by selecting the Upload Source item from
the Download menu. A project can be uploaded from the
controller ONLY if it had previously been saved in the
controller. See section 6.3.8.1.

6.3.9 – Downloading an Operating
 System

Although the unit comes with an operating system in-
stalled. Clicking on the Download menu and then the
Download Operating System item will download new op-
erating system software.

The operating system file, with an extension .bin, can now
be selected by clicking on the desired file name. To start
the operating system download procedure click on the OK
command button.

Note: The file names for the different controllers start with
the following letters: mx for the MX2000 controller, dcs for
the DCS controller , tdc for the TDC controller and dxI for
the SS2000D6i controller.

6.3.10 – Other Menus

The MCPI menus are pull down menus. Clicking on a
menu shows an itemized list of operations allowed for that
menu. The menus are Project, Task, Edit, Compile, Down-
load, Utility, System, Window and Help.

6.3.10.1 – Project Menu

This menu allows you to create a new project, open an
existing project, save a current project, add or remove a
task from a project, open the configuration & setup envi-
ronment, print the current project, or exit the MCPI pro-
gramming environment.

New is used to create a new project.

Open is used to open up an existing Project.

Save is used to save the current project.

Save as is used to save the current project under a new
name.

Download

Download Project

Upload Source ...

Download Operating System
Project

New

Open

Save

Save as ...

Remove task

Add task Ctrl+D

Configuration & setup

Print project

Export project

Import project

Exit

D o w n l o a d

D own load P ro jec t

Up load S ource . . .

Down load Opera t ing S ys tem . . .

Operating system download - use .BIN extension

*.bin

Mx4_00.bin

File name:

 c:\
 mcpi

Folders:

c:\mcpi

 c:
Drives:List files of type:

Operating system (.*BIN)

? X

Network ...

OK

Cancel

Motion Controller Programming Interface 59

Remove task is used to remove a task file from an open
project.
Add task is used to add a file to a current project. Up to
seven tasks may be added to one project.

Configuration & setup is used to edit the Configuration &
setup folders.

Print project is used to print a current project’s informa-
tion.

Export project is used to export a current project to an-
other drive or directory.

Import project is used to import a selected project from
another drive or directory into the MCPI Environment.

Exit is used to exit the MCPI programming Envi-
ronment.

6.3.10.2 – Utility Menu

This menu allows reselection of terminal mode emulation,
data logging, servo tuning, or program debugging.

Terminal starts terminal emulation mode. This allows di-
rect communication with the controller.

Servo Tuning allows the tuning of a servo system.

Logging allows data logging of specific parameters by the
controller.

Debug starts program task debugging.

6.3.10.3 – Window Menu

This menu selects the windows format for the open win-
dows.

Cascade cascades the open windows.

Tile Horizontal tiles the open windows Horizontally.

Tile Vertical tiles the open windows Vertically.

Utility

Terminal ...

Servo Tuning ...

Logging ...

Debug ...

Window

Cascade

Tile Horizontal

Tile Vertical

Configuration Compile project Download project

60 Motion Controller Programming Interface

6.3.10.4 – Help Menu

This menu provides help on program commands, technical
assistance and displays the MCPI software version.

Contents list the help topics.

Search for help on lists the help items and descriptions.

Obtaining technical support provides application assis-
tance telephone numbers.

Help on using help provides help on how to use Help.

About MCPI provides the MCPI version number.

6.3.11 – Project Command Buttons

The MCPI command buttons allow the selection of the
Configuration & Setup folders, compilation of a current
project, downloading of a current user project, selecting
the Terminal Emulation environment, selecting the servo
tuning environment, or selecting the program debugger
environment.

Configuration enters the configuration & setup environ-
ment.

Compile project compiles the current project.

Download project downloads the current project.

Terminal enters the Terminal emulation environment.

Servo tuning allows the tuning of a servo motor.

Debug enters the Program Debugger Environment.

Help

Contents

Search for help on ...

Obtain technical support ...

Help on using help ...

About MCPI

Motion Controller Programming Interface 61

Programming Commands 59

Section 7.0
Software Reference

Guide

60 Programming Commands

7.1 SEBASIC Conventions

A basic-like language conforms to most of the rules and
conventions of modern implementations of the BASIC
programming Language, such as “QuickBasic”, etc. Fol-
lowing is a summary of the considerations to be used in
writing your programs.

7.1.1 Arithmetic Operators

The SEBASIC arithmetic operators are listed in order of
precedence.
 Operator Function
 - Negation.
 * , / Multiplication and division.
 + , - Addition and subtraction.

Parentheses changes the order in which arithmetic opera-
tions are performed. Operations within parentheses are
performed first. Inside parentheses, the usual order of op-
eration is maintained.

Note: Squaring and exponentiation are not supported; use
multiplication to perform these operations.

Example: to calculate X3, use X*X*X.

7.1.2 Logical Operators

Logical operators perform test on multiple relations, bit
manipulations or Boolean operations and return a “true”
(one) or “false” (zero) value used in making a decision.

These operators are used in Boolean expressions. The
logical operators in SEBASIC, listed in order of prece-
dence, are as follows:

 Operator Use
 NOT NOT <term> a false term, results in the

Boolean expression being true.
 AND <term AND <term> if both terms are true,

results in the Boolean expression being
true.

 OR <term> OR <term> if either term is true,
results in the Boolean expression being
true.

7.1.3 Relationship Operators

Relationship operators are used to compare two values.
The result of the comparison is either “true” (one) or
“false” (zero). This result can then be used to make a deci-
sion regarding program flow.

 Operator Relation Expression
 = Equality * X = Y
 <> Inequality X <> Y
 < Less than X < Y
 > Greater than X > Y
 <= Less than or equal to X <= Y
>= Greater than or equal to X >= Y

* The equal sign (=) is also used to assign a value to a
variable.

7.1.4 Basic Data Types

Two basic data types exist: floating point values (REAL)
and string values. All values are assumed to be floating
point unless a $ suffix is used.

x x is a floating point variable.
x$ x$ is a string variable.

Note: All variable names and program labels must begin
with a letter A-Z.

7.1.5 Case Sensitivity in Statements
&
Commands

Some programming statements and commands are case-
sensitive; others are not. The following table defines case
sensitivity in SEBASIC:

Basic Language
Element

Case
 Sensitive?

Max. Length
(characters)

Label No 80
Variable name No 80

String constant Yes 80
Basic Keyword No N/A

The Host commands are not case sensitive; that is, upper
and lower case letters can be used interchangeably .

Programming Commands 61

7.1.6 Program Limits

When writing an MX program please observe the follow-
ing maximum values; otherwise the project will not com-
pile.

Item Maximum Allowed
Line labels 100 total per task
Local Variables 100 total per task
Common Variables 100 total per project
Literal’ s 100 total per project
DATA Elements 100 total per task
Nested FOR loops 100 total per task
Nester DO loops 100 total per task

7.1.7 Numeric Formats and Range

Numeric data may be represented in standard format or in
scientific notion format. The following are illustration of
each type of format.

Standard format:
1234567
-1.234567
0.1234567
1234.567
etc

Scientific notation format
2e6 (2,000,000)
2.0456e4 (20,456)
-3.14159e0 (-3.14159)
6.78e-2 (0.0678)
etc

The largest number that can be used is 3.4e38. The small-
est number that can be used is 2.9e-39. The numeric reso-
lution is 1 part in 8,388,608 or 1.2e-7.

 7.1.8 Program Comments

An apostrophe (‘) in a program line prevents a line from
executing and allows program comments /documentation.
All text to the right of the ‘ to the end of line is not consid-
ered part of the command during execution.

Examples:
‘MOVE=10 The program will not execute this line
MOVE=100 ‘The program will execute this line

7.1.9 Axis Related Command Syntax

The syntax for programming commands has numerous
choices. Some are I/O related and some are axis related.
The I/O related syntax’s are covered in detail for that spe-
cific command. However, the axis related commands are so
numerous that they will be covered in this section of the
manual.

7.1.9.1 Definitions Used in Syntax
 Descriptions

COMMAND represents an arbitrary axis command.

Expression
One or more constants, variables or commands that return
data operated on by mathematical operators or mathemati-
cal functions. Expressions can be very simple (as in the
case of a single constant or variable) or quite complex (as
shown in the last example below). The compiler will indi-
cate an error if an expression is too complex. For all practi-
cal purposes it is not possible to write an expression that
is too complex.

The following are all valid expressions:
5.2 (single constant)
X (single variable)
SPEED(2) (command)
X+3(addition of variable and constant)
SIN(X-3) (sine function of the difference of a

 variable and constant)
(X+3)*SIN(Y)/(Z+SQRT(X)) (complicated

 expression)

axis
Specifies the axis on which the command is performed.
Axis is specified as an expression that evaluates to the
desired axis number. If the expression evaluates to a non-
whole number, then the nearest whole number less than
the expression value is used. Axis is most commonly
specified as a constant.

Example: COMMAND(x+2)
with x = 1.5 is equivalent to COMMAND(3)

[text]
Denotes 0 or more occurrences of what is enclosed by the
brackets. The brackets are not part of the syntax.

7.1.9.2 Syntax Descriptions

COMMAND(axis) = expression
Execute the command, on the specified axis, using the data
supplied by the expression.

Syntax example: MOVE(2) = 10
performs an index motion of 10 units on axis 2

COMMAND = expression list
Execute the command, on the 1 or more specified axes,
using the data supplied by the expression list.

expression list
1 to N expressions. Commas follow each expression in the
list except for the last one. (N = number of axes in the con-
troller: 2,4,6 or 8) The first expression in the list is for axis
1, the next for axis 2, etc. To skip an axis, simply enter a
comma for that axis. Although these examples use con-

62 Programming Commands

stants any expression regardless of complexity can be
used.
The following are all valid expression lists:

5.3 no comma, since a comma does not
follow the last expression in the list (axis1
value is 5.3)

,,,5.2,,6 1st comma - skip axis 1, 2nd comma –
skip axis 2, 3rd comma - skip axis 3, 4th
comma follows expression for axis 4, 5th
comma - skip axis 5
(axis 4 value is 5.2, axis 6 value is 6)

syntax example:
ABSPOS = ,0,0,0
sets ABSPOS of axes 2-4 to 0

COMMAND(n [,m]) = expression [, expression]
Execute the command, on the 1 or more specified axes,
using the data supplied by the 1 or more expressions.

n
Axis number, which is a whole number constant in the
range 1 to N, where N is the number of axes in the con-
troller: 2,4,6 or 8.

[,m]
0 or more occurrences of axis number preceded with a
comma.

[,expression] 0 or more occurrences of an expression pre-
ceded with a comma.

For each axis number there is a corresponding expression.
The 1st (left most) expression is associated with the low-
est axis number, the 2nd with the next lowest, etc.

COMMAND(2,3,7)=1.1,2.2,3.3 does the same as
COMMAND=,1.1,2.2,,,,3.3 but is less prone to errors since
there is no need to put all those commas in the right place.

Syntax example:
ACCEL(3,4) = 100,200
sets ACCEL for axis 3 to 100 units and axis 4 to
200 units.

COMMAND(axis)
Execute the command on the specified axis. This command
syntax returns data and is used in an expression.

Syntax example:
X = DECEL(1)
Sets X equal to the DECEL value of axis 1.

COMMAND(n [,m])
Execute the command, on the 1 or more specified axes.

n
axis number, which is a whole number constant in the
range 1 to N, where N is the number of axes in the con-
troller: 2,4,6 or 8.

[,m]
0 or more occurrences of axis number preceded with a
comma.

Syntax examples:
WAITDONE(2,3)
waits for axis 2 and 3 to finish motion
STOP(1,3)
stops motion on axes 1 & 3

Programming Commands 63

7.2 Programming Commands Grouped By Functions

Bitwise Operator Page
& Returns the bitwise AND of the expression. 78
| Returns the bitwise inclusive OR of the expression. 78
 ̂ Returns the bitwise exclusive OR of the expression. 78

>> Returns the bitwise shift right of the argument. 79
<< Returns the bitwise shift left of the argument. 79

Boolean Operator
AND The logical AND operator is used in Boolean expressions. 83
NOT The logical NOT operator is used in Boolean expressions.

137
OR The logical OR operator is used in Boolean expressions.

140

Following Parameter
FOLACCDIST Specifies the master distance traveled for the follower to catch the

master velocity after follower motion begins. 107
FOLDCCDIST Specifies the master distance traveled for the follower to attain a

velocity of zero from the current velocity. 107
FOLINPUT This command specifies the follower axes & the master velocity source. 108
FOLJOG Requests a Following axis Jog cycle. 108
FOLMAXRATIO Sets or returns the maximum allowable following axis speed during

an offset advance cycle.
109

FOLMINRATIO Sets or returns the minimum allowable following axis speed during
an offset recede cycle. 109

FOLMOVE Request a Following axis move. 109
FOLMOVEREG Request a following axis move registration cycle. 110
FOLOFFSET Defines a following incremental offset distance from the current

position. 110
FOLOFFSETDIST Sets or returns the master distance traveled for a FOLOFFSET

command. 110
FOLRATIO Sets or returns the ratio of the following axis to the master. 111
FOLRATIOINC Specifies the acceleration rate for a FOLRATIO change during motion. 111
FOLSTARTDIST Specifies a master distance which is used as a delay distance for

starting following motion. 111
FOLSYNC Returns the following sync status of a follower axis. 112
FOLSYNCDIST Specifies a master distance for the follower to travel in synchronization

with the master when a FOLOFFSET command is issued. 112
FOLTRIG Defines the follower starting trigger for motion. 112

I/O Function
ANALOG Sets or returns a numeric value representation on the analog port. 82
BCD Returns the BCD switches value connected to an Expansion I/O port. 86
EXIN Returns the state of the specified expansion I/O inputs. 105
EXOUT Sets or returns the state of the specified expansion I/O outputs. 106
GETCHAR Waits for a character on the selected serial port and returns the ASCII

code of the character. 115
IN Returns the state’s of the specified digital I/O inputs. 121
INCHAR Returns the ASCII code of a character from the designated serial port. 121
INPUT Reads a line of data from the designated serial port. 122

64 Programming Commands

OUT Sets or returns the condition of a specified digital output. 141

Programming Commands 65

Mathematical Function Page
ABS Returns the absolute value of an expression. 79
ATN Returns the angle (in radians) whose tangent is x. 85
ATN2 Returns the angle (in radians) whose tangent is y/x. 85
COS Returns the cosine of the angle x, where x is in radians. 89
LOG Returns the natural logarithm of a numeric expression. 129
MOD Returns the remainder of a number divided by the base. 131
SIGN Returns the sign of the expression. 155
SIN Returns the sine of the angle x, where x is in radians. 155
SQRT Returns the square root of the expression. 160
TAN Returns the tangent of the angle x, where x is in radians. 161

Miscellaneous Command
CAPPOS Returns the last captured absolute position of an axis from a

MOVEHOME, MOVEREG or CAPTURE cycle. 87
CAPTURE Sets the position capture trigger condition or returns the position

capture status. 88
COMMON Allows variables to be shared by other tasks. 89
DATA Stores the numeric constants used by the READ statement. 90
#DEFINE Defines a symbolic name to be a particular string of characters. 91
DELTACAPPOS Returns the difference between the current captured position and the

previously captured position. 92
DIM Declares an array variable and allocated storage space. 93
END Signifies the end of a program. 99
ERR Returns the MX controller error/warning number for a task. 100
ERRAXIS Returns the MX controller axis number which created the error/warning

for a task. 102
ERRTRAP Sets an error trap in the defined task. 102
FORMAT Enables or disables the formatting of the STR$ returned string. 113
#INCLUDE Includes a file name with define statements in a user task. 122
LOF Returns the number of character in the designated serial port buffer. 129
NVR The NVR array is used for non-volatile variable storage. 137
NVRBIT Stores or returns the bit value in NVR memory. 138
NVRBYTE Stores or returns the byte value in NVR memory. 139
OPTION DECLARE This option requires that all local variables be declared as REAL or

STRING variables. 139
READ Reads numbers from data statements and assigns them to a variable. 151
REM ‘ Allows source code comments to be inserted in the program. 153
RESET Resets the system. 153
RESTORE Allows DATA statements to be read again. 153
SETCOM Sets the baud rate and data format for the Auxiliary serial port. 154
SHIFT Shifts the elements of a single-dimension numeric array up or down. 155
TOLERANCE Sets a tolerance on a numeric comparison. 163
WARNING Returns the warning number of a task. 166

Motion Parameter
ARC Initiates a coordinated motion to move in an arc. 84
BOOST Enables or Disables the Boost current feature or returns the boost enable

status of an axis. 86
BUSY Returns the motion status of an axis. 86
DONE Returns the motion status of an axis. 95
DRVREADY Enables or disables the checking of the drive (READY) signal on the

axis card. 96

66 Programming Commands

Motion Parameter continued Page
ENCBAND Sets or returns the maximum position error allowed when motion is

stopped. 97
ENCFOL Sets or returns the maximum position error allowed during motion. 97
ENCMODE Sets or returns the operating mode of a closed loop stepper axis. 98
EVENT1 Returns the state of the trigger input labeled EVNT1 or sets the trigger

polarity and enable , which are used in a MOVEHOME, MOVEREG or
FOLMOVREG cycle. 103

EVENT2 Returns the state of the trigger input labeled EVNT2 or sets the trigger
polarity and enable , which are used in a MOVEHOME, MOVEREG or
FOLMOVREG cycle. 104

FOLERR Sets or returns the maximum position error allowed during motion. 108
JOG Runs the motor continuously in the specified direction. 124
JOYSTICK Enables Joystick motion. 125
LINE Initiates a coordinated linear move involving up to 8 axes. 128
MOVE Initiates a non-coordinated move. 132
MOVEHOME Runs the motor until the home input is activated, captures and records

the position of the switch activation as home. 133
MOVEREG Runs the motor until the mark registration input is activated; then moves

the motor the desired registration distance. 135
PATH ... PATH CLOSE ... PATH END Specifies a continuous motion path. 143
POINT Specifies coordinates, which the motors will move through in a path. 144
POSMODE Sets or returns the position mode of an axis. 145
RADIUS Sets or returns the arc radius for path blending. 151
REDUCE Enable/disable the reduce current feature or return the enable/disable

status. 152
STOP Stops any motion with a control stop. 160
STOPERR Sets or returns the maximum position error allowed when motion is

stopped. 160
WAITDONE Waits for motion to be done for the specified axes. 165
WNDGS Enables or disables a motor drive. 166

Over Travel Limit
HARDLIMIT Enable or disables Hard Limit switches or reads the current Hard Limit

enable/disable state of an axis. 117
HARDLIMNEG Returns the - Limit hardware state of an axis. 118
HARDLIMPOS Returns the + Limit hardware state of an axis. 118
REGLIMIT Sets or returns the distance to be moved during a MOVEREG cycle,

while awaiting a trigger. 152
SOFTLIMIT Enables/disables or returns the SOFTLIMIT enable state of an axis. 156
SOFTLIMNEG Sets or return the - direction software travel limit. 157
SOFTLIMPOS Sets or return the + direction software travel limit. 158

Program Flow Command
DO ... LOOP Repeats a block of statements while a condition is true

or until a condition becomes true. 94
FOR ... NEXT ... STEP Repeats a block of statements a specified number of times. 114
GOSUB ... RETURN Branches to, and returns from, a subroutine. 115
GOTO Branches unconditionally to the specified label. 116
IF ... THEN ... ELSE IF ... ELSE ... END IF Allows conditional execution based on the

evaluation of a Boolean condition. 120

Programming Commands 67

Servo Parameter Page
INTLIM Sets the integral limit for a servo axis. 123
IXT Sets or returns the Excessive Duty Cycle Shutdown time in seconds 123
KAFF Sets or returns the acceleration feed forward gain of a servo axis. 126
KD Sets or returns the derivative gain of a servo axis. 126
KI Sets or returns the integral gain of a servo axis. 126
KP Sets or returns the proportional gain of a servo axis. 126
KVFF Sets or returns the velocity feed forward gain of a servo axis. 127
OUTLIMIT Sets or returns the servo axis command limit voltage. 142

String Manipulation
ASC Returns the ASCII code for the first character in a string. 84
CHR$ Returns a one character string whose ASCII code is the argument. 89
HEX$ Returns the hex string equivalent of an argument. 118
HVAL Returns the decimal value of a hexadecimal string. 119
INSTR Returns the character position of the first occurrence of a specified string

in another string. 123
LCASE$ Converts and returns a string with lower case letters. 127
LEFT$ Returns the leftmost characters of a string. 127
LEN Returns the number of characters in the designated string. 127
MID$ Returns the designated middle number of character of a string. 130
PRINT Transmits designated data via the designated serial port. 146
PRINT USING Transmits string characters or formatted number via the designated

serial port. 147
RIGHT$ Returns the rightmost characters of a string. 154
STR$ Returns a string representation of a numeric expression. 161
STRING$ Returns a string of characters. 161
UCASE$ Returns a string with all letter converted to upper case. 163
VAL Returns the floating point value of the designated string variable. 164

Time Function
TIMER Sets or reads the timer value in seconds. 162
TIMER2 Sets or reads the timer 2 value in seconds. 162
WAIT Waits for the period of time (expressed in seconds) to expire before

continuing. 164

Trajectory Parameter
ABSPOS Sets or returns the commanded absolute position of an axis. 80
ACCEL Sets or returns the acceleration value of the motor. 81
ACTSPD Returns the current commanded velocity of an axis in Units/seconds. 81
DECEL Sets or returns the deceleration value of an axis. 90
DIST Returns the distance moved from the start of the last motion. 93
ENCERR Returns the positional error of the designated axis. 97
ENCPOS Returns the encoder position of an axis. 98
ENCSPD Returns the current encoder speed in Units/second. 98
FEEDRATE Sets a feed rate override during Path execution. 107
LOWSPD Sets or returns the Low Speed (starting speed) of a stepping motor axis. 129
MAXSPD Sets or returns the maximum allowed speed of an axis. 130
MOTIONSTATE Returns the motion state of an axis. 131
POSERR Returns the positional error of the designated axis. 144
PROFILE Determines how the motor’s speed changes. 150
SPEED Sets or returns the target velocity of an axis. 159
VELOCITY Sets or returns the path speed to be used for coordinated motion. 164

68 Programming Commands

7.3 Programming Command Summary (alphabetical list)
Page

& Returns the bitwise AND of the expression. 78
| Returns the bitwise inclusive OR of the expression. 78
 ̂ Returns the bitwise exclusive OR of the expression. 78

>> Returns the bitwise shift right of the argument. 79
<< Returns the bitwise shift left of the argument. 79

A
ABS Returns the absolute value of an expression. 79
ABSPOS Sets or returns the commanded absolute position of an axis. 80
ACCEL Sets or returns the acceleration value of the motor. 81
ACTSPD Returns the current commanded velocity of an axis in Units/seconds. 81
ANALOG Sets or returns a numeric value representation on the analog port. 82
AND The logical AND operator is used in Boolean expressions. 83
ARC Initiates a coordinated motion to move in an arc. 84
ASC Returns the ASCII code for the first character in a string. 84
ATN Returns the angle (in radians) whose tangent is x. 85
ATN2 Returns the angle (in radians) whose tangent is y/x. 85

B
BCD Returns the BCD switches value connected to an Expansion I/O port. 86
BOOST Enables or Disables the Boost current feature or returns the boost enable

status of an axis. 86
BUSY Returns the motion status of an axis. 86

C
CAPPOS Returns the last captured absolute position of an axis from a MOVEHOME,

MOVEREG or CAPTURE cycle. 87
CAPTURE Sets the position capture trigger condition or returns the position capture

status. 88
CHR$ Returns a one character string whose ASCII code is the argument. 89
COMMON Allows variables to be shared by other tasks. 89
COS Returns the cosine of the angle x, where x is in radians. 89

D
DATA Stores the numeric constants used by the READ statement. 90
DECEL Sets or returns the deceleration value of an axis. 90
#DEFINE Defines a symbolic name to be a particular string of characters. 91
DELTACAPPOS Returns the difference between the current captured position and the

previously captured position. 92
DIM Declares an array variable and allocated storage space. 93
DIST Returns the distance moved from the start of the last motion. 93
DO ... LOOP Repeats a block of statements while a condition is true or until a condition

becomes true. 94
DONE Returns the motion status of an axis. 95
DRVREADY Enables or disables the checking of the drive (READY) signal on the axis

card. 96

Programming Commands 69

Page
E
ENCBAND Sets or returns the maximum position error allowed when motion is

stopped. Same as STOPERR command. 97
ENCERR Returns the positional error of the designated axis. 97
ENCFOL Sets or returns the maximum position error allowed during Motion.

Same as FOLERR command. 97
ENCMODE Sets or returns the operating mode of a closed loop stepper axis. 98
ENCPOS Returns the encoder position of an axis. 98
ENCSPD Returns the current encoder speed in Units/second. 98
END Signifies the end of a program. 99
ERR Returns the MX controller error/warning number for a task. 100
ERRAXIS Returns the MX controller axis number which created the error/warning

for a task. 102
ERRTRAP Sets an error trap in the defined task. 102
EVENT1 Returns the state of the trigger input labeled EVNT1 or sets the trigger

polarity and enable , which are used in a MOVEHOME, MOVEREG or
FOLMOVREG cycle. 103

EVENT2 Returns the state of the trigger input labeled EVNT2 or sets the trigger
polarity and enable , which are used in a MOVEHOME, MOVEREG or
FOLMOVREG cycle. 104

EXIN Returns the state of the specified expansion I/O inputs. 105
EXOUT Sets or returns the state of the specified expansion I/O outputs. 106

F
FEEDRATE Sets a feed rate override during Path execution. 107
FOLACCDIST Specifies the master distance traveled for the follower to catch the master

velocity after follower motion begins. 107
FOLDCCDIST Specifies the master distance traveled for the follower to a attain a

velocity of zero from the current velocity. 107
FOLERR Sets or returns the maximum position error allowed during motion. 108
FOLINPUT Specifies the follower axes and the master velocity source. 108
FOLJOG Requests a Following axis Jog cycle. 108
FOLMAXRATIO Sets or returns the maximum allowable following axis speed during an

offset advance cycle. 109
FOLMINRATIO Sets or returns the minimum allowable following axis speed during an

offset recede cycle. 109
FOLMOVE Request a Following axis move. 109
FOLMOVEREG Request a following axis move registration cycle. 110
FOLOFFSET Defines a following incremental offset distance. 110
FOLOFFSETDIST Sets or returns the master distance traveled for a FOLOFFSET

command. 110
FOLRATIO Sets or returns the ratio of the following axis to the master. 111
FOLRATIOINC Specifies the acceleration rate for a FOLRATIO change during motion. 111
FOLSTARTDIST Specifies a master distance which is used as a delay distance for starting

following motion. 111
FOLSYNC Returns the following sync status of a follower axis. 112
FOLSYNCDIST Specifies a master distance for the follower to travel in synchronization

with the master when a FOLOFFSET command is issued. 112
FOLTRIG Defines the follower starting trigger for motion. 112
FORMAT Enables or disables the formatting of the STR$ returned string. 113
FOR ... NEXT ... STEP Repeats a block of statements a specified number of times. 114

70 Programming Commands

Page
G
GETCHAR Waits for a character on the selected serial port and returns the ASCII

code of the character. 115
GOSUB ... RETURN Branches to, and returns from, a subroutine. 115
GOTO Branches unconditionally to the specified label. 116

H
HARDLIMIT Enable or disables Hard Limit switches or reads the current Hard Limit

enable/disable state of an axis. 117
HARDLIMNEG Returns the - Limit hardware state of an axis. 118
HARDLIMPOS Returns the + Limit hardware state of an axis. 118
HEX$ Returns the hex string equivalent of an argument. 118
HVAL Returns the decimal value of a hexadecimal string. 119

I
IF ... THEN ... ELSE IF
 ... ELSE ... END IF Allows conditional execution based on the evaluation

of a Boolean condition. 120
IN Returns the state’s of the specified digital I/O inputs. 121
INCHAR Returns the ASCII code of a character from the designated serial port. 121
#INCLUDE Includes a file name with define statements in a user task. 122
INPUT Reads a line of data from the designated serial port. 122
INSTR Returns the character position of the first occurrence of a specified

string in another string. 123
INTLIM Sets the integral limit for a servo axis. 123
IXT Sets or returns the Excessive Duty Cycle Shutdown time in seconds 123

J
JOG Runs the motor continuously in the specified direction. 124
JOYSTICK Enables Joystick motion. 125

K
KAFF Sets or returns the acceleration feed forward gain of a servo axis. 126
KD Sets or returns the derivative gain of a servo axis. 126
KI Sets or returns the integral gain of a servo axis. 126
KP Sets or returns the proportional gain of a servo axis. 126
KVFF Sets or returns the velocity feed forward gain of a servo axis. 127

L
LCASE$ Converts and returns a string with lower case letters. 127
LEFT$ Returns the leftmost characters of a string. 127
LEN Returns the number of characters in the designated string. 127
LINE Initiates a coordinated linear move involving up to 8 axes. 128
LOF Returns the number of character in the designated serial port buffer. 129
LOG Returns the natural logarithm of a numeric expression. 129
LOWSPD Sets or returns the Low Speed (starting speed) value of a stepping motor

axis. 129

Programming Commands 71

Page
M
MAXSPD Sets or returns the maximum allowed speed of an axis. 130
MID$ Returns the designated middle number of character of a string. 130
MOD Returns the remainder of a number divided by the base. 131
MOTIONSTATE Returns the motion state of an axis. 131
MOVE Initiates a non-coordinated move. 132
MOVEHOME Runs the motor until the home input is activated, captures and records

the position of the switch activation as home. 133
MOVEREG Runs the motor until the mark registration input is activated; then moves

the motor the desired registration distance. 135

N
NOT The logical NOT operator is used in Boolean expressions. 137
NVR The NVR array is used for non-volatile variable storage. 137
NVRBIT Stores or returns the bit value in NVR memory. 138
NVRBYTE Stores or returns the byte value in NVR memory. 139

O
OPTION DECLARE This option requires that all local variables be declared as REAL or

STRING variables. 139
OR The logical OR operator is used in Boolean expressions. 140
OUT Sets or returns the condition of a specified digital output. 141
OUTLIMIT Sets or returns the servo axis command limit voltage. 142

P
PATH ... PATH CLOSE ... PATH END Specifies a continuous motion path. 143
POINT Specifies coordinates, which the motors will move through in a path. 144
POSERR Returns the positional error of the designated axis. 144
POSMODE Sets or returns the position mode of an axis. 145
PRINT Transmits designated data via the designated serial port. 146
PRINT USING Transmits string characters or formatted number via the designated

serial port. 147
PROFILE Determines how the motor’s speed changes. 150

R
RADIUS Sets or returns the arc radius for path blending. 151
READ Reads numbers from data statements and assigns them to a variable. 151
REDUCE Enable/disable the reduce current feature or return the enable/disable

Status of an axis. 152
REGLIMIT Sets or returns the distance to be moved during a MOVEREG cycle,

while awaiting a trigger. 152
REM ‘ Allows source code comments to be inserted in the program. 153
RESET Resets the system. 153
RESTORE Allows DATA statements to be read again. 153
RIGHT$ Returns the rightmost characters of a string. 154

72 Programming Commands

Page
S
SETCOM Sets the baud rate and data format for the Auxiliary serial port. 154
SHIFT Shifts the elements of a single-dimension numeric array up or down. 155
SIGN Returns the sign of the expression. 155
SIN Returns the sine of the angle x, where x is in radians. 155
SOFTLIMIT Enables/disables or returns the SOFTLIMIT enable state of an axis. 156
SOFTLIMNEG Sets or return the - direction software travel limit. 157
SOFTLIMPOS Sets or return the + direction software travel limit. 158
SPEED Sets or returns the target velocity of an axis. 159
SQRT Returns the square root of the expression. 160
STOP Stops any motion with a control stop. 160
STOPERR Sets or returns the maximum position error allowed when motion is

stopped. 160
STR$ Returns a string representation of a numeric expression. 161
STRING$ Returns a string of characters. 161

T
TAN Returns the tangent of the angle x, where x is in radians. 161
TIMER Sets or reads the timer value in seconds. 162
TIMER2 Sets or reads the timer2 value in seconds. 162
TOLERANCE Sets a tolerance on a numeric comparison. 163

U
UCASE$ Returns a string with all letter converted to upper case. 163

V
VAL Returns the floating point value of the designated string variable. 164
VELOCITY Sets or returns the path speed to be used for coordinated motion. 164

W
WAIT Waits for the period of time (expressed in seconds) to expire before

continuing. 164
WAITDONE Waits for motion to be done for the specified axes. 165
WARNING Returns the warning number of a task. 166
WNDGS Enables or disables a motor drive. 166

Programming Commands 73

7.4 Alphabetical List of Programming Commands with Syntax and Examples

& Bitwise Operator

ACTION: Returns the bitwise AND of the expressions

PROGRAM SYNTAX: result=expression1 & expression2

REMARK: A 24 bit binary AND is performed on the two arguments.

EXAMPLES: X=10 & 2
0000 0000 0000 0000 0000 1010 (10)
0000 0000 0000 0000 0000 0010 (2)
0000 0000 0000 0000 0000 0010 (result= 2)
returns a 2 to X.

| Bitwise Operator

ACTION: Returns the bitwise inclusive OR of the expressions.

PROGRAM SYNTAX: result=expression1 | expression2

REMARK: A 24 bit binary OR is performed on the two arguments.

EXAMPLES: X=10 | 4
0000 0000 0000 0000 0000 1010 (10)
0000 0000 0000 0000 0000 0100 (4)
0000 0000 0000 0000 0000 1110 (result= 14)
returns a 14 to X.

^ Bitwise Operator

ACTION: Returns the bitwise eXclusive OR of the expression

PROGRAM SYNTAX: result=expression1 ^ expression2

REMARK: A 24 bit binary eXclusive OR is performed on the two arguments.

If a binary bit in expression2 is a 1 the resulting bit will be inverted in
expression1.

EXAMPLES: X= 10 ^ 6
0000 0000 0000 0000 0000 1010 (10)
0000 0000 0000 0000 0000 0110 (6)
0000 0000 0000 0000 0000 1100 (result= 12)
returns a 12 to X.

74 Programming Commands

>> Bitwise Operator

ACTION: Returns the bitwise shift right of the argument.

PROGRAM SYNTAX: result= expression >> expression1

REMARK: expression is shifted right by the value in expression1 and the resulting
value is returned.

A 24 bit binary shift right is performed on the argument. 0’s are shifted
in starting at the MSB bit.

EXAMPLES: X=10
X=X>>1
0000 0000 0000 0000 0000 1010 (10)
0000 0000 0000 0000 0000 0101 (result= 5)
returns a 5 to X.

<< Bitwise Operator

ACTION: Returns the bitwise shift left of the argument.

PROGRAM SYNTAX: result= expression << expression1

REMARK: expression is shifted left by the value in expression1 and the resulting
value is returned.

A 24 bit binary shift left is performed on the argument. 0’s are shifted in
starting at the LSB bit.

EXAMPLES: X=10
X=X<<1
0000 0000 0000 0000 0000 1010 (10)
0000 0000 0000 0000 0001 0100 (result= 20)
returns a 20 to X.

ABS Mathematics Function

ACTION: Returns the absolute value of an expression.

PROGRAM SYNTAX: ABS(expression) - used in an expression

REMARK: The absolute value is the unsigned magnitude of the expression.

EXAMPLES: X = -57.5
 A=ABS(X) ‘ returns a 57.5 to A

Programming Commands 75

76 Programming Commands

ABSPOS Trajectory Parameter

ACTION: Sets or returns the commanded absolute position of an axis.

PROGRAM SYNTAX: ABSPOS(axis)=expression
ABSPOS=expression1, ... , expression8
ABSPOS(axis, ... , axis)=expression, ... , expression
ABSPOS(axis) - used in an expression

REMARK: The axis specifies the number of the axis (1-8).

The expression specifies the absolute position in units.

ABSPOS represents the commanded motor position, and can only be
set while no motion is occurring. Setting ABSPOS during motion,
causes the program to be trapped at the ABSPOS instruction until the
motion is completed. Setting ABSPOS also sets ENCPOS (encoder
position) to the same value. ABSPOS and ENCPOS are initialized to 0
at power up or system reset. ABSPOS is set equal to ENCPOS when
the servo drive is enabled by the WNDGS command. ABSPOS is also
set at the end of a MOVEHOME command. Reading ABSPOS returns
the actual commanded position in user units.

WARNING! Care should be taken when setting ABSPOS during
program execution on a servo axis. Because the encoder position,
ENCPOS, is set to ABSPOS when the command is executed, any po-
sition error at that time will be lost. If done repeatedly this may cause
an inadvertent accumulative error over time. To prevent this error, only
set ABSPOS once in the program, and make sure it is not included in a
loop of statements. Incremental moves will increment ABSPOS, and
there is no need to be concerned about rollover of the position counter,
since the counter will wraparound and continue operating without loss
of position.

EXAMPLES: ABSPOS(3)=2
sets the absolute position of axis 3 to 2 units.

ABSPOS=1,,3
sets the absolute position of axis 1 to 1 unit, axis 2 no change and axis 3
to 3 units.

ABSPOS(1,3)=1,3
sets the absolute position of axis 1 to 1 unit and axis 3 to 3 units.

Programming Commands 77

ACCEL Trajectory Parameter

ACTION: Sets or returns the acceleration value of the motor.

PROGRAM SYNTAX: ACCEL(axis)=expression
ACCEL=expression1, ... , expression8
ACCEL(axis, ... , axis)=expression, ... , expression
ACCEL(axis) - used in an expression

REMARK: The axis specifies the number of the axis (1-8).

The expression is the acceleration rate in units/sec2.

The rate at which the motor speed is increased. Specifying a value
greater than “Max Accel” set in the system Configuration and Setup
will result in ACCEL being set to the “Max Accel”. ACCEL can be set
during motion, but the new setting will not be used until the next motion.
Reading ACCEL returns the most recent setting.

EXAMPLES: ACCEL(3)=200
sets the acceleration of axis 3 to 200 units/sec2.

ACCEL=100,,200
sets the acceleration rate of axis 1 to 100 units/sec2 and axis 3 to 200
units/sec2.

ACCEL(1,3)=100,200
sets the acceleration rate of axis 1 to 100 units/sec2 and axis 3 to 200
units/sec2.

ACTSPD Trajectory Parameter

ACTION: Returns the current commanded velocity of an axis in Units/second.

PROGRAM SYNTAX: ACTSPD(axis) - used in an expression

REMARK: This command can be used in conjunction with a FOLINPUT com-
mand to specify the master source. It can also be used to monitor the
current commanded velocity of an axis.

EXAMPLES: FOLINPUT(1,3)=ACTSPD(2)
Sets the current commanded velocity of axis 2 as the master source.
Axis 1 and axis 3 are follower axes.

axspd=ACTSPD(2)
Sets variable axspd to the current commanded velocity of axis 2.

78 Programming Commands

ANALOG I/O Function
ACTION: Sets or returns a numeric value representation of the voltage on the se-

lected analog port.

PROGRAM SYNTAX: ANALOG(b0n) - used in an expression
ANALOG(b0n)=expression

REMARK: The b specifies the axis board number (1-4).

The n specifies the analog input (1-4) or output(1-2).

ANALOG(b0n)
Returns the present value of the specified analog input. The range is
+10.0 volts to -10.0 volts.

ANALOG(b0n)=expression
Sets the analog output voltage equal to the expression. The range is
+10.0 volts to -10.0 volts.

Board Analog Configuration
b0n
value

A input differential
B input differential

A input single ended
B input differential

A input differential
B input single ended

A input single ended
B input single ended

101 board 1 A+ & A- board 1 A+ board 1 A+ & A- board 1 A+
102 board 1 B+ & B- board 1 B+ & B- board 1 B+ board 1 B+
103 board 1 A- board 1 A-
104 board 1 B- board 1 B-
201 board 2 A+ & A- board 2 A+ board 2 A+ & A- board 2 A+
202 board 2 B+ & B- board 2 B+ & B- board 2 B+ board 2 B+
203 board 2 A- board 2 A-
204 board 2 B- board 2 B-
301 board 3 A+ & A- board 3 A+ board 3 A+ & A- board 3 A+
302 board 3 B+ & B- board 3 B+ & B- board 3 B+ board 3 B+
303 board 3 A- board 3 A-
304 board 3 B- board 3 B-
401 board 4 A+ & A- board 4 A+ board 4 A+ & A- board 4 A+
402 board 4 B+ & B- board 4 B+ & B- board 4 B+ board 4 B+
403 board 4 A- board 4 A-
404 board 4 B- board 4 B-

EXAMPLES: X=ANALOG(102)
Returns the current voltage on axis board 1 input 2.

ANALOG(102)=2.5
Sets the voltage on axis board 1 output 2 to +2.5 volts.

Programming Commands 79

AND Boolean Operator

ACTION: The logical AND operator is used in Boolean expressions.

PROGRAM SYNTAX: expression1 AND expression 2

REMARK: The AND operator uses this “truth table”.

expression1 expression2 Condition Result
True True True
True False False
False True False
False False False

The result is true if both expressions are true.

EXAMPLE: IF (x>2) AND (y<3) THEN GOTO INDEX
The controller checks to see if x>2 and y<3. If both conditions are true
the program goes to a label called INDEX.

80 Programming Commands

ARC Motion Parameter

ACTION: Initiates a coordinated motion to move in an arc.

PROGRAM SYNTAX: ARC=x, y, xcenter, ycenter, ±angle (normal)
ARC=xcenter, ycenter, ±angle (in a path)

REMARK: The x specifies the axis number for one of the coordinated axes, and the
y specifies the axis number for the other axis. The lower numbered axis
is considered the master and its parameters SPEED, ACCEL, DECEL
and PROFILE are used. The SPEED of the master axis can be used to
control the speed of the ARC during motion.
Note: x and y are not required in a path, since the PATH com-
mand defines the axes used.

The xcenter specifies the x axis coordinate of the arc center, and the
ycenter specifies the y axis coordinate of the arc center.

The angle specifies the direction of rotation as well as the arc angle to
be executed. The angle is specified in degrees and Clockwise rotation is
indicated by a positive sign.

EXAMPLE: ARC=1,2,3,0,+180
‘Initiates a 180° clockwise arc rotation, using axis 1 and 2, with a 3 unit
radius.

PATH=1,2
ARC=3,0,+180
statements

PATH END
‘Initiates a 180° clockwise arc rotation, using axis 1 and 2, with a 3 unit
radius when the PATH END command is executed.

In both examples the radius is 3 if:
The controller is in Incremental positioning mode or in Absolute posi-
tioning mode and the present position is 0,0.

3,00,0 6,0

Programming Commands 81

ASC String Manipulation

ACTION: Returns the ASCII code for the first character in a string.

PROGRAM SYNTAX: ASC(n$)

REMARK: The ASCII code returned is for the first character in the string variable
n$. If the string is a null then a 0 will be returned.

EXAMPLE: a$=“part#”
X=ASC(a$) ‘ sets x=112 ‘p’

ATN Mathematics Function

ACTION: Returns the angle (in radians) whose tangent is x.

PROGRAM SYNTAX: ATN(x) - used in an expression

REMARK: The arctangent returns an angle in the range -π/2 to π/2 radians. π/2
radians equals 90 degrees.

To convert values from degrees to radians, multiply the angle (in de-
grees) by π/180 (or 0.017453).

To convert a radian value to degrees, multiply it by 180/π (or
57.295779).

EXAMPLE: X=ATN(1) ‘ returns .785398 radians, which is 45 degrees.

ATN2 Mathematics Function

ACTION: Returns the angle (in radians) whose tangent is y/x.

PROGRAM SYNTAX: ATN2(y,x) - used in an expression

REMARK: The arctangent returns an angle in the range -π to π radians. π radians
equals 180 degrees.

To convert values from degrees to radians, multiply the angle (in de-
grees) time π/180 (or .017453).

To convert a radian value to degrees, multiply it by 180/π (or
57.295779).

EXAMPLE: X=ATN2(2.5,3) ‘ returns .694727 radians which is 39.8 degrees

82 Programming Commands

BCD I/O Function

ACTION: Returns the value of the BCD switches connected to an Expansion I/O
port.

PROGRAM SYNTAX: BCD(b0n) - used in an expression

REMARK: The b specifies the Expansion I/O board number (1-4).

The n specifies the BCD switch bank number (1-8).

BCD(b0n)
Evaluates and returns the number set on the BCD board switch bank
“n”, connected to Expansion I/O board “b”.

EXAMPLE: X=BCD(101)
Sets X equal to the value read on board 1, BCD switch bank 1.

X=BCD(405)
Sets X equal to the value read on board 4, BCD switch bank 5.

BOOST Motion Parameter

ACTION: Enables or disables the Boost Current feature or returns the boost en-
able status for the specified axis. When enabled the stepper drive
BOOST output turns on during motion. This causes the stepper drive
to boost the motor current by 50%.

PROGRAM SYNTAX: BOOST(axis)=expression
BOOST=expression1, ... , expression8
BOOST(axis, ... , axis)=expression, ... , expression
BOOST(axis) - used in an expression

REMARK: For more detail refer to Section 10 Stepper Drive of this manual.

BUSY Motion Parameter

ACTION: Returns the motion status of the specified axis. An axis is busy if motion
is taking place.

PROGRAM SYNTAX: BUSY(axis) - used in an expression

REMARK: The axis specifies the number of the axis (1-8).

If the commanded motion is incomplete a true (+1) is return otherwise a
false (0) is returned. BUSY is the complement of command DONE.

EXAMPLE: DO
 statements
LOOP UNTIL BUSY(1)=0

Programming Commands 83

CAPPOS Miscellaneous Command

ACTION: Returns the last captured absolute position of an axis from a
MOVEHOME, MOVEREG or CAPTURE cycle.

PROGRAM SYNTAX: CAPPOS(axis) - used in an expression

REMARK: The axis specifies the number of the axis (1-8).

This command can be used in conjunction with a MOVEHOME,
MOVEREG or CAPTURE command to specify the last captured ab-
solute position in Units. The captured position is the position where the
trigger occurred during a MOVEHOME, MOVEREG or CAPTURE
cycle.

EXAMPLE: POSMODE(1)=1 ‘set absolute position mode
ABSPOS(1)=0 ‘set absolute position to zero
CAPTURE(1)=0 ‘set capture trigger to Event 1 active
JOG(1)=1 ‘start Jog cycle
DO
LOOP UNTIL CAPTURE(1)=1 ‘ wait for capture to occur
STOP(1) ‘stop Jog cycle
WAITDONE(1) ‘wait for motion to stop
MOVE=CAPPOS(1) ‘move to capture position
WAITDONE(1) ‘wait for motion to stop
END

84 Programming Commands

CAPTURE Miscellaneous Command

ACTION: Sets the position capture trigger condition or returns the position cap-
ture status.

PROGRAM SYNTAX: CAPTURE(axis)=expression
CAPTURE=expression1, … , expression8
CAPTURE(axis, … , axis)=expression, … , expression
CAPTURE(axis) – used in an expression

REMARK: The axis specifies the number of the axis (1-8).

The expression selects the trigger condition (0-7).

Setting the capture condition arms the position capture function. When
the trigger condition is met the position capture occurs. The captured
position can be read via the CAPPOS function. If the axis is configured
as an open loop device the Absolute Position is captured. If the axis is
configured as a closed loop device the Encoder Position is captured.
The following trigger conditions can be set:

Trigger value Trigger description
0 Event 1 active
1 Event 1 inactive
2 Event 1 active & encoder marker
3 Event 1 inactive & encoder marker
4 Encoder marker active
5 Encoder marker inactive
6 Event 2 active
7 Event 2 inactive

When reading the CAPTURE status a zero indicates no capture has
occurred. While a 1 indicates that a capture has occurred.

EXAMPLE: POSMODE(1)=1 ‘set absolute position mode
ABSPOS(1)=0 ‘set absolute position to zero
CAPTURE(1)=0 ‘set capture trigger to Event 1 active
JOG(1)=1 ‘start Jog cycle
DO
LOOP UNTIL CAPTURE(1)=1 ‘ wait for capture to occur
STOP(1) ‘stop Jog cycle
WAITDONE(1) ‘wait for motion to stop
MOVE=CAPPOS(1) ‘move to capture position
WAITDONE(1) ‘wait for motion to stop
END

Programming Commands 85

CHR$ String Manipulation

ACTION: Returns a one character string whose ASCII code is the argument.

PROGRAM SYNTAX: CHR$(code)

REMARK: CHR$ is commonly used to send a special character to the serial port.

EXAMPLE: PRINT#1,”Input Accel”,CHR$(27)
Transmits “Input Accel <ESC>“ to the host serial port.

COMMON Miscellaneous Command

ACTION: Allows variables to be shared by other tasks.

PROGRAM SYNTAX: COMMON variable[,variable][,variable]

REMARK: If a variable defined in one task is to be used in another task, the vari-
able name must be declared by the COMMON statements in both
tasks, COMMON statements should be placed at the start of the task.

EXAMPLE: --------------TASK 1---------------
COMMON X ‘shared variable

---------------TASK2----------------
COMMON X ‘shared variable

COS Mathematics Function

ACTION: Returns the cosine of the angle x, where x is in radians.

PROGRAM SYNTAX: COS(x) - used in an expression

REMARK: To convert values from degrees to radians, multiply the angle (in de-
grees) by π/180 (or 0.017453).

To convert a radian value to degrees, multiply it by 180/π (or
57.295779).

EXAMPLE: PI=3.141593
A=COS(PI/3) ‘ sets A=0.5, which is the cosine of 60°

86 Programming Commands

DATA Miscellaneous Command

ACTION: Stores the numeric constants used by the READ statement.

PROGRAM SYNTAX: DATA constant, constant, etc

REMARK: The constant is a numeric constant.

EXAMPLE: DATA 1,2,3,4,5,6
Also see the example for the READ command.

DECEL Trajectory Parameter

ACTION: Sets or returns the deceleration value of an axis.

PROGRAM SYNTAX: DECEL(axis)=expression
DECEL=expression1, ... ,expression8
DECEL(axis, ... ,axis)=expression, ... , expression
DECAL(axis) - used in an expression

REMARK: The axis specifies the number of the axis (1-8).

The expression defines the deceleration rate is in units/sec2.

The rate at which the motor speed is decreased. Specifying a value
greater than "Max Accel" (set in Configuration and Setup) will result
in DECEL being set to "Max Accel". DECEL can be set during motion,
but the new setting will not be used until the next move. Reading
DECEL returns the most recent setting.

EXAMPLE: DECEL(2)=50
Sets the deceleration rate for axis 2 to 50 units/sec2.

DECEL=50,,75
Sets the deceleration rate for axis 1 to 50 units/sec2 and axis 3 to 75
units/sec2.

DECEL(1,3)=50,75
Sets the deceleration rate for axis 1 to 50 units/sec2 and axis 3 to 75
units/sec2.

Programming Commands 87

#DEFINE Miscellaneous Command

ACTION: Defines a symbolic name to be a particular string of characters.

PROGRAM SYNTAX: #DEFINE name@1, ... , @10 replacement text
#DEFINE replacement text

REMARK: The name has the same form as a variable name: a sequence of letters
and digits that begins with a letter. The name is case sensitive. Typically
upper case is used for the name.

The @1, ... , @10 are the program command substitution arguments
for the replacement text.

The replacement text can be any sequence of letters or characters.

Any occurrence of the name in the program, not in quotes and not as
part of another name, will be replaced by the corresponding replace-
ment text when the program is compiled.

EXAMPLE: #DEFINE TRUE 1
Substitutes a 1 when the name TRUE is encountered.

#DEFINE FALSE 0
Substitutes a 0 when the name FALSE is encountered.

#DEFINE SENDPOS @1,@2 PRINT#@1,ABSPOS(@2)
Sends the absolute position of axis @2 via port @1.

SENDPOS 1,2
Sends the absolute position of axis 2 via port #1. The 1 is substituted
for the @1 argument and 2 is substituted for @2 argument.

#DEFINE CLR PRINT#2,CHR$(12);
#DEFINE LOCATE @1,@2 PRINT#@,CHR$(27);”[@1;@2H”;

CLR ‘ clear display
LOCATE 1,2 ‘ locate cursor at row 1 column 2

88 Programming Commands

DELTACAPPOS Miscellaneous Command

ACTION: Returns the difference between the current captured position and the
previously captured position.

PROGRAM SYNTAX: DELTACAPPOS(axis) – used in an expression

REMARK: The axis specifies the number of the axis (1-8).

The current captured position can be read with the CAPPOS function.
The value returned by DELTACAPPOS is not valid until at least two
captures have occurred.

EXAMPLE: POSMODE(1)=1 ‘set absolute position mode
ABSPOS(1)=0 ‘set absolute position to zero
CAPTURE(1)=0 ‘ set trigger to EVENT 1 active
JOG(1)=1 ‘start Jog cycle
DO
LOOP UNTIL CAPTURE(1)=1 ‘wait for capture trigger
STOP(1) ‘stop Jog cycle
WAITDONE(1) ‘wait for motion to be completed
CAPTURE(1)=0 ‘ set trigger to EVENT 1 active
JOG(1)=1 ‘start Jog cycle
DO
LOOP UNTIL CAPTURE(1)=1 ‘wait for capture trigger
STOP(1) ‘stop Jog cycle
WAITDONE(1) ‘wait for motion to be completed
PRINT#1,”Delta capture position”, DELTACAPPOS(1)
‘print the difference between captured positions
END

Programming Commands 89

DIM Miscellaneous Command

ACTION: Declares an array variable and allocates storage space.

PROGRAM SYNTAX: DIM variable(dimension,dimension,etc)
DIM variable$(dimension,dimension,etc)

REMARK: The “option base zero” for array notation is used, in which the first ele-
ment of each array dimension is annotated as element “0”. Therefore,
the total number of elements in the array is: (dimension1 +
1)*(dimension2 + 1) * ... *(dimension n +1).

Example notation for a two-dimensional array:
Y0 Y1 Y2 → Yn

X0 →
X1 →
X2 →
↓ ↓ ↓ ↓ Ø ↓
Xn →

EXAMPLE: DIM x(10,10,10)
The variable x is three-dimensional array with 11*11*11 , or 1331
elements.

DIM a$(3,3,3)
The variable string a$ is a three-dimensional array with 4*4*4, or 64
elements.

DIM A(3,3,3) ‘ 4 * 4 * 4 or 64 elements
A (3,1,2)=5.0

0,0,0 0,0,1 0,0,2 0,0,3 0,1,0 0,1,1 0,1,2 0,1,3

0,2,0 0,2,1 0,2,2 0,2,3 0,3,0 0,3,1 0,3,2 0,3,3

1,0,0 1,0,1 1,0,2 1,0,3 1,1,0 1,1,1 1,1,2 1,1,3

1,2,0 1,2,1 1,2,2 1,2,3 1,3,0 1,3,1 1,3,2 1,3,3

2,0,0 2,0,1 2,0,2 2,0,3 2,1,0 2,1,1 2,1,2 2,1,3

2,2,0 2,2,1 2,2,2 2,2,3 2,3,0 2,3,1 2,3,2 2,3,3

3,0,0 3,0,1 3,0,2 3,0,3 3,1,0 3,1,1 3,1,2
5.0

3,1,3

3,2,0 3,2,1 3,2,2 3,2,3 3,3,0 3,3,1 3,3,2 3,3,3

90 Programming Commands

DIST Trajectory Parameter

ACTION: Returns the distance moved from the start of the last commanded mo-
tion.

PROGRAM SYNTAX: DIST(axis) - used in an expression

REMARK: The axis specifies the number of the axis (1-8).

Returns a positive number, regardless of the move direction.

EXAMPLE: x=DIST(2)
Returns the last incremental distance moved in axis 2.

DO ... LOOP Program Flow Command

ACTION: Repeats a block of statement while a condition is true or until a condi-
tion becomes true.

PROGRAM SYNTAX1: DO {UNTIL | WHILE} [condition]
 [statement block]
 [EXIT DO]
 [statement block]
LOOP

PROGRAM SYNTAX2: DO
 [statement block]
 [EXIT DO]
 [statement block]
LOOP {UNTIL | WHILE} [condition]

PROGRAM SYNTAX3: DO
 [statement block]
 [EXIT DO]
 [statement block]
{UNTIL | WHILE} [condition]

REMARK: Syntax1 allows the condition to be tested at the top of the loop. Syntax
2 and 3 allows the condition to be tested at the bottom of the loop
therefore the loop will always execute at least once.

EXIT DO is an alternate exit from a DO ... LOOP.

EXIT DO transfers control to the statement below the above syntax’s
and can only be used in a DO ... LOOP statement.

EXAMPLE: DO
 statements
WHILE EVENT1(1) <>1 ‘continue the loop while event1 does not

equal 1

Programming Commands 91

92 Programming Commands

DONE Motion Parameter

ACTION: Returns the motion status of the designated axis. DONE means motion
is completed.

PROGRAM SYNTAX: DONE(axis) - used in an expression

REMARK: The axis specifies the number of the axis (1-8).

If the commanded motion of an axis is complete a True (1) is returned
otherwise a False(0) is returned. DONE is the complement of BUSY.

EXAMPLE: X=DONE(1)
The motion status of axis 1 is returned to variable X.

DO
statements
UNTIL DONE(1) ‘ execute do loop statements until axis 1 com-

manded motion is completed.

Programming Commands 93

DRVREADY Motion Parameter

ACTION: Enables or disables the checking of the drive (READY) signal on the
axis card.

PROGRAM SYNTAX: DRVREADY(axis)=expression
DRVREADY=expression1, … , expression8
DRVREADY(axis, … ,axis)=expression, … , expression
DRVREADY(axis) - used in an expression

REMARK: Axis specifies the number of the axis (1-8).

 The expression sets the enable/disable checking of the Drive READY
signal. A 0 enables checking of the axis Drive Ready signal and a 1 dis-
ables the signal checking.

Each axis has a hardware Drive Ready input and a software
DRVREADY flag. The software flag is cleared during the process of
running a project. If motion is commanded and the Drive READY input
is not active or the DRVREADY flag is not set then an error will be sig-
naled.

The DRVREADY flag is set using the DRVREADY command, once
set the state of the Drive Ready input doesn’t matter. The DRVREADY
command also returns the DRVREADY status which is the logical OR
of the Drive Ready input and the DRVREADY flag.

EXAMPLE: DRVREADY(3)=1
Bypasses the Drive Ready signal checking for axis 3.

DRVREADY=1,,1
Bypasses the Drive Ready signal checking for axis 1 and axis 3.

DRVREADY(1,3)=1,1
Bypasses the Drive Ready signal checking for axis 1 and axis3.

94 Programming Commands

ENCBAND Motion Parameter

ACTION: Sets or returns the maximum position error allowed when motion is
stopped, referred to herein as "position error band."

COMMAND SYNTAX: ENCBAND(axis) =expression
ENCBAND=expression1, … , expression8
ENCBAND(axis, … , axis)=expression, … , expression
ENCBAND(axis) - Used in an expression

Note: STOPERR can be substituted for ENCBAND.

REMARKS: STOPERR is a stepper drive and servo drive parameter.

STOPERR is defined in detail in both Section 9 Servo Drive and Sec-
tion 10 Stepper Drive.

ENCERR Trajectory Parameter

ACTION: Returns the positional error of the designated axis.

COMMAND SYNTAX: ENCERR(axis) – used in an expression.

Note: POSERR can be used in place of ENCERR

REMARKS: Axis specifies the number of the axis(1-8).

Position error is the difference between the absolute position and the
encoder position. (ABSPOS – ENCPOS)

EXAMPLES: X=ENCERR(1)
IF X > 10 THEN

PRINT#1,”Large Error”
END IF

ENCFOL Motion Parameter

ACTION: Sets or returns the maximum positional error (“following error”) al-
lowed during motion.

COMMAND SYNTAX: ENCFOL(axis) =expression
ENCFOL=expression1, … , expression8
ENCFOL(axis, … , axis)=expression, … , expression
ENCFOL(axis) - Used in an expression

Note: FOLERR can be substituted for ENCFOL.

REMARKS: FOLERR is a stepper drive and servo drive parameter.

Programming Commands 95

FOLERR is described in detail in both Section 9 Servo Drive and Sec-
tion 10 Stepper Drive.

ENCMODE Motion Parameter

ACTION: Sets or returns the operating mode of a closed loop stepper axis.

PROGRAM SYNTAX: ENCMODE(axis)=expression
ENCMODE=expression1, ... , expression8
ENCMODE(axis, ... ,axis)=expression, expression
ENCMODE(axis) - used in an expression

REMARK: ENCMODE is defined in detail in the Stepper Drive Section of this
manual.

ENCPOS Trajectory Parameter

ACTION: Returns the encoder position of an axis.

PROGRAM SYNTAX: ENCPOS(axis) - used in an expression

REMARK: The axis specifies the number of the axis (1-8).

The actual position of the motor. Reading the ENCPOS returns the ac-
tual position in user units. ENCPOS is initialized to 0 at power up. Set-
ting ABSPOS sets ENCPOS to the same value.

EXAMPLE: X=ENCPOS(1) ‘returns the encoder value of axis 1.

ENCSPD Trajectory Parameter

ACTION: Returns the current encoder speed in units/second.

PROGRAM SYNTAX: ENCSPD(axis) - used in an expression

REMARK: The axis specifies the number of the axis (1-8).

The encoder speed is monitored at the sample rate selected for the axis.
This results in an encoder count/sample time value that is converted to
units/second. Since this value is digital and not a filtered velocity, devia-
tions will result.

EXAMPLE: X=ENCSPD(2)
Sets variable X to the current encoder speed of axis 2.

outputspd=0 ‘ initial value
FOR x=1 TO 10 ‘ number of samples
 outputspd=outputspd+ENCSPD(1) ‘ sample update
 wait=.001 ‘ sample time
NEXT x

96 Programming Commands

outputspd=outputspd/10 ‘ filtered value

Programming Commands 97

END Miscellaneous Command

ACTION: Signifies the end of a program.

PROGRAM SYNTAX: END

REMARK: If motion is occurring when this command is encountered the controller
will set a WARNING number and stop motion on the applicable axis.

EXAMPLE: statements
...
END

98 Programming Commands

ERR Miscellaneous Command

ACTION: Returns the MX controller error/warning number for this task.

PROGRAM SYNTAX: ERR=error number,severity
ERR - used in an expression

REMARKS: If an error occurs while the program is running, the program jumps to
label ERROR_HANDLER if it is present, otherwise it ends. The fault
LED blinks the ERROR code or WARNING code.

If an error or warning has occurred, the axis which caused the error can
be obtained by issuing an ERRAXIS command.

The predefined error codes are:
 1 Axis +Limit Input activated while moving in the + direction.
 2 Axis -Limit Input activated while moving in the - direction.
 3 Axis Soft Limit exceeded while moving in the + direction.
 4 Axis Soft Limit exceeded while moving in the - direction.
 5 Closed Loop Correction attempts exceeded.
 6 Position Error exceeded during motion.
 7 Distance after Movereg Trigger is insufficient to decelerate.
 8 Motion was attempted when the Drive is not ready.
 9 Servo axis motion attempted with the Drive disabled.
10 Program Area out of memory
26 Excessive Duty Cycle Shutdown (IXT error)
27-99 User defined

Notes: The error trap is only enabled if the error code is 0. This
can be accomplished by programming an ERR=0 statement in the
ERROR_HANDLER routine. The error code is set to 0 when the
program is started by a RUN command or auto started on power
on.

The predefined Warning codes are:
 11 Command axis is not in task group.
 12 Analog I/O selected is out of range.
 13 BCD selected is out of range.
 14 Expansion Input selected is out of range.
 15 Expansion Output selected is out of range.
 16 Digital Input selected is out of range.
 17 Digital Output selected is out of range.
 18 LOG command argument is zero or negative
 19 SQRT command argument is negative.
 20 NVR element is out of range.
 21 READ command is out of data arguments.
 22 MAXSPD command is out of range.
 23 Motion occurring at program end.
 24 RS232 Configuration Error.
 25 Servo Parameter is out of range.

ERR - used in an expression
Returns the last task error/warning number.

Programming Commands 99

100 Programming Commands

ERR continued
If an error or warning occurs during program execution the fault LED
will blink the error code. If the error code is >= 10 the fault LED blinks
on 0.25 seconds and off 0.5 seconds for each ten's digit. The LED goes
off for 1.25 seconds. If the LSB digit is 0 the LED stays on for 1 second
and then goes off for 2.5 seconds. Otherwise, the fault LED blinks on
0.25 seconds and off 0.5 seconds for each unit digit then goes off for 2.5
seconds.

ERR=error number,severity
Used as a user defined error to set an error number and severity of the
error. If the error number is a 0 the fault LED will be turned off. The se-
verity levels are:
 1 Stop motors in task at the maximum Deceleration rate.
 2 Stop motors in task at the deceleration rate of each axis.
 4 Stop motors in task at the maximum Deceleration rate.
 16 Create an Error Trap if no other error is set.

EXAMPLES: x = ERR
sets variable x equal to the present error number or warning number for
this task.

ERR = 0,0
clears the error number and enables the error trap.

ERR = nn,1
sets the error number at "nn" and stops all motors in task at the maximum
deceleration rate.

ERR = nn,2
sets the error number at "nn" and stops all motors in task at the decelera-
tion rate of each axis.

ERROR HANDLING: The MX2000 Controller will handle errors in one of two ways. The first
method is to stop execution of the task in which the error occurred; all
remaining tasks continue executing. This is the default method of handling
errors. The second method of handling errors is for the user to write an
error handler routine. The routine must use the label
ERROR_HANDLER. This routine will be called whenever an error
occurs. The user may then evaluate the condition that invoked the error
handling routine. To re-arm the error trap requires the error to be set to 0
(ERR=0,0).

EXAMPLES: ERR=26,17
When this line of code is executed, an error trap condition is created. If
an error handling routine has been written execution will resume at the
ERROR_HANDLER routine. The error number is set to 26 and all
motors in this task will stop at the maximum deceleration rate.

ERROR_HANDLER: This label defines the start of the code that is to be executed if an error
occurs. The last statement in the ERROR_HANDLER code should
be an END or GOTO label.

Programming Commands 101

ERRAXIS Miscellaneous Command

ACTION: Returns the controller axis number which created the error/warning for
the task.

PROGRAM SYNTAX: ERRAXIS - used in an expression

REMARKS: If a zero is returned then the error was not axis related or there is no
actual error.

To determine the error/warning use the ERR command.

EXAMPLE: ERROR_HANDLER:
Axis = ERRAXIS ‘ returns the axis number which created the

 error trap.
Error = ERR ‘ sets error to error trap number
 statements
ERR = 0,0 ‘ clears error number
GOTO ERROR_EXIT

ERRTRAP Miscellaneous Command

ACTION: Sets an Error Trap in the designated task.

PROGRAM SYNTAX: ERRTRAP = ”Task name”, Error number

REMARKS: Task name specifies the task to error trap in. The task name must be
enclosed in quotes. Only the name of the task is required; the complete
path and file extension is not required.

Error number sets the error number in the designated task.

EXAMPLE: errorflag=0
ERRORCHECK:
If IN(101)=1 AND errorflag=0 THEN ‘error condition occurred

ERRTRAP=”Motion”,55
‘ error trap task “Motion” and set error code 55 in Task
“Motion”.
errorflag=1

ELSE IF IN(101)=0 THEN
errorflag=0

END IF
GOTO ERRORCHECK

102 Programming Commands

EVENT1 Motion Parameter

ACTION: Returns the state of the trigger input labeled EVNT1 for the selected axis
or sets the trigger polarity and enable, which are used in MOVEHOME,
MOVEREG and FOLMOVEREG cycles.

PROGRAM SYNTAX: EVENT1(axis)=expression
EVENT1=expression1, ... , expression 8
EVENT1(axis, ... , axis)=expression, expression
EVENT1(axis) - used in an expression

REMARKS: Axis specifies the number of the axis (1-8).

The EVENT1 command is used to select the effects of the hardware
signal at the EVNT1 input on the axis card. This input is typically wired
to a switch or sensor. It may be used as a home positioning trigger dur-
ing a MOVEHOME cycle. It may also be used as a position mark reg-
istration trigger during a MOVEREG or FOLMOVEREG cycle. When
used for mark registration, a trigger on EVNT1 will initiate the index
portion of the MOVEREG or FOLMOVEREG cycle.

The EVENT1 triggering for a MOVEHOME or MOVEREG cycle
may be combined with an encoder index pulse input, and is assigned in
the user program Configuration and Setup.

For a MOVEHOME cycle, the EVENT1 command may be used to
set the polarity of the move home trigger. If the expression of the com-
mand is positive the home trigger occurs when the EVNT1 input be-
comes active. If the expression of the command is negative the home
trigger occurs when the EVNT1 input becomes inactive. A Home cycle
trigger EVENT1 cannot be disabled using this command.

For a MOVEREG cycle, the EVENT1 command may be used to set
the polarity of the registration trigger. If the expression of the command
is positive the registration trigger occurs when the EVNT1 input be-
comes active. If the expression of the command is negative the regis-
tration trigger occurs when the EVNT1 input becomes inactive.

The EVENT1 trigger for a registration cycle may be disabled by setting
EVENT1=0. A registration trigger may be enabled to either polarity
during a move. It may not, however, be disabled once the cycle has be-
gun.

EXAMPLES: EVENT1(2)=0 ‘disables Event1 as a MOVEREG trigger on axis 2.

EVENT1(2)=1 ‘enables Event1 as an active input trigger on axis 2.

EVENT1(2)=-1 ‘enables Event1 as an inactive input trigger on axis 2.

Programming Commands 103

EVENT2 Motion Parameter

ACTION: Returns the state of the trigger input labeled EVNT2 for the selected axis
or sets the trigger polarity and enable, which are used in MOVEHOME,
MOVEREG and FOLMOVEREG cycles.

PROGRAM SYNTAX: EVENT2(axis)=expression
EVENT2=expression1, ... , expression 8
EVENT2(axis, ... , axis)=expression, expression
EVENT2(axis) - used in an expression

REMARKS: Axis specifies the number of the axis (1-8).

The EVENT2 command is used to select the effects of the hardware
signal at the EVNT2 input on the axis card. This input is typically wired
to a switch or sensor. It may be used as a home positioning trigger dur-
ing a MOVEHOME cycle. It also may be used as a position mark reg-
istration trigger during a MOVEREG or FOLMOVEREG cycle. When
used for mark registration, a trigger on EVNT2 will initiate the index
portion of the MOVEREG or FOLMOVEREG cycle.

The EVENT2 triggering for a MOVEHOME or MOVEREG cycle
may be combined with an encoder index pulse input, and is assigned in
the user program Configuration and Setup.

For a MOVEHOME cycle, the EVENT2 command may be used to
set the polarity of the move home trigger. If the of the command is posi-
tive the home trigger occurs when the EVNT2 input becomes active. If
the expression of the command is negative the home trigger occurs
when the EVNT2 input becomes inactive. An EVENT2 home trigger
cannot be disabled using this command.

For a MOVEREG cycle, the EVENT2 command may be used to set
the polarity of the registration trigger. If the expression of the command
is positive the registration trigger occurs when the EVNT2 input be-
comes active. If the expression of the command is negative the regis-
tration trigger occurs when the EVNT2 input becomes inactive.

The EVENT2 trigger for a registration cycle may be disabled by setting
EVENT2=0. A registration trigger may be enabled to either polarity
during a move. It may not, however, be disabled once the cycle has be-
gun.

EXAMPLES: EVENT2(2)=0 ‘disables Event2 as a MOVEREG trigger on axis 2.

EVENT2(2)=1 ‘enables Event2 as an active input trigger on axis 2.

EVENT2(2)=-1 ‘enables Event2 as an inactive input trigger on axis 2.

104 Programming Commands

EXIN I/O Function

ACTION: Returns the state of the specified expansion I/O inputs.

PROGRAM SYNTAX: EXIN(nnn) - used in expression
EXIN(nnn,len) - used in expression

REMARKS: The nnn is the I/O terminal point.

 board1 board2 board3 board4
nnn= (100-147) or (200-247) or (300-347) or (400-447)

len is the number of I/O points. len range is 1-24.

SINGLE INPUT SYNTAX: EXIN(nnn)
returns the state (1 or 0) of the designated input.

EXAMPLE: x=EXIN(207) ' returns the state of board 2 input 7

MULTIPLE INPUT SYNTAX: EXIN(nnn,len)
returns a number corresponding to the states of multiple inputs calcu-
lated from the binary weighting of inputs nnn to (nnn+len-1) nnn is the
first input and the len is the number of inputs.

EXAMPLES: EXIN(nnn,len) is equivalent to:
EXIN(nnn),+2*EXIN(nnn+1) ,+ 4*EXIN(nnn+2) + , ... , +2len-1

*EXIN(nnn+len-1)

EXIN(207,3) is equivalent to:
EXIN(207) + 2*EXIN(208) + 4*EXIN(209) depending on the state
of inputs 207-209 (EXIN(207,3) will return a number between 0 and
7. So, if the inputs are: 207=0ff, 208=on and 209=on. The resulting
value returned would be 6. EXIN(207,3)= 110(binary)

Programming Commands 105

EXOUT I/O Function

ACTION: Sets or returns the state of the specified expansion I/O outputs.

PROGRAM SYNTAX: EXOUT(nnn) - used in expression
EXOUT(nnn,len) - used in expression
EXOUT(nnn)=expression
EXOUT(nnn,len)=expression

REMARKS: The nnn is the I/O terminal point.
 board1 board2 board3 board4
nnn= (100-147) or (200-247) or (300-347) or (400-447)

len is the number of I/O points. len range is 1-24.

SET SINGLE
OUTPUT SYNTAX: EXOUT(nnn)=expression

"expression" turns output nnn on (expression is non-zero) or off (ex-
pression=0).

EXAMPLES: EXOUT(207)=-3 'turns output 7 on board 2 on
EXOUT(207)=0 'turns output 7 on board 2 off

READ SINGLE
OUTPUT SYNTAX: EXOUT(nnn) - used in expression

returns the last output commanded (1 or 0) for this I/O pin.
Note: this is different from the state of the I/O pin.

EXAMPLES: EXOUT(207)=1 'board 2 output 7 is turned on.
A=EXOUT(207) 'A is set to 1 (last commanded output for 207).

SET MULTIPLE
OUTPUTS SYNTAX: EXOUT(nnn,len)=expression

The expression is evaluated and converted to an integer value. The least
significant "len" bits of the binary representation are then used to set
outputs "nnn" to "nnn+len-1" respectively.

EXAMPLES: EXOUT(207,3)=6.2 'sets outputs 207-209
6.2 is converted to integer 6, the binary representation of 6 is 110. Thus
output 207=off, output 208=on and output 209=on.

READ MULTIPLE
OUTPUTS SYNTAX: EXOUT(nnn,len) - used in an expression

Evaluates to a number corresponding to the last outputs commanded
(1or 0) for these I/O pins. The number is the binary weighted sum of the
last commanded outputs nnn to (nnn+len-1). Note: this is different from
the state of the I/O pins.

EXAMPLES: EXOUT(207,3)=4 'output 209=on, output 208=off and output
 207=off.

A=EXOUT(208,2) 'A=2 since output 209=on and output 208=off.

106 Programming Commands

FEEDRATE Trajectory Parameter

ACTION: Sets a feed rate override during Path execution.

PROGRAM SYNTAX: FEEDRATE = expression

REMARKS: The expression range is .01 to 10.0 (1% to 1000%). This value scales
the commanded velocity to obtain a target velocity.

This command is only honored during PATH or ARC execution.

EXAMPLE: PATH 1,2
 FEEDRATE=.5
 LINE=expression1,expression2
 statements
PATH END

FOLACCDIST Following Parameter

ACTION: Specifies the master distance traveled for the follower to catch the
master velocity after follower motion begins.

PROGRAM SYNTAX: FOLACCDIST(axis)=expression
FOLACCDIST=expression1, ... , expression8
FOLACCDIST(axis, ... ,axis)=expression, ... , expression
FOLACCDIST(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 8 Following.

FOLDCCDIST Following Parameter
ACTION: Specifies the master distance traveled for the follower to attain a veloc-

ity of zero from the current velocity.

PROGRAM SYNTAX: FOLDCCDIST(axis)=expression
FOLDCCDIST=expression1, ... , expression8
FOLACCDIST(axis, ... ,axis)=expression, ... , expression
FOLDCCDIST(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 8 Following.

Programming Commands 107

FOLERR Motion Parameter

ACTION: Sets or returns the maximum position error allowed during motion,
herein referred to as "following error."

COMMAND SYNTAX: FOLERR(axis)=expression
FOLERR=expression1, number2, . . . , number8
FOLERR(axis, … , axis)=expression, … , expression
FOLERR (axis) - Used in an expression

Note: ENCFOL can be substituted for FOLERR.

REMARKS: This command is defined in more detail in Section 9 Servo Drive and
Section 10 Stepper Drive.

FOLINPUT Following Parameter

ACTION: This command specifies the follower axes and the master velocity
source.

PROGRAM SYNTAX: FOLINPUT(axis, ... ,axis)= expression

REMARKS: This command is defined in more detail in Section 8 Following.

FOLJOG Following Parameter

ACTION: Requests a Following axis jog cycle.

PROGRAM SYNTAX: FOLJOG(axis)=expression
FOLJOG=expression1 , ... , expression8
FOLJOG(axis, ... , axis)= expression, ... , expression

REMARKS: This command is defined in more detail in Section 8 Following.

108 Programming Commands

FOLMAXRATIO Following Parameter

ACTION: Sets or returns the maximum allowable following axis speed during an
offset advance cycle.

PROGRAM SYNTAX: FOLMAXRATIO(axis)=expression
FOLMAXRATIO=expression1 , ... , expression8
FOLMAXRATIO(axis, ... ,axis)=expression, ... , expression
FOLMAXRATIO(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 8 Following.

FOLMINRATIO Following Parameter

ACTION: Sets or returns the minimum allowable following axis speed during a re-
cede offset cycle.

PROGRAM SYNTAX: FOLMINRATIO(axis)=expression
FOLMINRATIO=expression1 , ... , expression8
FOLMINRATIO(axis, ... ,axis)=expression, ... , expression
FOLMINRATIO(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 8 Following.

FOLMOVE Following Parameter

ACTION: Request a Following axis move.

PROGRAM SYNTAX: FOLMOVE(axis)=expression
FOLMOVE=expression1 , ... , expression8
FOLMOVE(axis, ... , axis)=expression, ... ,expression

REMARKS: This command is defined in more detail in Section 8 Following.

Programming Commands 109

FOLMOVEREG Following Parameter

ACTION: Request a Following axis move registration cycle.

PROGRAM SYNTAX: FOLMOVEREG(axis)=expression
FOLMOVEREG=expression1 , ... , expression8
FOLMOVEREG(axis, ... , axis)=expression, ... , expression

REMARKS: This command is defined in more detail in Section 8 Following.

FOLOFFSET Following Parameter

ACTION: Defines a following incremental offset distance to advance or recede
from the master .

PROGRAM SYNTAX: FOLOFFSET(axis)=expression
FOLOFFSET=expression1, ... , expression8

REMARKS: This command is defined in more detail in Section 8 Following.

FOLOFFSETDIST Following Parameter

ACTION: Sets or returns the master distance traveled for a FOLOFFSET com-
mand.

PROGRAM SYNTAX: FOLOFFSETDIST(axis)=expression
FOLOFFSETDIST=expression1, ... , expression8
FOLOFFSETDIST(axis, ... , axis)=expression, ... , expression
FOLOFFSETDIST(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 8 Following.

110 Programming Commands

FOLRATIO Following Parameter

ACTION: Sets the ratio of the following axis to the master. A value of 1 represents
100% of the master.

PROGRAM SYNTAX: FOLRATIO(axis)=expression
FOLRATIO=expression1, ... , expression8
FOLRATIO(axis, ... ,axis)=expression, ... , expression
FOLRATIO(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 8 Following.

FOLRATIOINC Following Parameter

ACTION: Specifies the acceleration rate for a folratio change during motion in ra-
tio increment per second.

PROGRAM SYNTAX: FOLRATIOINC(axis)=expression
FOLRATIOINC=expression1, ... , expression8
FOLRATIOINC(axis, ... , axis)=expression, ... , expression
FOLRATIOINC(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 8 Following.

FOLSTARTDIST Following Parameter

ACTION: Specifies a master distance which is used as a delay distance for starting
motion. The distance delay starts when the specified starting trigger of a
FOLTRIG command occurs.

PROGRAM SYNTAX: FOLSTARTDIST(axis)=expression
FOLSTARTDIST=expression1, ... , expression8
FOLSTARTDIST(axis) - used in an expression
FOLSTARTDIST(axis,axis)=expression, ... , expression

REMARKS: This command is defined in more detail in Section 8 Following.

Programming Commands 111

FOLSYNC Following Parameter

ACTION: Returns the following sync status of the specified axis.

PROGRAM SYNTAX: FOLSYNC(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 8 Following.

FOLSYNCDIST Following Parameter

ACTION: Specifies a master distance to travel when a FOLOFFSET command is
issued. This distance will be traveled before execution of the
FOLOFFSET command .

PROGRAM SYNTAX: FOLSYNCDIST(axis)=expression
FOLSYNCDIST(axis)=expression1, ... , expression8
FOLSYNCDIST(axis) - used in an expression
FOLSYNCDIST(axis, ... ,axis)=expression, ... ,expression

REMARKS: This command is defined in more detail in Section 8 Following.

FOLTRIG Following Parameter

ACTION: Defines the follower starting trigger for motion.

PROGRAM SYNTAX: FOLTRIG(axis)=expression
FOLTRIG=expression1, ... , expression8
FOLTRIG(axis, ... ,axis)=expression, ... , expression
FOLTRIG(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 8 Following.

112 Programming Commands

FORMAT Miscellaneous Command

ACTION: Enables or disables the formatting of the STR$ returned string.

PROGRAM SYNTAX: FORMAT=m,n,d

REMARKS: This command is used in conjunction with the STR$ command to set the
format of the returned string.

The m specifies the format mode.
 0 disable format
 1 leading and trailing 0=s will be returned in the string.
 2 sign followed by leading spaces and trailing 0's will be returned in

the string.

The n specifies the number of whole digits to be returned in the string.
This number does not include the sign of the returned string. If the sign is
positive a space will be inserted in place of the sign. If this value is 0 the
whole number value will be ignored.

The d specifies the number of decimal digits to be returned in the string.
If this value is 0 no decimal point will be returned and the fractional por-
tion of the variable will be ignored.

FORMAT=0,n,d
Disables the format mode. No leading or trailing characters are inserted
in the string.

If the number converted is outside the whole number digit the returned
string will have * substitutions for the numbers.

EXAMPLES: FORMAT=1,4,2 > sign leading & trailing 0'S
ABSPOS(1)= -200.254
A$=STR$(ABSPOS(1)) > A$ =A-0200.25"

FORMAT=2,4,4 > sign leading space trailing 0's
ABSPOS(1)= -200.254
A$=STR$(ABSPOS(1)) > A$ =A- 200.2540"

FORMAT=1,2,4 >Sign leading & trailing 0's
ABSPOS(1)= -200.254
A$=STR$(ABSPOS(1)) > A$ =A-**.****"

FORMAT=0,1,1 >Disable formatting

Programming Commands 113

FOR ... NEXT ... STEP Program Flow Control

ACTION: Repeats a block of statements a specified number of times.

PROGRAM SYNTAX: FOR counter=start# TO end# [STEP increment]
 statements
 [EXIT FOR]
 statements
NEXT [counter]

REMARKS: Counter is a variable used as the loop counter.

Start# is the initial value of the counter.

End# is the end value of the counter.

Increment is the amount the counter is changed each time through the
loop. If STEP is not specified, increment defaults to one.

If end# is greater than start# then increment must be positive. If start#
is greater than end# then increment must be negative. If these condi-
tions are not met the loop will not execute, control is transferred to the
next statement following the NEXT statement. If start# equals end#
then the loop will execute once regardless of the increment value. If in-
crement equals zero the loop will execute indefinitely.

EXIT FOR is an alternate exit from a FOR ... NEXT loop.

EXIT FOR transfers control to the statement following the NEXT
statement. When used within nested FOR ... NEXT statements, EXIT
FOR transfers out of the immediate enclosing loop. EXIT FOR can be
used only in a FOR ... NEXT statement.

EXAMPLES: FOR x=1 TO 8 STEP 1
 statements
NEXT x

A=2.4
FOR X =1 to A STEP 1

Statements
NEXT X ‘ This loop will execute 2 times (X=1 & X=2)

114 Programming Commands

GETCHAR I/O Command

ACTION: Waits for a character on the selected serial port and returns the ASCII
code of the character.

PROGRAM SYNTAX: GETCHAR(n) - used in an expression

REMARKS: The n specifies the serial port number (1 or 2). Port 1 is the Host Port
and Port 2 is the Auxiliary Port.

Program execution is suspended while GETCHAR waits for a character
to be received by the designated port. If a character is already in the re-
ceiver buffer the ASCII code of the character is returned immediately.

EXAMPLES: a=GETCHAR(1) ‘ sets a to the ASCII code of Host Port character
b=GETCHAR(2) ‘ sets b to the ASCII code of Aux Port character
a$=a$ + CHR$(a) ‘ add Host character to a$
b$=b$ + CHR$(b) ‘ add Auxiliary character to b$

GOSUB ... RETURN Program Flow Control

ACTION: Branches to, and returns from, a subroutine.

PROGRAM SYNTAX: GOSUB line label

REMARKS: You can call a subroutine any number of times in a program. You can call
a subroutine from within another subroutine, this is called nesting.

How deeply you can nest is limited only by the available stack area. Sub-
routines that call themselves (recursive subroutines) can easily run out of
stack space.

The execution of the RETURN statement cause program execution to
continue with the line immediately following the line that called the sub-
routine.

Subroutines can appear anywhere in the program, but it is good pro-
gramming practice to make them readily distinguishable from the main
program.

EXAMPLES: GOSUB GET_CHAR
 statements
END

GET_CHAR:
 statements
RETURN

Programming Commands 115

GOTO Program Flow Control

ACTION: Branches Unconditionally to the specified label.

PROGRAM SYNTAX: GOTO label

REMARKS: The GOTO statement provides a mean for branching unconditionally to
another label.

It is good programming practice to use subroutines or structured control
statements (DO ... UNTIL, FOR ... NEXT, IF ... THEN ... ELSE IF
... ELSE) instead of GOTO statements, because a program with many
GOTO statements can be difficult to read and debug. Try to avoid
using GOTO!

EXAMPLES: IF x=1 THEN GOTO COOLANT_OFF
statements

COOLANT_OFF:
statements

116 Programming Commands

HARDLIMIT Over Travel Limit

ACTION: Enables or Disables Hard Limit Switches or returns the current Hard
limit Enable/disable state of an axis.

PROGRAM SYNTAX: HARDLIMIT(axis)=expression
HARDLIMIT=expression1, ... , expression8
HARDLIMIT(axis, ... ,axis)=expression, ... , expression
HARDLIMIT(axis) - used in an expression

REMARKS: The axis specifies the axis (1-8)

Hard limit inputs are used to stop the motor before it runs into a physi-
cal end of travel, thus avoiding damage to the mechanical system. A
separate hard limit input is provided for + and - motor rotation on each
axis. Activating the trigger level of the + limit input stops the motor if it is
traveling in the + direction. Activating the trigger level of the - limit input
stops the motor if it is traveling in the - direction.

A True(1) is returned is the axis HARDLIMIT is enabled. A False(0) is
returned is the axis HARDLIMIT is disabled.

EXAMPLES: HARDLIMIT(2)=1
Enables the hard limits for axis 2.

HARDLIMIT=1,,0
Enables the hard limits on axis 1 and disables the hard limits on axis 3.

HARDLIMIT(1,3)=1,0
Enables the hard limits on axis 1 and disables the hard limits on axis 3.

Programming Commands 117

HARDLIMNEG Over Travel Limit

ACTION: Returns the - Limit hardware state for the selected axis.

PROGRAM SYNTAX: HARDLIMNEG(axis) - used in an expression

REMARKS: The axis is the specified axis (1-8).

A false(0) is returned if the designated axis - limit input is inactive. Oth-
erwise, a true(1) will be returned which indicates that the - Limit input is
active.

EXAMPLES: IF HARDLIMNEG(1)=1 THEN ‘ execute statements if - limit
active

 statements
END IF

HARDLIMPOS Over Travel Limit

ACTION: Returns the + Limit hardware state for the selected axis.

PROGRAM SYNTAX: HARDLIMPOS(axis) - used in an expression

REMARKS: The axis is the specified axis (1-8).

A false(0) is returned if the designated axis + limit input is inactive. Oth-
erwise, a true(1) will be returned which indicates that the + Limit input is
active.

EXAMPLES: IF HARDLIMPOS(1)=1 THEN ‘ execute statements if + limit
active

 statements
END IF

HEX$ String Manipulating

ACTION: Returns the hex string equivalent of an argument.

PROGRAM SYNTAX: HEX$(expression) - used with a string array

REMARKS: The expression must be an integer value.

EXAMPLES: a$=HEX$(255) ‘ a$=“FF”

118 Programming Commands

HVAL String Manipulation

ACTION: Returns the decimal value of a hexadecimal string.

PROGRAM SYNTAX: HVAL(A$) - used in an expression

REMARKS: A$ is the designated string variable or string literal. The string variable
format is: “0XHH” or “HH”. Where H is an ASCII 0-9 or a-f.

The converted value is returned as a decimal value.

EXAMPLES: x=HVAL(“0XFF”) ‘ x is set to 255.

A$=“1F”
x=HVAL(A$) ‘ x is set to 31

Programming Commands 119

IF...THEN...ELSE IF... Program Flow Command
ELSE...END IF

ACTION: Allows conditional execution based on the evaluation of a Boolean con-
dition.

PROGRAM SYNTAX 1: IF condition THEN thenpart [ELSE elsepart]

PROGRAM SYNTAX 2: IF condition THEN
 statement block 1
[ELSE IF condition THEN] ELSE IF and statement block 2

are optional
 statement block 2

[ELSE] ELSE and statement block 3
are optional

 statement block 3
END IF

REMARKS: The argument condition is an expression that is evaluated as true
(nonzero) or false (zero).

The argument statement block includes any number of statements on
one or more lines.

The argument thenpart includes the statement or branches performed
when the condition is true.

The argument elsepart includes the statement or branch performed
when the condition is false. If the ELSE IF or ELSE clause is not pres-
ent, control passes to the next statement in the program following the
END IF.

EXAMPLES: Start:
IF BCD(101)=0 THEN
 GOTO program0
ELSE IF BCD(101)=1 THEN
 GOTO program1
ELSE IF BCD(101)=2 THEN
 GOTO program2
ELSE
 GOTO Start
END IF
program0:

statements
END
program1:

statements
END
program2:

120 Programming Commands

statements
END

Programming Commands 121

IN I/O Function
ACTION: Returns the state’s of the specified digital I/O inputs.

PROGRAM SYNTAX: IN(bnn) - used in an expression
IN(bnn,len) - used in an expression

REMARKS: bnn specifies the I/O point terminal.
 board 1 board 2 board 3 board 4
101-124 201-224 302-324 401-424

len is the number of I/O points to return (1-24).

A true (1) is returned if the state of the input is active. Otherwise, a false
(0) is returned.

IN(bnn) - used in an expression
Returns a single input state.

IN(bnn,len) - used in an expression
Returns a number corresponding to the states of multiple inputs, binary
weighting of inputs bnn to (bnn+len-1). IN(bnn,len) is equivalent to:
IN(bnn) + (2*(bnn+1) + (4*(bnn+2) + ... +(2len-1*(bnn+len-1)

EXAMPLES: x=IN(207)
The state of board 2 input 7 is returned to variable x.

x=IN(207,3)
The sum of the input states from board 2 inputs 7-9 is returned to x.
The value returned will be: IN(207) + (2*IN(208) + (4*IN(209).

INCHAR I/O Function

ACTION: Return the ASCII code of a character from the designated serial port.

PROGRAM SYNTAX: INCHAR(n) - used in an expression

REMARKS: The n specifies the serial port (1 or 2). Port 1 is the Host port and Port
2 is the Auxiliary port.

If no character has been received by the designated serial port a 0 is
returned. Otherwise, the ASCII code value equivalent is returned.

EXAMPLES: DO
 x=INCHAR(2)
LOOP UNTIL x > 0 ‘ wait for Auxiliary port character.
A$=A$+chr$(x) ‘ add character to A$

122 Programming Commands

#INCLUDE Miscellaneous Command

ACTION: Includes a file name with define statements in a user task.

PROGRAM SYNTAX: #INCLUDE drive:\subdir\...\subdir\filename.inc

REMARKS: Drive is the root directory of the drive.

Subdir is the path required to find the file.

Filename is the include filename with extension .inc.

The include file must be a series of #DEFINE statements only and can
be used in any project task file.

The iws.inc file is included in the MCPI software. This file can be used
to control a IWS-127-SE, IWS-30-SE or IWS-120-
SE interface panel.

EXAMPLES: #INCLUDE c:\mx2000\iws.inc ‘ include file iws.inc

#INCLUDE c:\mx2000\iws30.inc ‘ include file iws30.inc

INPUT I/O Command

ACTION: Reads a Line of data from the designated serial port into a string vari-
able.

PROGRAM SYNTAX: INPUT#1,N$
INPUT#1,N$,var1$[,var2$][, ...] [,var_n$]
INPUT#2,N$
INPUT#2,N$,var1$[,var2$][, ...] [,var_n$]

REMARKS: This command accepts input characters until a carriage return or line-
feed is received by the designated port.

Multiple arguments strings can be entered on one input line and are
separated by a comma.

INPUT#1 designates the Host port and INPUT#2 designates the Aux-
iliary port as the serial receiver port.

EXAMPLES: PRINT#2, “enter accel value, decel value, speed value”
INPUT#2,acc$,dcc$,spd$ ‘ input variable values
FOR x=1 TO 3 ‘ axis numbers 1-3
 ACCEL(x)=VAL(acc$) ‘ load ACCEL value
 DECEL(x)=VAL(dcc$) ‘ load DECEL value
 SPEED(x)=VAL(spd$) ‘ load SPEED value
NEXT x

Programming Commands 123

INSTR String Manipulation

ACTION: Returns the character position of the first occurrence of a specified
string in another string.

PROGRAM SYNTAX: INSTR(string1$,string2$) - used in an expression

REMARKS: Returns the starting position that string2$ matches in string1$. The
comparison is case sensitive and returns a 0 if no match is found.

EXAMPLES: a$=“WE part#215629”
x=INSTR(a$,”part#”) ‘ x is set to 4 which is the starting position

of part#.

INTLIM Servo Parameter

ACTION: Sets the Integral limit for the controller. This is the limit of the contribu-
tion to the servo output from the integral of the position error.

PROGRAM SYNTAX: INTLIM (axis)=expression
INTLIM=expression1, ... , expression8
INTLIM(axis, ... ,axis)=expression, ... ,expression
INTLIM (axis) - used in an expression

REMARKS: This command is defined in more detail in Section 9 Servo Drive.

IXT Servo Parameter

ACTION: Sets or returns the Excessive Duty Cycle Shutdown time in seconds.

PROGRAM SYNTAX: IXT(axis) = expression
IXT = expression, ... , expression
IXT(axis, ... ,axis)=expression, ... ,expression
IXT(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 9 Servo Drive.

124 Programming Commands

JOG Motion Parameter

ACTION: Runs the motor continuously in a specified direction.

PROGRAM SYNTAX: JOG(axis)=expression
JOG=expression1, ... ,expression8
JOG(axis, ... ,axis)=expression, ... , expression

note: JOGSTART can be substituted for JOG.

REMARKS: The axis specifies the number of the axis (1-8).

The expressions sign determines the motion direction . If the expression
is positive or 0, jogging will be in the positive direction. If the expression
is negative, jogging is in the negative direction.

Use the STOP command for stopping the motor.

Note: A JOG cycle will be stopped if an ARC, LINE, MOVE,
MOVEHOME or MOVEREG motion command is issued for the
same axis during a JOG command.

EXAMPLES: JOG(2)=-1 ‘jog axis 2 in the negative direction.
DO : LOOP UNTIL EXIN(101)=1 ‘Execute Loop until the Expansion

I/O input 1 is active.
STOP(2)
WAITDONE(2) ‘Allow axis 2 to stabilize at zero speed prior to

executing the next command
JOG=1,,-1 ‘jog axis 1 in +dir. and jog axis 3 in -dir.
DO : LOOP UNTIL EXIN(101)=1
STOP(1,3)
WAITDONE(1,3)
JOG(1,3)=1,-1 ‘jog axis 1 in +dir. and jog axis 3 in -dia.
DO : LOOP UNTIL EXIN(101)=1

ACCEL
DECEL

STOP
SPEED

BUSY=1

BUSY=0 BUSY=0

JOG

SPEED= 0

BUSY=1

BUSY=0

JOG

ACCEL
ACCEL

DECEL

SPEED > 0

SPEED SPEED

JOG CYCLE

Note: The underlined text is the command required to

generate the velocity profile. The remaining text are related

commands.

Programming Commands 125

STOP(1,3)
WAITDONE(1,3)

126 Programming Commands

JOYSTICK Motion Parameter

ACTION: Enables Joystick motion.

PROGRAM SYNTAX: JOYSTICK=ax1, ... ,ax8
 JOYSTICK(ax1, ... , ax8)

REMARKS: The JOYSTICK command sets up to eight axes, ax1 to ax8, to move
in response to the voltage applied to their respective analog inputs. Each
axis will run at a speed proportional to the input voltage and in the di-
rection determined by the polarity of the input voltage. There is a ±0./25
dead band.

The axis will run in the negative direction when the input voltage range is
-10.0 to -0.25 volts. The speed it will attain is:
((Vin+0.25)/10)*SPEED. The axis will run in the positive direction
when the input voltage range is +0.25 to +10.0 volts. The speed it will
attain is: ((Vin-0.25)/10)*SPEED.

The JOYSTICK mode is terminated by a STOP command.

EXAMPLES: SPEED(1,2)=10,10 ‘ set speed for axes
JOYSTICK=1,2 ‘ enable joystick mode axis 1 and 2
DO: LOOP UNTIL EXIN(100)=1 ‘ stay in joystick mode until

 input=1
STOP(1,2)

JOYSTICK(1,2) ‘ enable joystick mode axis 1 and 2
DO: LOOP UNTIL EXIN(100)=1 ‘ stay in joystick mode until

 input=1
STOP(1,2)

Programming Commands 127

KAFF Servo Parameter

ACTION: Sets or returns the acceleration feed forward gain for a servo axis.

PROGRAM SYNTAX: KAFF(axis)=expression
KAFF=expression1, ... , expression8
KAFF(axis, ... ,axis)=expression, ... ,expression
KAFF(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 9 Servo Drive.

KD Servo Parameter

ACTION: Sets or returns the derivative gain for the servo axis.

PROGRAM SYNTAX: KD(axis)=expression
KD=expression1, ... , expression8
KD(axis, ... ,axis)=expression, ... ,expression
KD(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 9 Servo Drive.

KI Servo Parameter

ACTION: Sets or returns the integral gain of a servo axis.

PROGRAM SYNTAX: KI(axis)=expression
KI=expression1, ... , expression8
KI(axis, ... ,axis)=expression, ... ,expression
KI(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 9 Servo Drive.

KP Servo Parameter

ACTION: Sets or returns the proportional gain of the servo axis.

PROGRAM SYNTAX: KP(axis)=expression
KP=expression1, ... , expression8
KP(axis, ... ,axis)=expression, ... ,expression
KP(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 9 Servo Drive.

128 Programming Commands

KVFF Servo Parameter

ACTION: Sets or returns the velocity feed forward gain for the servo axis.

PROGRAM SYNTAX: KVFF(axis)=expression
KVFF=expression1, ... , expression8
KVFF(axis, ... ,axis)=expression, ... ,expression
KVFF(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 9 Servo Drive.

LCASE$ String Manipulation

ACTION: Converts and returns a string with lower case letters.

PROGRAM SYNTAX: string1$=LCASE$(string2$)

REMARKS: String2$ is copied and all upper case letters are converted to lower
case letters and the resulting string is returned to string1$.

EXAMPLES: a$=“HELLO”
b$=LCASE$(a$) ‘ sets b$=“hello”

LEFT$ String Manipulation

ACTION: Returns the leftmost characters of a string.

PROGRAM SYNTAX: string2$=LEFT$(string1$,n)

REMARKS: The n is the number of leftmost characters to return. If n is greater than
the length of string1$ then the entire string is returned to string2$.

EXAMPLES: b$=“Hello World”
a$=LEFT$(b$,7) ‘ sets a$=“Hello W”

LEN String Manipulation

ACTION: Returns the number of characters in the designated string.

PROGRAM SYNTAX: LEN(string$) - used in an expression

REMARKS: If the input string is a null string a 0 is returned.

EXAMPLES: A=LEN(“ABCD”) ‘ sets A=4

Programming Commands 129

LINE Motion Parameter

ACTION: Initiates a coordinated linear move involving up to 8 axes.

PROGRAM SYNTAX: LINE=expression1, ... , expression8
LINE(axis, ... , axis)=expression, ... ,expression
LINE=expression1,expression2 (syntax for PATH command)

REMARKS: The axis specifies the number of the axis (1-8).

The expression represents the move distance. All defined axes will start
and end at the same time.

The lower numbered axis is considered the master and its parameters:
SPEED, ACCEL,.DECEL, and PROFILE are used.

The individual axis velocity, acceleration and deceleration calculations
are based on the move distance in units. The velocity, acceleration and
deceleration vales for each axis will be a ratio of the master distance
(axis 1) to the individual axis distances, (ratio=axis distance / master
distance)

EXAMPLES: LINE=1.0,,-2.0 ‘Linear interpolated axis 1 and 3. Axis 1 moves
 +1.0 units and axis 3 moves -2.0 units.

WAITDONE(1,3)

LINE(1,3)=1.0,-2.0 ‘Linear interpolated axis 1 and 3. Axis 1 moves
 +1.0 units and axis 3 moves -2.0 units.

WAITDONE(1,3)

PATH=1,2
 LINE=1,-2.0 ‘ linear interpolates axis 1 and axis 2

Note: The underlined text is the command required to

generate the velocity profile. The remaining text are related

commands.

ACCEL(1)
DECEL(1)

SPEED(1)

LINE

BUSY=1

BUSY=0 BUSY=0

LINE

BUSY=1

BUSY=0 BUSY=0

LINE COMMAND CYCLE
LINE = 4,2

130 Programming Commands

 statements
PATH END

Programming Commands 131

LOF Miscellaneous Command

ACTION: Returns the number of character in the designated RS232 port.

PROGRAM SYNTAX: LOF(port) - used in an expression.

REMARKS: Port is the designated serial port (1 or 2). Port 1 is the Host port and
port 2 is the Auxiliary port.

EXAMPLES: DO : LOOP UNTIL LOF(2)>=10 >wait for 10 characters in auxil-
iary port

A$=@A 'clear A$
cnt=0

DO
 A$=A$+CHR$(INCHAR(2)) > load characters
LOOP UNTIL LOF(2)=0

LOG Mathematics Function

ACTION: Returns the natural logarithm of a numeric expression.

PROGRAM SYNTAX: LOG(expression) - used in an expression

REMARKS: The argument expression must be greater than zero. The natural loga-
rithm is the logarithm to the base e. The constant e is approximately
equal to 2.718282.

You can calculate base 10 logarithm as follows: LOG 10(x)=
LOG(x)*.4342945

EXAMPLES: x=LOG(2.718282) ‘ sets x= 1

LOWSPD Trajectory Parameter

ACTION: Sets or returns the Low Speed (starting speed) value of a stepping mo-
tor axis.

PROGRAM SYNTAX: LOWSPD(axis)=expression
LOWSPD=expression1, ... ,expression 8
LOWSPD(axis, ... ,axis)=expression, ... ,expression
LOWSPD(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 10 Stepper Drive.

132 Programming Commands

MAXSPD Trajectory Parameter

ACTION: Sets or returns the maximum allowed speed of the specified axis.

PROGRAM SYNTAX: MAXSPD(axis)=expression
MAXSPD=expression1, ... , expression 8
MAXSPD(axis, ... ,axis)=expression, ... , expression
MAXSPD(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression specifies the maximum speed allowed for an axis.

Motion will not be performed at speeds higher than this value, even if an
axis is programmed or commanded to do so.

EXAMPLES: MAXSPD(3)=50
Sets the maximum speed for axis 3 to 50 units/second.

MAXSPD=50,,60
Sets the maximum speed for axis 1 to 50 units/second and axis 3 to 60
units/second.

MAXSPD(1,3)=50,60
Sets the maximum speed for axis 1 to 50 units/second and axis 3 to 60
units/second.

MID$ String Manipulation

ACTION: Returns the designated middle number of characters of a string.

PROGRAM SYNTAX: string1$=MID$(string2$,start,number)

REMARKS: The start specifies the starting position of the input string string2$.

The number specifies the number of characters to return. If the number
is greater than the (length of the string - start position) the string returned
is from starting position to the end of the string.

If the string is null then a “”(no characters) will be returned.

EXAMPLES: a$=“P/N 123AC”
b$=MID$(a$,5,3) ‘ sets b$=“123”
c$=MID$(a$,5,9) ‘ sets c$=“123AC”

Programming Commands 133

MOD Mathematics Function

ACTION: Returns the remainder of a number divided by the base.

PROGRAM SYNTAX: y=x MOD base

REMARKS: The y is the returned remainder.

The x is the number that is divided by the base.

The base is the divisor.

EXAMPLES: y=31 MOD 16 ‘ y is set to 15 which is the remainder.

MOTIONSTATE Trajectory Parameter

ACTION: Returns the follower motion state for an axis.

PROGRAM SYNTAX: MOTIONSTATE(axis) - used in an expression.

REMARKS: This command is defined in more detail in Section 8 Following.

134 Programming Commands

MOVE Motion Parameter

ACTION: Initiates a non-coordinated move.

PROGRAM SYNTAX: MOVE(axis)=expression
MOVE=expression1, ... , expression 8
MOVE(axis, ... ,axis)=expression, ... , expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression represents the incremental distance or absolute position
to be moved to. The POSMODE command setting of an axis deter-
mines whether an incremental distance or absolute position is com-
manded. If the incremental distance, POSMODE(axis)=0, is used the
sign of the expression determines the direction (positive or negative) of
motion for the move. Incremental position mode is the default.

EXAMPLES: POSMODE(1,3)=0,0 ‘incremental position mode for axis 1 & 2
MOVE(3)=-2 ‘axis 3 moves -2 units
WAITDONE(3)

MOVE=1,,3 ‘axis 1 moves +1 units and axis 3 moves +3
units.

WAITDONE(1,3)

MOVE(1,3)=1,3 ‘axis 1 moves +1 units and axis 3 moves +3
units.

ACCEL
DECEL

SPEED

BUSY=1

BUSY=0 BUSY=0

MOVE

BUSY=1

BUSY=0

MOVE

ACCEL

SPEED

MOVE CYCLE

SPEED= 0

ACCEL

SPEED > 0

DECEL DECEL

BUSY=0

Note: The underlined text is the command required to

generate the velocity profile. The remaining text are related

commands.

Programming Commands 135

WAITDONE(1,3)

136 Programming Commands

MOVEHOME Motion Parameter

ACTION: Runs the motor until the home input is activated, captures and records the
position of the switch activation as home (electrical zero), then decele r-
ates the motor to a stop.

PROGRAM SYNTAX: MOVEHOME(axis)=expression
MOVEHOME=expression1, ... , expression 8
MOVEHOME(axis, ... ,axis)=expression, ... , expression

REMARKS: The axis specifies the number of the axis (1-8).

The sign of the expression determines the direction (positive or negative)
of the motion for the home cycle. The non-zero value of the number is
not significant. The commanded speed of the axis is determined by the
last SPEED command that was executed.

The MOVEHOME trigger can be EVENT1 input, EVENT2 input and/or
Encoder marker state. This trigger is defined by the user program Con-
figuration and Setup, and also by the EVENT1 or EVENT2 commands
if they have been executed prior to the MOVEHOME.

Prior to starting a MOVEHOME motion, the appropriate trigger input
(EVENT1 or EVENT2) is checked to see if it has already been trig-
gered. If the trigger is already enabled the ABSPOS and ENCPOS are
set to zero and no motion occurs. Otherwise, the motor accelerates at the
ACCEL rate to the commanded SPEED and continues at this speed until
the home trigger condition is met. The capture position is recorded when
the home trigger occurs. The motor decelerates to a stop at the DECEL
rate. Once at a stop, the distance traveled from the trigger becomes the
new ABSPOS and ENCPOS value. The exact position that the motor
was at when the trigger occurred becomes the zero position, or home.
The captured absolute position can be monitored by the CAPPOS com-
mand.

ACCEL
DECEL

SPEED

BUSY=1

BUSY=0 BUSY=0

MOVEHOME

MOVEHOME CYCLE

Note: The underlined text is the command required to

generate the velocity profile. The remaining text are related
commands.

Note 1

Note 2

Note 1: The Home switch activates and the current position

 is captured.
Note 2: Motion is completed and the Absolute and Encoder

 positions are set to the difference between the

 captured position and the ending position.

Home Switch

Programming Commands 137

MOVEHOME continued

EXAMPLES: MOVEHOME(3)=1 ‘Axis 3 executes a home cycle in the positive
 direction.

WAITDONE(3) ‘Wait for motion to stop.
POSMODE(3)=1 ‘Activates Absolute Mode for axis 3.
MOVE(3)=0 ‘ move axis 3 to the captured home position
WAITDONE(3)

MOVEHOME=-2,,3 ‘Axis 1 executes a home cycle in the negative
 direction and axis 3 executes a home cycle in
 the positive direction.

WAITDONE(1,3)
POSMODE(1,3)=1,1 ‘activates Absolute position mode for axis 1 & 3
MOVE(1,3)=0,0 ‘ move axis 1 & 3 to the captured home position
WAITDONE(1,3)

MOVEHOME(1,3)=-1,1 ‘Axis 1 executes a home cycle in the negative
 direction and axis 3 executes a home cycle in

 the positive direction.
WAITDONE(1,3)
POSMODE(1,3)=1,1
MOVE(1,3)=0,0 ‘ move axis 1 & 3 to the captured home position
WAITDONE(1,3)

138 Programming Commands

MOVEREG Motion Parameter

ACTION: Runs the motor until the mark registration input is activated; then moves
the motor the desired registration distance.

PROGRAM SYNTAX: MOVEREG(axis)=expression
MOVEREG=expression1, ... , expression 8
MOVEREG(axis, ... ,axis)=expression, ... , expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression represents the incremental distance to move after a reg-
istration trigger has occurred. The sign of the expression determines the
direction (positive or negative) of motion for the registration cycle.

The registration trigger can be the EVENT1 input, EVENT2 input and/or
Encoder marker state. This trigger is defined in the user program Con-
figuration and Setup, and also by the EVENT1 or EVENT2 command
if they have been executed prior to the MOVEREG.

The Registration Travel Limit, which is set by command REGLIMIT,
limits the distance that the motor will rotate if no trigger occurs. A
REGLIMIT setting of 0, sets no limit for motor rotation while awaiting a
trigger. THIS IS THE CONDITION AFTER POWER UP OR
RESET. The motor speed during a MOVEREG move is set by the
SPEED command. When the registration trigger occurs, the registration
distance is checked to determine if the motion can be stopped in the given
distance. If it can not, then the motion will be stopped using the project's
Configuration and Setup setting for Max. ACCEL, and an error code 7
is set. This error can be eliminated by increasing the registration dis-
tance, decreasing the speed or increasing the deceleration.

The captured absolute position can be monitored by the CAPPOS com-
mand.

Prior to starting a MOVEREG motion the appropriate trigger input
(EVENT1 or EVENT2) is checked to see if it has already been trig-
gered. If the trigger has already occurred, an incremental move of the
distance specified by the expression to the right of the MOVEREG will
occur.

A MOVEREG can be started with its trigger disabled (except for the
two encoder index marker selections). The registration trigger may then
be enabled later by an EVENT1 or EVENT2 command.

Programming Commands 139

MOVEREG Continued

EXAMPLE: A label is to be put down on top of the material passing by. A sensor
connected to Event1 on axis 3 detects when the material leading edge
occurs. The label is put down on the material as soon as axis 3 starts
motion. When the trailing edge of the label is detected the registration
distance is traveled, 5 units. The cycle repeats until input 1 on Digital
I/O board 1 is activated.

REGLIMIT(3)=10 ‘set registration limit of axis 3 to 10 units
ACCEL(3)=500 ‘accel rate of axis 3 set to 500
units/sec2

DECEL(3)=500 ‘accel rate of axis 3 set to 500 units/sec2

start:

DO
DO

SPEED(3)=ENCSPD(1) ‘set speed of axis 3 equal to the speed
 of material

LOOP UNTIL EVENT1(3)=1 ‘ wait for leading edge of material
MOVEREG(3)=2 ‘start laying down label
WAITDONE(3) ‘wait for motion to stop on label roll

LOOP UNTIL IN(101)=1 ‘repeat cycle if Input 1 on board 1 is inactive
END

ERROR_HANDLER:
ERR=0,0 ‘ if an error occurs restart cycle

GOTO start

ACCEL
DECEL

SPEED

BUSY=1BUSY=0 BUSY=0

MOVEREG

MOVEREG CYCLE

Note: The underlined text is the command required to

generate the velocity profile. The remaining text are related
commands.

Note 1

Note 2

Note 1: The registration input triggers. The distance
 specified by the command begins to be counted

 down.
Note 2: Motion is completed. The distance traveled from

 the registration trigger is the command distance.

REGLIMIT

Trigger switch

140 Programming Commands

NOT Boolean Operator

ACTION: The logical NOT operator is used in Boolean expressions.

PROGRAM SYNTAX: NOT expression

REMARKS: The NOT operator uses the truth table: The result is TRUE if the ex-
pression is FALSE.

expression condition result
TRUE FALSE
FALSE TRUE

EXAMPLES: DO
 statements
WHILE NOT(DONE(axis))
The controller will continue to execute the loop until the axis is done
with the motion.

NVR Miscellaneous Command

ACTION: The NVR array is used for non-volatile variable storage.

PROGRAM SYNTAX: NVR(number)
NVR(number)=expression

REMARKS: The number is the NVR element number being addressed (1-2048). In
the MX2000-2-32, (1-32768) NVR elements can be stored.

The expression is the value that will be stored at the specified NVR
element.

The NVR array has 2048 elements (1-2048) and is accessible by all
program tasks.

To set the NVR element to a default setting use the Host Command
SNVR.

EXAMPLES: A=NVR(2)
Returns the NVR element 2 value to variable A.

NVR(2048)=10.5
Sets the NVR element 2048 to a value 0f 10.5.

NVR(3)=A
Sets the NVR element 3 to the value of variable A.

Programming Commands 141

NVRBIT Miscellaneous Command

ACTION: Store or return the bit value in NVR memory.

PROGRAM SYNTAX: NVRBIT(bit)= expression
NVRBIT(bit) - used in an expression

REMARKS: The bit value range is 1 - 65536. The expression must be a value of 0
or 1.

When using this command care must be taken not to alter elements used
by the NVR and NVRBYTE commands.

The NVR array is used for non-volatile storage. The array consist of
2048 elements, 8192 Bytes or 65536 Bits. Thus, there are 32 bits in
each word.

The bit assignments for each 32 bit word is as follows:
8 7 6 5 4 3 2 1 (Word Most Significant Byte)

16 15 14 13 12 11 10 9
24 23 22 21 20 19 18 17
32 31 30 29 28 27 26 25 (Word Least Significant Byte)

The array element (word) and bit number being addressed is calculated
as follows:
element number = ((int) (bit number + 31) / 32)
bit number = mod (bit number / 32)

EXAMPLES: NVRBIT(65505)=1 ' sets Bit 1 of element 2048 = 1
NVRBIT(65536)=0 ' sets Bit 32 of element 2048 = 0

142 Programming Commands

NVRBYTE Miscellaneous Command

ACTION: Stores or returns the byte value in NVR memory.

PROGRAM SYNTAX: NVRBYTE(byte)= expression
NVRBYTE(byte) - used in an expression

REMARKS: The byte value range is 1 - 8192. The expression must be a value be-
tween 0 and 255.

When using this command care must be taken not to alter elements used
by the NVR and NVRBIT commands.

The NVR array is used for non-volatile storage. The array consist of
2048 elements, 8192 Bytes or 65536 Bits. Thus, there are 4 bytes in
each word.

The array element (word) being addressed is calculated as follows: ele-
ment= ((int) (number + 3) / 4)
examples: Byte 1 addresses (element 1 Byte 1) MSB
 Byte 2 addresses (element 1 Byte 2)
 Byte 3 addresses (element 1 Byte 3)
 Byte 4 addresses (element 1 Byte 4) LSB
 Byte 5 addresses (element 2 Byte 1) MSB

EXAMPLES: NVRBYTE(8192)=255
sets MSB byte = 255 in element 2048

NVRBYTE(8189)=0
sets LSB byte= 0 in element 2048

OPTION DECLARE Miscellaneous Command

ACTION: This option requires that all local variable be declared as REAL or
STRING variables.

PROGRAM SYNTAX: OPTION DECLARE

Arrays are not required to be declared since the DIM statement declare
them as REALS or STRINGS.

If this option is not used the non-arrayed local variables are not required
to be declared but simply used in the program.

EXAMPLES: OPTION DECLARE
REAL a,b,c,d,e,f ‘ variables are declared
STRING a$,b$,c$,d$,e$,f$ ‘ variable strings are declared

Programming Commands 143

OR Boolean Operator

ACTION: The logical OR operator is used in Boolean expressions.

PROGRAM SYNTAX: expression1 OR expression2

REMARKS: The OR operator uses this truth Table: The result is TRUE, if either ex-
pression is TRUE.

Expression1 Expression2 Condition Result
FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE FALSE TRUE
TRUE TRUE TRUE

EXAMPLES: DO
statements

LOOP UNTIL (A>5 OR X=0)
‘ The controller continues to do the loop Until variable A>5 or variable
X=0

144 Programming Commands

OUT I/O Function

ACTION: Sets or returns the condition of a specified digital output.

PROGRAM SYNTAX: OUT(bnn)=expression
OUT(bnn,len)=expression
OUT(bnn) - used in an expression
OUT(bnn,len) - used in an expression

REMARKS: bnn is the board and Output number.

board 1 board 2 board 3 board 4
101-124 201-224 301-324 401-424

The expression specifies the output state’s.

The len specifies the number of Output points (1-24) involved in the in-
struction.

Outputs b01-b16 are physical outputs and b17-b24 are internal flags
which can be set or cleared and can be read just like the physical out-
puts.

OUT(bnn)=expression
Specifies one output state. If the expression is non-zero the output is on.
If the expression is zero the output state is off.

OUT(bnn,len)=expression
Specifies multiple output states (len) and the starting output point (bnn).
The expression is evaluated and converted to an integer value. The least
significant len bits of the binary representation are then used to set out-
puts bnn to (bnn+len-1) respectively.

OUT(bnn) - used in an expression
Return the state of the specified output point (bnn).

OUT(bnn,len) - used in an expression
Return the state of the designated outputs (bnn to (bnn+len-1)). Evalu-
ates to a number corresponding to the last output commanded (0 or 1)
for these output pins. The returned number is the binary weighted sum
of the commanded outputs (bnn to(bnn+len-1)) respectively.

EXAMPLES: OUT(107)=1
Digital I/O board 1 output 7 is set to a 1.

OUT(101,6)=48
digital I/O board 1 outputs 1-4 are set to a 0 and outputs 5 and 6 are
set to a 1.

x=OUT(107)
A 1 is returned to variable x since output 7 is set to a 1.

x=OUT(101,7)

Programming Commands 145

A 112 is returned to variable x since outputs 1-4 are 0 and output 5-7
are 1.

146 Programming Commands

OUTLIMIT Servo Parameter

ACTION: Sets or returns the servo command voltage limit.

PROGRAM SYNTAX: OUTLIMIT(axis)=expression
OUTLIMIT=expression1, ... , expression8
OUTLIMIT(axis, ... , axis)=expression, ... , expression
OUTLIMIT(axis) - used in an expression

REMARKS: This command is defined in more detail in Section 9 Servo Drive.

Programming Commands 147

PATH ...PATH CLOSE ... PATH END Motion Parameter

ACTION: Specifies a continuous motion path.

PROGRAM SYNTAX: PATH=axis1,axis2
 EXOUT(bnn)=expression
 EXOUT(bnn,len)=expression
 OUT(bnn)=expression
 OUT(bnn,len)=expression
 LINE=axis distance,axis2 distance
 FEEDRATE=expression
 ARC=axis1 center, axis2 center, ±angle
 POINT=axis1 distance, axis2 distance
 RADIUS=expression

 PATH CLOSE
PATH END

REMARKS: Axis1 and axis2 are the axes used in the path.

The commands listed above are the only commands allowed in a motion
path. Path motion (LINE, ARC and POINT) proceeds from one seg-
ment to another without stopping. The path speed can be changed with
the FEEDRATE command. Outputs can be set in various segments with
standard output commands (EXOUT and OUT). When two consecu-
tive segments are lines, then a radius is inserted if the last RADIUS
command specified is a non-zero radius.

When Path statements are used in each task, a maximum of 100 points
are allowed per PATH ... PATHEND block. Multiple, consecutive
PATH ’s are allowed within a task. However, motion stops between
PATH ’s. Up to 700 points may be used to specify a single Path if the
only task using the PATH ... PATHEND is task 1 and no other task
contains an ARC command.

The PATH CLOSE specifies that the starting points Coordinates are
the ending point Coordinates during Path motion.

EXAMPLES: PATH=1,2
 LINE=1.5,3
 EXOUT(101)=1
 ARC=3,0,+360
 EXOUT(101)=0
PATH END

The above example will move from the present position to position
(1.5,3) using the LINE motion. EXOUT(101) is set, a 360 degree
ARC is executed and then EXOUT(101) is cleared.

148 Programming Commands

Programming Commands 149

POINT Motion Parameter

ACTION: Specifies coordinates, which the motors will move through in a path.

PROGRAM SYNTAX: POINT=expression1, expression2

REMARKS: This command is only valid between a PATH and a PATHEND state-
ment. Expression1 is the first axis coordinate, expression2 is the second
axis coordinate. The path connecting points is smooth.

EXAMPLES: POSMODE=1,1
PATH=1,2
 POINT=1.5,3
 POINT=4,5
 POINT=6,7
PATH END

The above example will move the axes from the present position,
through points(1.5,3) and (4,5) to position (6,7) smoothly. The points
can be incremental or absolute as set by the POSMODE command.

POSERR Trajectory Parameter

ACTION: Returns the positional error of the designated axis.

PROGRAM SYNTAX: POSERR(axis) - used in an expression

Note: ENCERR can be substituted for POSERR.

REMARK: The axis specifies the number of the axis (1-8).

Position error is the difference between the absolute position and the
encoder position (ABSPOS - ENCPOS).

EXAMPLE: X=POSERR(1)
IF X > 10 THEN

PRINT#1,”Large Error”
END IF

150 Programming Commands

POSMODE Motion Parameter

ACTION: Sets or returns the positioning mode for the specified axis.

PROGRAM SYNTAX: POSMODE(axis)=expression
POSMODE=expression1, ... , expression8
POSMODE(axis, ... , axis)=expression, ... , expression
POSMODE(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

If the expression is TRUE (non-zero) then the absolute positioning
mode is enabled. If the expression is FALSE (zero) then the incremental
mode is enabled. Incremental positioning mode is the default mode.

EXAMPLES: POSMODE(2)=1
Sets the positioning mode for axis 2 to absolute.

POSMODE=1,,0
Sets the positioning mode for axis 1 to absolute and axis 3 is set to in-
cremental positioning mode.

POSMODE(1,3)=1,0
Sets the positioning mode for axis 1 to absolute and axis 3 is set to in-
cremental positioning mode.

Programming Commands 151

PRINT String Manipulating

ACTION: Transmits designated data via the designated serial port.

PROGRAM SYNTAX: PRINT#1,[expression][, or ;][expression][, or ;]
PRINT#2,[expression][, or ;][expression][, or ;]

REMARKS: Port 1 is the Host port and Port 2 is the Auxiliary Port.

expression can be an variable, parameter, string variable or Literal
string. Literal strings must be enclosed in quotation marks.

If a comma "," is used between expressions five spaces will separate
expressions.

If a semicolon ";" is used between expressions there will be no space
between expressions.

Up to 20 expressions can be used with one PRINT command.

If a semicolon ";" is used at the end of the PRINT command, no car-
riage-return/line-feed sequence will be generated.

EXAMPLES: ACCEL(2)=10.5
DECEL(2)=2.1
PRINT#1,”accel(2)= “;ACCEL(2),”decel(2)= “;DECEL(2)
‘ Host port out ”accel(2)= 10.5 decel(2)= 2.1” <cr> <lf>

 ACCEL(2)=10.5
DECEL(2)=2.1
PRINT#2,”accel(2)= “;ACCEL(2),”decel(2)= “;DECEL(2)
‘Auxiliary port out ”accel(2)= 10.5 decel(2)= 2.1” <cr> <lf>

ACCEL(2)=10.5
DECEL(2)=2.1
PRINT#2,”accel(2)= “;ACCEL(2),”decel(2)= “;DECEL(2);
‘ Auxiliary port out ”accel(2)= 10.5 decel(2)= 2.1”

152 Programming Commands

PRINT USING String Manipulation

ACTION: Prints strings character or formatted numbers.

PROGRAM SYNTAX: PRINT USING #1,"literal string",[exp][, or;][exp][;]
PRINT USING #1,Format$,[exp][, or;][exp][;]
PRINT USING #2,"literal string",[exp][, or;][exp][;]
PRINT USING #2,Format$,[exp][, or;][exp][;]

REMARKS: Port 1 is the Host Port and Port 2 is the Auxiliary Port.

The numeric values are formatted only using the literal string or a desig-
nated Format$ variable string. This string can contain non-format char-
acters that will be printed prior to the formatted number. The following
characters in the string will not be printed from the string:
"+" "#" "0" " ." "\" and ",". However, these character can be print-
able characters by preceding the character with a "\".

Example:
requirement to send the following ASCII string with the current state
of OUT(101) (Output #1 on board 1 is <state> which is the coolant
control)

a$="Output \#1 is #
PRINT USING #1,a$,OUT(101); “ which is the coolant control"

The resulting serial output:
Output #1 is n which is the coolant control
where: n is the state of output (101)

The comma (,) which is the delimiter for expressions, will not print spaces
like the PRINT # command. If spaces are required, between expressions,
they must be added to the literal string or format$.

Example:
ACCEL(1)=100
DECEL(1)=200
a$="Acc=0000 Dcc=0000"
PRINT USING#1,a$,ACCEL(1),DECEL(1)

The resulting serial output:
Acc= 0100 Dcc= 0200

If the numeric data is larger than the specified format than an * will
be substituted for the 0's and #'s in the output.

Example:
ABSPOS(1)=1000.54
a$="Position= +0##.##"
PRINT USING #1,a$,ABSPOS(1)

The resulting serial output:
Position= +***.**

Programming Commands 153

PRINT USING continued
The following special characters are used to format the numeric field:

+ The sign of the number will always be printed.
 - Only the negative sign will be printed. If the data is positive a

space will be printed in place of the sign.
 # represents each digit position. If no data exist at the digit position

substitute a space. The Digit field will always be filled.
. A decimal point may be inserted at any position in the field.
0 represents a digit position. If no data exist at the digit position sub-

stitute a 0. The Digit field will always be filled.
Any other character will be printed as encountered.
Note: if no sign is used the - sign is assumed.

The valid formats are:
Left side format Comments
 +0000 The sign with leading zero’s will be printed.
 +0000. The sign with leading zero’s and decimal point will be

printed. The right side format is optional
 +#### The leading spaces with a sign and digits will be printed.
 +####. The leading spaces with a sign, digits and deci-

mal point will be printed. The right side format is optional.
 0000 The - sign or a space with leading zero’s will be printed.
 0000. The - sign or a space with leading zero’s and decimal

point will be printed. The right side format is optional.
 #### The leading spaces with a -sign or a space and digits will

be printed.
 ####. The leading spaces with a -sign or a space, digits and

decimal point will be printed. The right side format is op-
tional.

 +. The sign and decimal point will be printed. This requires
the right side format also.

 . The sign and decimal point will be printed. This requires
the right side format also.

Right side format Comments
0000 Prints digits with trailing zer’s.
Prints digits with trailing spaces
00## Print two digits with trailing spaces.

If the expressions are literal strings or variable strings they will be printed
as is.

If a semicolon is used at the end of the Print Using command, no car-
riage-return / line-feed sequence will be generated.

When numeric data is to be printed, the format string is searched from
the beginning for a format character (+0#.). The string data up to this po-
sition is sent via the serial port. The format characters (+0#.) are now
processed and the formatted value is sent via the serial port. When the
next numeric data is to be printed, this process continues from the current
position in the string. When the end of the format string is encountered
and numeric data is to be printed, a default format (PRINT # format) is
used. If the format string end is not encountered and the command is
complete the remaining characters in the format string will be printed.

154 Programming Commands

PRINT USING continued
The following example illustrates how the format string is proc-
essed.

Example:
PRINT USING#1,"Numbers are +###.## ### 0##",100.54,"mv",
999,"cnts" ,54," is limit"

The "Numbers are " is extracted from the string and sent via serial
port. The "+###.##" is extracted from the string as the data format,
which results in "+100.54" being sent via serial port. The string "mv" is
sent via serial port. The " " is extracted from the string and sent via se-
rial port. The "###" is extracted from the string as the data format,
which results in "999" being sent via serial port. The string "cnts" is sent
via serial port. The " " is extracted from the string and sent via serial
port. The "0##" is extracted from the string as the data format, which
results in "054" being sent via serial port. The string " is limit" is sent via
serial port. A crlf is appended and sent via serial port.

Resulting string:
Numbers are +100.54mv 999cnts 054 is limit<cr><lf>

EXAMPLES: accel(1)=10000
A$=@accel(1)= 000000"
PRINT USING #1, Aaccel(1)= 000000", accel(1)

accel(1)= 010000 crlf printed
PRINT USING #1, A$, accel(1)

accel(1)= 010000 crlf printed
End

PRINT USING #1, A +####@, 1234.6, 234
+1235 + 234 cr lf printed

PRINT USING #1, A +0000@, 1234.6, 234
+1235 +0234 cr lf printed

PRINT USING #1, A +####.###@, 1234.6, 234
+1234.6 + 234. cr lf printed

PRINT USING #1, A +0000.000@, 1234.6, 234
+1234.600 +0234.000 cr lf printed

PRINT USING #1, A ###+.000", 23.45, 22.3515
+23.450 +22.352 cr lf printed

Programming Commands 155

PROFILE Trajectory Parameter

ACTION: Determines how the motor’s speed changes.

PROGRAM SYNTAX: PROFILE(axis)=expression
PROFILE=expression1, ... , expression8
PROFILE(axis, ... , axis)=expression, ... ,expression
PROFILE(axis) - used in an expression

REMARKS: The axis specifies the axis number (1-8).

The expression specifies the profile setting (1-32).

Speed changes require a period of accel/decel to increase/decrease the
motor’s speed. The Profile value determines how the accel/decel is ap-
plied. The MX controller has 32 choices. A profile setting of 1 results
in a “Trapezoidal” profile. This yields the minimum move time. Settings
2-32 yields “S-curve” profiles with varying degrees of “S”. The higher
the profile setting, the more “S” like the profile. Move times with profile
settings 1-32 are from 1 to 31 ms longer respectively than those with a
setting of 1. The “S-curve” profiles usually results in smoother motion at
the expense of longer move times.

EXAMPLES: PROFILE(1,3)=16,32
axis 1 profile is set to a value of 16 and axis 3 profile is set to 32.

PROFILE(2)=10
axis 2 profile is set to a value of 10.

PROFILE=16,,32
axis 1 profile is set to a value of 16 and axis 3 profile is set to 32.

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18
Velocity Response, "s" = 16

Samples (mS)

Velocity
(rev/
sec)

156 Programming Commands

Programming Commands 157

RADIUS Motion Parameter

ACTION: Sets or returns the ARC radius for Path blending.

PROGRAM SYNTAX: RADIUS = expression
RADIUS - used in an expression

REMARKS: Blending only occurs between lines in a path.

The first syntax type sets the ARC radius for Path blending equal to the
expression. The second syntax type (expression = RADIUS) returns
the current value of Radius.

EXAMPLES: X=RADIUS 'sets X equal to the current RADIUS value

RADIUS=.25 'sets the RADIUS for Path blending to .25 units

PATH=1,2
 RADIUS=.25
 LINE=1, 1
 LINE=2, -.5 'bending occurs
 LINE=.5, .5 'bending occurs
PATH END

READ Miscellaneous Command

ACTION: Reads numbers from data statements and assigns them to the variables
in the list.

PROGRAM SYNTAX: READ variable, variable, etc

REMARKS: All numbers in the data statements are floating point numbers.

The data statements are contained in the BASIC program. Refer to the
DATA statement description for more detail.

The DATA statement must always appear ahead of the READ state-
ment.

EXAMPLES: DATA 1,2,3,4
READ a, b, c, d 'reads next four values from the data statement into

variables a, b, c and d
RESTORE

158 Programming Commands

REDUCE Motion Parameter

ACTION: Enables, disables the Reduce current or returns the enable status.

PROGRAM SYNTAX: REDUCE(axis)=expression
REDUCE=expression1, ... , expression8
REDUCE(axis, ... , axis)=expression, ... , expression
REDUCE(axis) - used in an expression

REMARKS: This command is defined in more detail in the Stepper Section of the
Manual.

REGLIMIT Over Travel Limit

ACTION: Sets or returns the distance to be moved during a MOVEREG cycle,
while awaiting a trigger.

PROGRAM SYNTAX: REGLIMIT(axis)=expression
REGLIMIT=expression1, ... , expression8
REGLIMIT(axis, ... , axis)=expression, ... , expression
REGLIMIT(axis) - used in an expression

REMARKS: The axis specifies the axis number (1-8)

The expression set the registration travel distance limit for the specified
axis. A value of 0 disables the registration travel distance limit.

If no trigger occurs, a MOVEREG cycle behaves like an incremental
MOVE cycle, with the distance specified by REGLIMIT. REGLIMIT
must be set prior to a MOVEREG cycle.

EXAMPLES: REGLIMIT(2)= 10
set the MOVEREG travel distance limit on axis 2 to 10 units

REGLIMIT=0,,10
disables the REGLIMIT for axis 1 and axis 3 has MOVEREG travel
distance limit of 10 units.

REGLIMIT(1,3)=0,10
disables the REGLIMIT for axis 1 and axis 3 has MOVEREG limit of
10 units.

Programming Commands 159

REM or ‘ Miscellaneous Command

ACTION: Allows source code comments to be inserted in the program.

PROGRAM SYNTAX: REM or '

REMARKS: All text to the right of REM or ' to the end of the line is not considered
part of the command during execution.

EXAMPLES: ACCEL(1)=10.2 REM axis 1 acceleration=10.2 units
DECEL(1)=5.4 ' axis 1 deceleration=5.4 units

RESET Miscellaneous Command

ACTION: Resets the controller system.

PROGRAM SYNTAX: RESET

REMARKS: This command causes the system to halt, and then restart as though
power had been recycled. This command can be used to start a differ-
ent project , as selected by the SEL1 SEL2 and SEL4 inputs on the
DSP Controller card.

A hardware input reset can also be configured in the I/O folder of the
Configuration and setup.

EXAMPLES: RESET

RESTORE Miscellaneous Command

ACTION: Allows DATA statements to be read again.

PROGRAM SYNTAX: RESTORE
RESTORE(number)

REMARKS: Sets the pointer for DATA statements to the start (0) or to a designated
position (number).

EXAMPLES: RESTORE(10)
Sets the pointer for DATA statements to position 10, the first variable in
the next READ statement will be loaded with element 10

DATA 1,2,3,4
READ a, b, c, d 'reads next four values from the data statement into

variables a, b, c and d
RESTORE

160 Programming Commands

RIGHT$ String Manipulation

ACTION: Returns the rightmost characters of a string.

PROGRAM SYNTAX: string1$=RIGHT$(string2$,n)

REMARKS: The n is the number of rightmost characters to return. If n is greater than
the length of the string2$ then the entire string is returned to string1$.

EXAMPLES: b$=“Hello World”
a$=RIGHT$(b$,4) 'sets a$=“orld”.

SETCOM Miscellaneous Command

ACTION: Sets the baud rate and data format for Auxiliary serial port.

PROGRAM SYNTAX: SETCOM#n, baud, parity, data, stop

REMARKS: The variable "n" signifies the port number. Presently, only the second
serial port (the Auxiliary Port) is supported, therefore only a value of 2
is valid for "n".

The baud rate can be any value up to 38,400.
parity setting:
 0 no parity
 1 odd parity
 2 even parity
data
 7 7 bit data length
 8 8 bit data length
stop
 1 1 stop bit
 2 2 stop bits

If the inputs are outside the above setting the command will be ignored
and an error warning will be issued.

EXAMPLES: SETCOM#2,9600,0,8,1
Sets Auxiliary port to 9600 baud, no parity, 8 bit data and 1 stop bit.

Programming Commands 161

SHIFT Miscellaneous Command

ACTION: Shifts the elements of a single-dimension numeric array up or down.

PROGRAM SYNTAX: SHIFT (array, n)

REMARKS: n is the number of shifts to perform on the array. If n is a positive num-
ber, the array is shifted up and the top elements are discarded. If n is a
negative number the array is shifted down and the bottom elements are
discarded. Zeroes are shifted into the array.

EXAMPLES: This example illustrates the effect of shift commands on a 4-element ar-
ray "x".

x(0) x(1) x(2) x(3)
 1 2 3 4 x before shift command
 0 1 2 3 x after SHIFT(x,1)
 2 3 4 0 x after SHIFT(x, -1)

SIGN Mathematics Function

ACTION: Returns the sign of an expression.

PROGRAM SYNTAX: SIGN(expression) - used in an expression

REMARKS: If the expression is positive, the SIGN function returns 1.

If the expression is zero, the SIGN function returns 0.

If the expression is negative, the SIGN function returns -1.

EXAMPLES: SIGN(-10.0) ‘ evaluates to -1
SIGN(10) 'evaluates to 1
SIGN(0) ‘ evaluates to a 0

SIN Mathematics Function

ACTION: Returns the sine of the angle x, where x is in radians.

PROGRAM SYNTAX: SIN(x) - used in an expression

REMARKS: To convert values from degrees to radians, multiply the angle (in de-
grees) times Pi/180 (or .017453) where Pi= 3.141593.

To convert a radian value to degrees, multiply it by 180/Pi (or
57.295779).

EXAMPLES: conv = 3.141593 / 180'converts degrees to radians
A = SIN (conv * 45)’ A = sin (45 degrees) or .7071

162 Programming Commands

Programming Commands 163

SOFTLIMIT Over Travel Limit

ACTION: Enables/disables or returns the SOFTLIMIT enable state for the se-
lected axis.

PROGRAM SYNTAX: SOFTLIMIT(axis)=expression
SOFTLIMIT=expression1, ... , expression8
SOFTLIMIT(axis, ... , axis)=expression, ... ,expression
SOFTLIMIT(axis) - used in an expression

REMARKS: axis selects the designated axis (1-8).

The expression sets the SOFTLIMIT state of the designated axes. A
"0" disables the SOFTLIMPOS and SOFTLIMNEG soft limits of the
designated axis. Any other value will enable the SOFTLIMPOS and
SOFTLIMNEG soft limits of the designated axis.

EXAMPLES: SOFTLIMIT(2)=0
Disables the SOFTLIMPOS and SOFTLIMNEG soft limits of axis 2.

SOFTLIMIT=1,,0
Enables the SOFTLIMPOS and SOFTLIMNEG soft limits of axis 1
and disables the axis 3 soft limits.

SOFTLIMIT(1,3)=1,0
Enables the SOFTLIMPOS and SOFTLIMNEG soft limits of axis 1
and disables the axis 3 soft limits.

164 Programming Commands

SOFTLIMNEG Over Travel Limit

ACTION: Programmable software limit switch for motion in the negative direc-
tion. Sets or returns the absolute negative travel position value for the
specified axis.

PROGRAM SYNTAX: SOFTLIMNEG(axis)=expression
SOFTLIMNEG=expression1, ... ,expression8
SOFTLIMNEG(axis, ... , axis)=expression, ... , expression
SOFTLIMNEG(axis) - used in an expression

REMARKS: The "axis" specifies the number of the axis (1-8).

The expression sets the absolute value for the negative direction soft
limit in units.

If during motion the absolute position becomes less than its software
limit value, the motion is aborted.

Software travel limits are used to stop the motor when the commanded
position exceeds the programmed software travel limit. There are two
software travel limits, one for + and one for - motor rotation. The +
software travel limit is tested when the motor is rotating in the + direc-
tion. The - software travel limit is tested when the motor is rotating in
the - direction.

The software travel limits are checked if they are enabled and a motion
other than MOVEHOME is occurring.

The software travel limits power up disabled.

When the travel limit is exceeded, the motor is decelerated to a stop
using the Max. ACCEL value, and an error code is set.

EXAMPLES: SOFTLIMNEG(2) =-4
Sets the negative direction soft limit of axis 2 at -4 units.

SOFTLIMNEG=-5,,-6
Sets the negative direction soft limit of axis 1 at -5 units and axis 3 is set
to -6 units.

SOFTLIMNEG(1,3)=-5,-6
Sets the negative direction soft limit of axis 1 at -5 units and axis 3 is set
to -6 units.

Programming Commands 165

SOFTLIMPOS Over Travel Limit

ACTION: Programmable software limit switch for motion in the positive direc-
tion. Sets or returns the absolute positive travel position value for the
specified axis.

PROGRAM SYNTAX: SOFTLIMPOS(axis)=expression
SOFTLIMPOS=expression1, ... ,expression8
SOFTLIMPOS(axis, ... , axis)=expression, ... , expression
SOFTLIMPOS(axis) - used in an expression

REMARKS: The "axis" specifies the number of the axis (1-8).

The expression sets the value for the positive direction soft limit in units.

If during motion the absolute position becomes greater than its limit, the
motion is aborted.

Software travel limits are used to stop the motor when the commanded
position exceeds the programmed software travel limit. There are two
software travel limits, one for + and one for - motor rotation. The +
software travel limit is tested when the motor is rotating in the + direc-
tion. The - software travel limit is tested when the motor is rotating in
the - direction.

The software travel limits are checked if they are enabled and a motion
other than MOVEHOME is occurring.

The software travel limits power up disabled.

When the travel limit is exceeded, the motor is decelerated to a stop
using the Max. ACCEL value, and an error code is set.

EXAMPLES: SOFTLIMPOS(2) =4
Sets the positive direction soft limit of axis 2 at +4 units.

SOFTLIMPOS=5,,6
Sets the positive direction soft limit of axis 1 at +5 units and axis 3 is set
to +6 units.

SOFTLIMPOS(1,3)=-5,-6
Sets the positive direction soft limit of axis 1 at +5 units and axis 3 is set
to +6 units.

166 Programming Commands

SPEED Trajectory Parameter

ACTION: Sets and returns the target velocity of the motor.

PROGRAM SYNTAX: SPEED(AXIS)=expression
SPEED=expression1, ... , expression8
SPEED(axis, ... ,axis)=expression, ... , expression
SPEED(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression sets the speed of the designated axis in units/second and
must be a positive value.

The velocity of an axis can be changed during motion by issuing a new
value for the SPEED command. The velocity change will use the
ACCEL or DECEL rate change value. A SPEED of 0 will stop the
motor but the cycle will remain busy. To resume the cycle simply
change the SPEED value from 0 and the cycle will resume motion.

EXAMPLES: SPEED(2)=10
Sets the speed of axis 2 to 10 units/second.

SPEED=0,,5
Sets the speed of axis 1 to 0 units/second and axis 3 to 5 units/second.

SPEED(1,3)=0,5
Sets the speed of axis 1 to 0 units/second and axis 3 to 5 units/second.

ACCEL

DECEL
SPEED

BUSY=1BUSY=0

JOG

SPEED Change During Motion

Note: The underlined text is the command required to

generate the velocity profile. The remaining text are related

commands.

SPEED
ACCEL

SPEED

Programming Commands 167

SQRT Mathematics Function

ACTION: Returns the square root of the expression.

PROGRAM SYNTAX: SQRT(expression) - used in an expression

REMARKS: The expression must greater than or equal to zero, or an warning will oc-
cur.

EXAMPLES: x = SQRT(16)
Sets variable x equal to a value of 4.

STOP Motion Parameter

ACTION: Stops any motion with a control stop, uses the DECEL value for decele r-
ating to a stop.

PROGRAM SYNTAX: STOP(axis)
STOP=expression1 , ... , expression8
STOP(axis, ... ,axis)

note: JOGSTOP can be substituted for STOP.

REMARKS: The axis specifies the number of the axis (1-8).

Any value for the expression will stop the designated axis.

This command will stop any motion using the DECEL value for normal
motion and FOLDCCDIST for following motion.

EXAMPLES: STOP(2)
requests following axis 2 to stop.

STOP=1,,1
requests following axis 1 and axis 3 to stop.

STOP(1,3)
requests following axis 1 and axis 3 to stop.

STOPERR Motion Parameter
ACTION: Sets or returns the maximum position error allowed when motion is

stopped, referred to herein as "position error band."

COMMAND SYNTAX: STOPERR(axis) =expression
STOPERR=expression1, … , expression8
STOPERR(axis, … , axis)=expression, … , expression
STOPERR(axis) - Used in an expression

Note: ENCBAND can be substituted for STOPERR.

REMARKS: STOPERR is a stepper drive and servo drive parameter.

168 Programming Commands

STOPERR is defined in detail in both the Servo Drive and Stepper Drive
Sections of this manual.

Programming Commands 169

STR$ String Manipulation

ACTION: Returns a string representation of a numeric expression.

PROGRAM SYNTAX: String1$=STR$(numeric expression)

REMARKS: The STR$ command is the complement of a VAL command.

EXAMPLES: ACCEL(2)=100
x=50
y=2.1
a$=STR$(ACCEL(2)) ‘sets a$=“100”
b$=STR$(x) ‘sets b$=“50”
c$=STR$(y) ‘sets c$=“2.1”

STRING$ String Manipulation

ACTION: Returns a string of characters.

PROGRAM SYNTAX: String1$=STRING$(number, code)

REMARKS: The number indicates the length of the string to return.

The code is the ASCII code of the character to use to build the string.

EXAMPLES: a$ = STRING$(10,63) ‘sets a$=“??????????”

TAN Mathematics Function

ACTION: Returns the tangent of the angle x, where x is in radians.

PROGRAM SYNTAX: TAN(x) - used in an expression

REMARKS: To convert values from degrees to radians, multiply the angle (in de-
grees) times Pi/180 (or .017453) where Pi= 3.141593.

To convert a radian value to degrees, multiply it by 180/Pi (or
57.295779).

EXAMPLES: PI = 3.141593
'assign the constant "PI"
x = TAN (PI/4)
'calculate tangent of 45 degrees, sets x equal to the value 1.0, which is
the tangent of 45 degrees

170 Programming Commands

TIMER Time Function

ACTION: Sets or read the Timer value in seconds.

PROGRAM SYNTAX: TIMER - used in an expression
TIMER=expression
TIMER1 - used in an expression
TIMER1=expression

REMARKS: The Timer should be set to a value at the beginning of the task in which
it is used.

The Timer is incremented every millisecond.

EXAMPLES: TIMER=0 ‘set the timer to zero
DO
 statements
WHILE TIMER < 1.0 ‘ do the loop for 1 second

TIMER2 Time Function

ACTION: Sets or read the Timer2 value in seconds.

PROGRAM SYNTAX: TIMER2 - used in an expression
TIMER2=expression

REMARKS: The Timer should be set to a value at the beginning of the task in which
it is used.

The Timer is incremented every millisecond.

EXAMPLES: TIMER2=0 ‘set the timer to zero
DO
 statements
WHILE TIMER2 < 1.0 ‘ do the loop for 1 second

Programming Commands 171

TOLERANCE Miscellaneous Command

ACTION: Sets a tolerance on a numeric comparison.

SYNTAX: TOLERANCE = expression
TOLERANCE - used in an expression

REMARKS: Sets a numeric tolerance for all comparison operators (<, <=, = >=, >,
<>). If the comparison is within the bounds of a ± tolerance the com-
parison is true.

EXAMPLES: TOLERANCE=.001
IF x <= 2 THEN ‘ if x <= +1.999 then comparison is true
 statements
ELSE IF x >= 4 THEN ‘ if x >= +3.999 then comparison is true
 statements
ELSE IF x = 3 THEN ‘ if x is 2.999 to 3.001 the comparison is

true
 statements
ELSE IF x <>3 THEN ‘ if x < 2.999 or >3.001 the comparison is

true
 statements
END IF

UCASE$ String Manipulation

ACTION: Returns a string with all letters converted to upper case.

PROGRAM SYNTAX: string1$=ucase$(string2$)

REMARKS: String2$ is copied and all lower-case letters are converted to upper
case.

This command is useful for making the INSTR command case insensi-
tive.

EXAMPLES: a$=“hello”
b$=UCASE(a$) ‘ b$=“HELLO”

172 Programming Commands

VAL String Manipulation

ACTION: Returns the floating point value of the designated string variable.

PROGRAM SYNTAX: VAL(n$) - used in an expression

REMARKS: n$ is the designated string variable.

The string variable format for conversion is: [sign]digits[.digits[e or
E[sign]integer]

The sign and scientific notions are optional.

Only numeric values are returned. The first character that cannot be
part of the number terminates the string. If no digits have been proc-
essed, a value of zero is returned.

EXAMPLES: a$=“134 Main St”
b$=“10.55 dollars”
x=VAL(a$) ‘ sets x=134
y=VAL(b$) ‘ sets y=10.55

VELOCITY Trajectory Parameter

ACTION: Sets or returns the path speed to be used for coordinated motion.

PROGRAM SYNTAX: VELOCITY = expression
VELOCITY - used in an expression

REMARKS: This velocity is used in the LINE, ARC, and PATH commands.

EXAMPLES: VELOCITY=10.1
Sets the coordinated velocity for a LINE or ARC command to 10.1
units/sec

k1 = VELOCITY
Sets the variable k1 equal to the value of VELOCITY used in the pro-
gram

WAIT Time Function

ACTION: Waits for the period of time (expressed in seconds) to expire before
continuing.

PROGRAM SYNTAX: WAIT = expression

REMARKS: The expression defines the wait delay in seconds.

Program execution is suspended until the desired time has elapsed.

EXAMPLES: WAIT = 1.1

Programming Commands 173

Wait 1.1 seconds and then continue

174 Programming Commands

WAITDONE Motion Parameter

ACTION: Waits for motion to be done for the specified axes. "Done" means mo-
tion is complete.

PROGRAM SYNTAX: WAITDONE(axis)
WAITDONE=expession1, ... , expression8
WAITDONE(axis, ,axis)

REMARKS: The "axis" specifies the number of the axis (1-8).

The expression specifies the axis to wait for motion complete.

An alternate way to accomplish the WAITDONE function is as follows:
DO: LOOP WHILE BUSY(1)

‘ Waits until axis 1 motion is completed.

EXAMPLES: WAITDONE(3)
‘ Waits for axis 3 motion to be complete before continuing program
execution

WAITDONE (1,2,4,5,6,7,8)
‘ Waits for axis 1, 2, 4, 5, 6, 7, and 8 motion to be complete before
continuing program execution.

Programming Commands 175

WARNING Miscellaneous Command

ACTION: Returns the warning number of the task.

PROGRAM SYNTAX: WARNING - used in expression

REMARKS: A non-zero indicates no warnings have been encountered in the task.

The predefined Warning codes are
 11 Command axis is not in task group.
 12 Analog I/O selected is out of range.
 13 BCD selected is out of range.
 14 Expansion Input selected is out of range.
 15 Expansion Output selected is out of range.
 16 Digital Input selected is out of range.
 17 Digital Output selected is out of range.
 18 Log command argument is zero or negative
 19 SQRT command argument is negative.
 20 NVR element is out of range.
 21 READ command is out of data arguments.
 22 MAXSPD command is out of range.
 23 Motion occurring at program end.
 24 RS232 Configuration Error.
 25 Servo Parameter is out of range.

EXAMPLES: IF WARNING > 0 then ' warning occurred?
Warn = Warning ' set Warn to WARNING number

END IF

WNDGS Motion Parameter

ACTION: Enables or disable a motor drive.

PROGRAM SYNTAX: WNDGS(axis)=expression
WNDGS=expression1, ... ,expression8
WNDGS(axis, ... , axis)=expression, ... , expression
WNDGS(axis) - used in an expression

REMARKS: This command is defined in detail in both Section 9 Servo Drive and
Section 10 Stepper Drive.

176 Programming Commands

7.5 Host Commands Grouped By Functions

I/O Function Page
ANALOG Sets or returns a numeric value representation on the analog port. 174
BCD Returns the BCD switches value connected to an Expansion I/O port. 175
EXIN Returns the state of the specified expansion I/O inputs. 187
EXOUT Sets or returns the state of the specified expansion I/O outputs. 188
IN Returns the state’s of the specified digital I/O inputs. 191
OUT Sets or returns the condition of a specified digital output. 198

Miscellaneous Command
“<n” This command activates/deactivates a controller from accepting

commands from a host computer. 172
“?” Request the space remaining in the Host Receiver Buffer. 172
AXISBRD Sets or returns the number of axis cards in the system. 174
AXSTAT Returns the Axis Drive Type, Units/Rev, Drive resolution and Task

assigned to an axis. 175
“BACKSPACE” Deletes one character from the host receiver buffer. 175
CAPPOS Returns the last captured position of an axis from a MOVEHOME,

MOVEREG or CAPTURE cycle. 176
CAPTURE Sets the position capture trigger condition or returns the capture status. 177
“CTRL A” Stops all motion and all tasks. 177
“CTRL C” Stops all motion and all tasks. 177
DELTACAPPOS Returns the difference between the current captured position and the

previously captured position. 178
DIR List the names of projects and tasks stored in non-vola tile memory. 179
ERASE Erases a specific project or all projects stored in non-volatile memory. 183
ERR Returns the controller error/warning number for a task. 183
ERRAXIS Returns the controller axis number which created the error/warning. 184
ERRM Returns the error/warning messages for all tasks. 185
“ESC” Allows Host commands to be executed during program execution. 186
FILTER Sets or returns the filter value for the defined analog input. 188
FREE Transfer the free space available in non-volatile memory. 189
FREEMEM Returns the amount of free memory for program execution allocation. 190
LOAD Loads the designated project from non-volatile memory into the

operating memory. 195
NVR The NVR array is used for non-volatile variable storage. 197
NVRBIT Stores or returns the bit value in NVR memory. 198
NVRBYTE Stores or returns the byte value in NVR memory. 198
RESET Resets the system. 201
REVISION Returns the current revision level of the controller’s operating system. 201
RUN Runs the loaded project. 202
SNVR Sets the default value for the designated NVR elements. 202
UNIT Returns the pulses/unit value of an axis. 205
WARNING Returns the warning number of a task. 206
“XON XOFF” Protocol for controlling data flow between the controller and host. 207

Motion Parameter
ARC Initiates a coordinated motion to move in an arc. 174
BUSY Returns the motion status of an axis. 176
DRVREADY Enables or disables the checking of the drive (READY) signal on the

axis card. 179
ENCBAND Sets or returns the maximum position error allowed at standstill. 180

Programming Commands 177

178 Programming Commands

Motion Parameter continued Page
ENCFOL Sets or returns the maximum position error allowed during motion. 181
ENCMODE Sets or returns the operating mode of a closed loop stepper axis. 181
ENCRES Returns the encoder line count of an axis. 182
EVENT1 Returns the state of the trigger input labeled EVNT1 or sets the trigger

polarity and enable , which are used in a MOVEHOME, MOVEREG or
FOLMOVREG cycle. 186

EVENT2 Returns the state of the trigger input labeled EVNT2 or sets the trigger
polarity and enable , which are used in a MOVEHOME, MOVEREG or
FOLMOVREG cycle. 187

FOLERR Sets or returns the maximum position error allowed during motion. 189
JOG Runs the motor continuously in the specified direction. 192
JOGSTART Runs the motor continuously in the specified direction. 192
LINE Initiates a coordinated linear move involving up to 8 axes. 195
MOVE Initiates a non-coordinated move. 196
MOVEHOME Runs the motor until the home input is activated, captures and records

the position of the switch activation as home. 197
MOVEREG Runs the motor until the mark registration input is activated; then moves

the motor the desired registration distance. 197
POSMODE Sets or returns the position mode of an axis. 200
STOP Stops any motion with a control stop. 204
STOPERR Sets or returns the maximum position error allowed at standstill. 205
WNDGS Enables or disables a motor drive. 207

Over Travel Limit
HARDLIMNEG Returns the - Limit hardware state of an axis. 190
HARDLIMPOS Returns the + Limit hardware state of an axis. 190
REGLIMIT Sets or returns the distance to be moved during a MOVEREG cycle,

while awaiting a trigger. 201
SOFTLIMNEG Sets or return the - direction software travel limit. 203
SOFTLIMPOS Sets or return the + direction software travel limit. 203

Servo Parameter
INTLIM Sets the integral limit for a servo axis. 191
KAFF Sets or returns the acceleration feed forward gain of a servo axis. 192
KD Sets or returns the derivative gain of a servo axis. 193
KI Sets or returns the integral gain of a servo axis. 193
KP Sets or returns the proportional gain of a servo axis. 194
KVFF Sets or returns the velocity feed forward gain of a servo axis. 194
OUTLIMIT Sets or returns the servo axis command limit voltage. 199

Trajectory Parameter
ABSPOS Sets or returns the commanded absolute position of an axis. 173
ACCEL Sets or returns the acceleration value of the motor. 173
DECEL Sets or returns the deceleration value of an axis. 178
ENCERR Returns the positional error of the designated axis. 180
ENCPOS Returns the encoder position of an axis. 182
ENCSPD Returns the current encoder speed in Units/second. 182
LOWSPD Sets or returns the Low Speed (starting speed) value of a stepping motor

axis. 195
MAXSPD Sets or returns the maximum allowed speed of an axis. 196
POSERR Returns the positional error of the designated axis. 199
PROFILE Determines how the motor speed changes. 200

Programming Commands 179

SPEED Sets or returns the target velocity of an axis. 204
VELOCITY Sets or returns the path speed to be used for coordinated motion. 206

180 Programming Commands

7.6 Host Command Summary (alphabetical list)
Page

“<n” This command activates/deactivates a controller from accepting
commands from a host computer. 172

“?” Request the space remaining in the Host Receiver Buffer. 172

A
ABSPOS Sets or returns the commanded absolute position of an axis. 173
ACCEL Sets or returns the acceleration value of the motor. 173
ANALOG Sets or returns a numeric value representation on the analog port. 174
ARC Initiates a coordinated motion to move in an arc. 174
AXISBRD Sets or returns the number of axis cards in the system. 174
AXSTAT Returns the Axis Drive Type, Units/Rev, Drive resolution and Task

assigned to an axis. 175

B
“BACKSPACE” Deletes one character from the host receiver buffer. 175
BCD Returns the BCD switches value connected to an Expansion I/O port. 175
BUSY Returns the motion status of an axis. 176

C
CAPPOS Returns the last captured position of an axis from a MOVEHOME,

MOVEREG or CAPTURE cycle. 176
CAPTURE Sets the position capture trigger condition or returns the position

capture status. 177
“CTRL A” Stops all motion and all tasks. 177
“CTRL C” Stops all motion and all tasks. 177

D
DECEL Sets or returns the deceleration value of an axis. 178
DELTACAPPOS Returns the difference between the current captured position and the

previously captured position. 178
DIR List the names of projects and tasks stored in non-volatile memory. 179
DRVREADY Enables or disables the checking of the drive (READY) signal on the

axis card. 179

E
ENCBAND Sets or returns the maximum position error allowed when motion is

stopped. 180
ENCERR Returns the positional error of the designated axis. 180
ENCFOL Sets or returns the maximum position error allowed during motion. 181
ENCMODE Sets or returns the operating mode of a closed loop stepper axis. 181
ENCPOS Returns the encoder position of an axis. 182
ENCRES Returns the encoder line count of an axis. 182
ENCSPD Returns the current encoder speed in Units/second. 182
ERASE Erases a specific project or all projects stored in non-volatile Memory. 183
ERR Returns the controller error/warning number for a task. 183
ERRAXIS Returns the controller axis number which created the error/warning

for a task. 184
ERRM Returns the error/warning message’s for all tasks. 185
“ESC” Allows Host commands to be executed during program execution. 186
EVENT1 Returns the state of the trigger input labeled EVNT1 or sets the trigger

polarity and enable , which are used in a MOVEHOME, MOVEREG or

Programming Commands 181

FOLMOVREG cycle. 186

182 Programming Commands

Page
EVENT2 Returns the state of the trigger input labeled EVNT2 or sets the trigger

polarity and enable , which are used in a MOVEHOME, MOVEREG or
FOLMOVREG cycle. 187

EXIN Returns the state of the specified expansion I/O inputs. 187
EXOUT Sets or returns the state of the specified expansion I/O outputs. 188

F
FILTER Sets or returns the filter value for the defined analog input. 188
FOLERR Sets or returns the maximum position error allowed during motion. 189
FREE Transfers the free space available in non-volatile memory. 189
FREEMEM Returns the amount of free memory for program execution allocation. 190

H
HARDLIMNEG Returns the - Limit hardware state of an axis. 190
HARDLIMPOS Returns the + Limit hardware state of an axis. 190

I
IN Returns the state’s of the specified digital I/O inputs. 191
INTLIM Sets the integral limit for a servo axis. 191

J
JOG Runs the motor continuously in the specified direction. 192
JOGSTART Runs the motor continuously in the specified direction. 192

K
KAFF Sets or returns the acceleration feed forward gain of a servo axis. 192
KD Sets or returns the derivative gain of a servo axis. 193
KI Sets or returns the integral gain of a servo axis. 193
KP Sets or returns the proportional gain of a servo axis. 194
KVFF Sets or returns the velocity feed forward gain of a servo axis. 194

L
LINE Initiates a coordinated linear move involving up to 8 axes. 195
LOAD Loads the designated project from non-volatile memory into

operating memory. 195
LOWSPD Sets or returns the Low Speed (starting speed) value of a

stepping motor axis. 195

M
MAXSPD Sets or returns the maximum allowed speed of an axis. 196
MOVE Initiates a non-coordinated move. 196
MOVEHOME Runs the motor until the home input is activated, captures and records

the position of the switch activation as home. 197
MOVEREG Runs the motor until the mark registration input is activated; then

moves the motor the desired registration distance. 197

N
NVR The NVR array is used for non-volatile variable storage. 197
NVRBIT Stores or returns the bit value in NVR memory. 198
NVRBYTE Stores or returns the byte value in NVR memory. 198

O
OUT Sets or returns the condition of a specified digital output. 198

Programming Commands 183

OUTLIMIT Sets or returns the servo axis command limit voltage. 199

P Page
POSERR Returns the positional error of the designated axis. 199
POSMODE Sets or returns the position mode of an axis. 200
PROFILE Determines how the motor speed changes. 200

R
REGLIMIT Sets or returns the distance to be moved during a MOVEREG cycle,

while awaiting a trigger. 201
RESET Resets the system. 201
REVISION Returns the current revision level of the controller’s operating system. 201
RUN Runs the loaded project. 202

S
SNVR Sets the default value for the designated NVR elements. 202
SOFTLIMNEG Sets or return the - direction software travel limit. 203
SOFTLIMPOS Sets or return the + direction software travel limit. 203
SPEED Sets or returns the target velocity of an axis. 204
STOP Stops any motion with a control stop. 204
STOPERR Sets or returns the maximum position error allowed at standstill. 205

U
UNIT Returns the pulses/unit value of an axis. 205

V
VELOCITY Sets or returns the path speed to be used for coordinated motion. 206

W
WARNING Returns the warning number of a task. 206
WNDGS Enables or disables a motor drive. 207

X
“XON XOFF” Protocol for controlling data flow between the controller and the host. 207

184 Programming Commands

7.7 Host Commands - Alphabetical Listing

" <n " Miscellaneous Command

ACTION: This command activates/deactivates a controller from accepting com-

mands from a host computer.

COMMAND SYNTAX: <n or <n cr
<n?
<0 or <0 cr

REMARKS: In order to daisy chain multiple controllers to communicate with a single
host, each controller must be given a unique identification number. The
Unit ID # selector switch defines the identification number of the con-
trol. This switch is interrogated on power turn on only. The factory set-
ting is device 1.

Each Controller must be given a unique identification (1-9)
before the system is wired.

In order to accept commands from a host device, a Control must be set
to the active mode. To do this, the host must send the device attention
command (<) followed by the device identification followed by a car-
riage return, line feed or non-numeric character. If n matches the con-
troller id number, that unit becomes the active controller.

If the host requires an acknowledgement of the active controller the <n?
command is transmitted by the host and if the device exists it will re-
spond with its id number.

If all controllers are to be placed in the listen mode the host issues a
<0cr command. No data can be transferred from the Control to the
host in this mode. However, all other commands will be honored by the
controllers.

 " ? " Miscellaneous Command

ACTION: The ? key (or ? character code, ASCII 63, sent via a serial port) re-

quests the space remaining in the Host Receiver buffer.

COMMAND SYNTAX: ?

REMARKS: The controller receiver buffer is 255 characters long.

Programming Commands 185

ABSPOS Trajectory Parameter

ACTION: Sets or returns the commanded absolute position of an axis.

COMMAND SYNTAX: ABSPOS(axis)=number cr
ABSPOS=number1, . . . , number8 cr
ABSPOS cr
ABSPOS(axis) cr

REMARKS: See Programming Command ABSPOS.

EXAMPLES: ABSPOS(3)=2
Sets the absolute position of axis 3 to 2 units.

ABSPOS=1,,3
sets the absolute position of axis 1 to 1 unit, axis 2 no change and axis 3
to 3 units.

ABSPOS(3)
Returns the current absolute position of axis 3.

ACCEL Trajectory Parameter

ACTION: Sets or returns the acceleration value of an axis.

COMMAND SYNTAX: ACCEL(axis)=number cr
ACCEL=number1, . . . , number8 cr
ACCEL(axis) cr
ACCEL cr

REMARKS: See Programming Command ACCEL.

EXAMPLES: ACCEL(3)=200
sets the acceleration of axis 3 to 200 units/sec2.

ACCEL=100,,200
sets the acceleration rate of axis 1 to 100 units/sec2, axis 2 no change
and axis 3 to 200 units/sec2.

ACCEL(3)
Returns the current acceleration rate for axis 3

186 Programming Commands

ANALOG I/O Function

ACTION: Sets or returns a numeric value representing the voltage on the analog
port.

PROGRAM SYNTAX: ANALOG(b0n) cr
ANALOG(b0n)=number cr

REMARKS: See Programming Command ANALOG

EXAMPLES: ANALOG(102)=2.5
Sets the voltage on board 1 output 2 to 2.5 volts

ANALOG(102)
Return the current voltage on board 1 input 2.

ARC Motion Parameter

ACTION: Initiates a coordinated motion to move in an arc.

PROGRAM SYNTAX: ARC = x, y, xcenter, ycenter, ±angle

REMARKS: See Programming Command ARC

EXAMPLES: ARC=1,2,3,0,+180
‘ Initiates a 180° clockwise arc rotation, using axis 1 and 2, with a 3 unit
radius.

AXISBRD Miscellaneous Command

ACTION: Sets or returns the number of axis cards in the system.

COMMAND SYNTAX: AXISBRD cr
AXISBRD = number cr

REMARKS: The AXISBRD command returns the current value for the number of
axis cards.

The AXISBRD=number command is only honored if the project directory
is empty, DIR command return no project names. The number (1-4) sets
the number of axis cards in the system.

This value is altered when a project is loaded into active ram and reflects
the number of axis defined in a project.

The Power-on default with no projects is 1.

The Current value determines the maximum number of axes to be re-
turned during a Host command.

EXAMPLES: AXISBRD
Returns the current value of axis cards.

AXISBRD=4

Programming Commands 187

Sets the current value of axis cards to 4 (8 axis).

AXSTAT Miscellaneous Command

ACTION: Returns the Axis Drive type, Units/Rev, Drive resolution and Task as-
signed to an axis.

COMMAND SYNTAX: AXSTAT(axis) cr

REMARKS: The axis specifies the number of an axis (1-8)

The returned line for the Drive Type is one of the following:
 CL STEPPER
 STEPPER
 SERVO

The returned line for the Units/Rev is:
 UNITS/REV = value

The returned line for Drive resolution (Stepper axis) is:
 PULSES/REV = value

The returned line for Drive Resolution (Servo axis) is:
 ENC LINES = value

The returned line for the Task assigned to an axis is
 TASK n
 Where n is the task number.

EXAMPLES: AXSTAT(1)
Returns the axis status for axis 1.

AXSTAT(2)
Returns the axis status for axis 2.

"BACKSPACE" Miscellaneous Command

ACTION: The Backspace key or ASCII code 08 can be used to delete one char-
acter from the host receiver buffer.

COMMAND SYNTAX: BACKSPACE (ASCII 08)

BCD I/O Function

ACTION: Returns the number set on a BCD switch bank connected to an expan-
sion I/O board.

COMMAND SYNTAX: BCD(b0n) cr

REMARKS: See Programming Command BCD

188 Programming Commands

EXAMPLES: BCD(101)
Returns the setting of BCD switch bank 1 connected to expansion
board 1.

Programming Commands 189

BUSY Motion Parameter

ACTION: Returns the motion status of the selected axis. An axis is "busy" if mo-

tion is occurring.

COMMAND SYNTAX: BUSY(axis) cr
BUSY cr

REMARKS: See Programming Command BUSY

EXAMPLES: BUSY(1)
Returns the motion status of axis 1.

BUSY
Return the motion status for all assigned axes.

CAPPOS Miscellaneous Command

ACTION: Returns the last captured position of an axis from a
MOVEHOME, MOVEREG or CAPTURE cycle.

COMMAND SYNTAX: CAPPOS(axis) cr
CAPPOS cr

REMARKS: See Programming Command CAPPOS.

CAPPOS(axis) returns the last captured position for the specified axis.

CAPPOS returns the last captured position for all axes.

EXAMPLES: CAPPOS(1) cr ‘Returns the last captured position for axis
1.

CAPPOS cr ‘Returns the last captured position for all axes.

190 Programming Commands

CAPTURE Miscellaneous Command

ACTION: Sets the position capture trigger condition or returns the position capture
status.

COMMAND SYNTAX: CAPTURE(axis)= number cr
CAPTURE=number1, … , number8 cr
CAPTURE(axis) cr
CAPTURE cr

REMARKS: See Programming Command CAPTURE.

EXAMPLES: CAPTURE(1) = 0 cr
Arms the trigger to capture the position of axis 1 when EVNT 1 becomes
active.

CAPTURE = 0,,1 cr
Arms the trigger to capture the position of axis 1 when EVNT 1 becomes
active and arms the trigger to capture the position of axis 3 when EVNT
1 becomes inactive.

CAPTURE(2) cr
Returns a 0 or a 1 to indicate whether or not a capture has occurred on
axis 2.

CAPTURE cr
Returns a 0 or a 1 to indicate whether or not a capture has occurred on
all axes.

"CTRL A" Miscellaneous Command

ACTION: Stops all motion and all tasks.

COMMAND SYNTAX: Simultaneously press the keyboard keys marked "A" and the control key
"CTRL".

REMARKS: "CTRL A" will stop execution of all tasks presently running on
the controller; all motion ceases immediately.

If the axis is a servo axis "CTRL A" does not turn off the servo output
voltage.

"CTRL C" Miscellaneous Command

ACTION: Stops all motion and all tasks.

COMMAND SYNTAX: Simultaneously press the keyboard keys marked "C" and the control key
"CTRL".

REMARKS: "CTRL C" will stop execution of all tasks presently running on the con-
troller; all motion ceases immediately.

If the axis is a servo axis "CTRL C" turns off the servo output voltage.
To turn the servo output back on use the "WNDGS(axis) = 1 " command.

Programming Commands 191

DECEL Trajectory Parameter

ACTION: Sets or returns the deceleration value of the selected axis.

COMMAND SYNTAX: DECEL(axis)=number cr
DECEL=number1, number2, . . . , number8 cr
DECEL(axis) cr
DECEL cr

REMARKS: See Programming Command DECEL.

EXAMPLE: DECEL(2)=50
Sets the deceleration rate for axis 2 to 50 units/sec2.

DECEL=50,,75
Sets the deceleration rate for axis 1 to 50 units/sec2 , axis 2 is unchanged
and axis 3 to 75 units/sec2.

DECEL(2)
Returns the deceleration rate for axis 2.

DECEL
Returns the deceleration rate for all assigned axes.

DELTACAPPOS Miscellaneous Command

ACTION: Returns the difference between the current captured position and the

previously captured position.

COMMAND SYNTAX: DELTACAPPOS(axis) cr
DELTACAPPOS cr

REMARKS: See Programming Command DELTACAPPOS.

EXAMPLES: DELTACAPPOS(3) cr
Returns the difference between the current captured position and the
previously captured position for axis 3.

DELTACAPPOS cr
Returns the difference between the current captured position and the
previously captured position for all axes.

192 Programming Commands

DIR Miscellaneous Command

ACTION: List the names of projects and tasks stored in non-volatile memory.

COMMAND SYNTAX: DIR cr

REMARKS: The transfer format is:
n*s Project name checksum
 Task name
 Task name
 etc
n*s Project name checksum
 Task name
 Task name
 etc
free space = nnnn

n is the project number (0 to 6).

* indicates that this project is loaded into DSP card memory

s indicates that the project source code is loaded

Project Name is the name of the project

checksum is a unique value for that project.

Task name is the name of the Task in a project.

Note: If the CLR input is open circuited at power-on no projects
will be loaded into the DSP memory.

EXAMPLES: DIR
Transfers the names of the user projects and tasks stored in memory.

DRVREADY Motion Parameter

ACTION: Enables or disables the checking of the drive (READY) signal on the axis
card.

PROGRAM SYNTAX: DRVREADY(axis)=number cr
DRVREADY=number1, … , number8
DRVREADY(axis) cr

REMARK: See Programming Command DRVREADY.

EXAMPLE: DRVREADY(3)=1
Bypasses the drive READY signal checking for axis 3.

DRVREADY= 1,,1
Bypasses the drive READY signal checking for axis 1 and axis 3.

DRVREADY(3)
Return the Drive Ready status for axis 3.

Programming Commands 193

DRVREADY
Return the Drive Ready status for all axes.

194 Programming Commands

ENCBAND Motion Parameter

ACTION: Sets or returns the maximum position error allowed when motion is
stopped.

PROGRAM SYNTAX: ENCBAND(axis)=number cr
ENCBAND=number1, …, number 8 cr
ENCBAND(axis) cr
ENCBAND cr

REMARK: See Programming Command ENCBAND.

EXAMPLE: ENCBAND(3)=.1
Sets the maximum position error of axis 3 to .1 unit.

ENCBAND=.1 ,,1.5
Sets the maximum position error of axis 1 to .1 unit, and axis 3 to .15 unit.

ENCBAND(3)
Returns the maximum position error of axis 3.

ENCBAND
Returns the maximum position error of all axes.

ENCERR Trajectory Parameter

ACTION: Returns the position error of the designated axis.

PROGRAM SYNTAX: ENCERR(axis) cr
ENCERR cr

REMARK: See Programming Command ENCERR.

Note: POSERR can be used in place of ENCERR.

EXAMPLE: ENCERR(1)
Returns the present position error of axis 1.

ENCERR
Returns the present position error of all axes.

Programming Commands 195

ENCFOL Motion Parameter

ACTION: Sets or returns the maximum position error allowed during motion.

PROGRAM SYNTAX: ENCFOL(axis)= number cr
ENCFOL=number1, … , number8 cr
ENCFOL(axis) cr
ENCFOL cr

REMARK: See Programming Command ENCFOL.

Note: FOLERR can be used in place of ENCFOL.

EXAMPLE: ENCFOL(2)=.4
Sets the following error of axis 2 to .4 units.

ENCFOL=.4 ,, .3
Sets the following error of axis 1 to .4 units, and axis 3 is set to .3 units.

ENCFOL(2)
Returns the current following error set for axis 2.

ENCFOL
Returns the current following error set for all axes.

ENCMODE Motion Parameter

ACTION: Sets or returns the operating mode of a closed loop stepper axis.

PROGRAM SYNTAX: ENCMODE(axis)=number cr
ENCMODE=number1, ... , number8 cr
ENCMODE(axis) cr
ENCMODE cr

REMARK: See Programming Command ENCMODE

EXAMPLE: ENCMODE(2)=0
Sets axis 2 to open loop operation.

ENCMODE=1,,2
Sets axis 1 to halt execution on excessive error, axis 2 no change and axis
3 to correct position on excessive following error.

ENCMODE(2)
Returns the operating mode of a closed loop for axis 2.

ENCMODE
Returns the operating mode of a closed loop for all assigned axes.

196 Programming Commands

ENCPOS Trajectory Parameter

ACTION: Returns the encoder position of an axis.

PROGRAM SYNTAX: ENCPOS(axis) cr
ENCPOS cr

REMARK: See Programming Command ENCPOS.

EXAMPLE: ENCPOS(1)
Returns the encoder value of axis 1.

ENCPOS
Returns the encoder value for all assigned axes.

ENCRES Motion Parameter
ACTION: Returns the encoder line count of the selected axis.

COMMAND SYNTAX: ENCRES(axis) cr
ENCRES cr

REMARKS: The axis specifies the number of the axis (1-8).

ENCRES(axis)
Returns the current line count of the specified axis.

ENCRES
Returns the current line count of all axes.

EXAMPLES: ENCRES(2)
Returns the current line count of axis 2.

ENCSPD Trajectory Parameter

ACTION: Returns the current encoder speed in units/second.

PROGRAM SYNTAX: ENCSPD(axis) cr
ENCSPD cr

REMARK: See Programming Command ENCSPD.

EXAMPLE: ENCSPD(2)
Returns the current encoder speed of axis 2.

ENCSPD
Returns the current encoder speed of all assigned axes.

Programming Commands 197

ERASE Miscellaneous Command

ACTION: Erases a specific project or all projects stored in non-volatile memory.

COMMAND SYNTAX: ERASE DIR cr
ERASE project name cr

REMARKS: The project erased is not recoverable.

ERASE DIR
Erases all projects stored in non-volatile memory.

ERASE project name
Erases the defined project name in non-volatile memory.

EXAMPLES: ERASE DIR
Erases all projects stored in non-volatile memory.

ERASE CONVEYER
Erases project CONVEYER if it exists.

ERR Miscellaneous Command

ACTION: Returns the controller error/warning number for this task.

PROGRAM SYNTAX: ERR cr

REMARKS: This command returns the error/warning status for all task and clears the
errors and axis which created the error. See the ERR basic Command
for the error/warning code listing.

The transfer format for task 0-7 is:
 nn nn nn nn nn nn nn nn <cr> <lf>
 where: nn is 0-99 for task 0-7

The axis which created the error/warning can be interrogated using the
ERRAXIS command. Send the ERRAXIS command prior to the ERR
command to interrogate the error and the axis which created the error.

EXAMPLES: ERRAXIS : ERR <cr>
This sequence returns the axis which created the error/warning and the
error/warning number on two separate lines.

198 Programming Commands

ERRAXIS Miscellaneous Command

ACTION: Returns the controller axis number which created the error/warning for
the task.

PROGRAM SYNTAX: ERRAXIS cr

REMARKS: If a zero is returned for the task then the error/warning was not
axis related or there is no error/warning.

To determine the error/warning use the ERR or ERRM command.

The transfer format for task 0-7 is:
 n n n n n n n n <cr> <lf>
 where: n is 0-8 for task 0-7

EXAMPLE: ERRAXIS : ERR <cr>
This sequence returns the axis which created the error/warning and the
error/warning number on two separate lines.

Programming Commands 199

ERRM Miscellaneous Command

ACTION: Returns the error/warning message’s for the task’s (0-7).

PROGRAM SYNTAX: ERRM cr

REMARKS: This command returns the error/warning message’s for all task and
clears the errors and axis which created the error.

The error messages returned are:
 0 no Errors
 1 + Limit activated ‘ motion in +dir activated +Limit
 2 - Limit activated ‘ motion in -dir activated -Limit
 3 Soft Limit in +dir ‘ +dir soft limit exceeded
 4 Soft Limit in -dir ‘ -dir soft limit exceeded

5 CL attempts ‘ CL stepper attempts elapsed
 6 Follow Error ‘ Following Error exceeded
 7 MoveReg Dist Small ‘ MOVEREG distance to small for

DECEL rate.
 8 DRVREADY fault ‘ Drive not ready
 9 Drive Not Enabled ‘ Servo drive not enabled

10 Program Out of Memory ‘ Program Ram all used up
26 IXT Servo Error ‘ Excessive Duty Cycle Shutdown

27-99 User define ERR nn ‘ User Program defined Error

The warning messages returned are:
11 Warn Axis not in task ‘ axis is not defined in this task.
12 Warn ANALOG I/O range ‘ ANALOG point does not exist.
13 Warn BCD range ‘ BCD bank does not exist.
14 Warn EXIN range ‘ EXIN point does not exist.
15 Warn EXOUT range ‘ EXOUT point does not exist.
16 Warn IN range ‘ IN point does not exist.
17 Warn OUT range ‘ OUT point does not exist.
18 Warn LOG value <=0 ‘ LOG value out of range.
19 Warn SQRT arg negative ‘ SQRT value is negative.
20 Warn NVR range ‘ NVR element does not exist.
21 Warn READ out of arg ‘ READ command out of data.
22 Warn MAXSPD range ‘ MAXSPD value out of range
23 motion at program end ‘ Motion occurring when program ended
24 SETCOM error ‘ Aux. serial port parameter er-

ror
25 Warn Servo Gain range ‘ Servo axis Gain out of range

EXAMPLES: ERRAXIS : ERRM <cr>
This sequence returns the axis which created the error/warning and the
error/warning message’s on two separate lines.

200 Programming Commands

"ESC" Miscellaneous Commands

ACTION: The ESC key (or ESC character code sent via a serial port) is used dur-
ing program execution to force execution of a command in the host
buffer.

COMMAND SYNTAX: ESC (ASCII 27) command

REMARKS: When the controller is executing a BASIC program, any host commands
received are queued for execution after the BASIC program finishes.
The execution of a host command can be forced to happen immediately
by preceding it with the ESC character (ASCII 27). The command will
consist of all characters from the ESC to the cr (carriage return). Multi-
ple commands can be placed on one line, but they must be separated by
colons (:).

EXAMPLE: <ESC>ABSPOS(1)
Returns the absolute position of axis 1 during program execution.

EVENT1 Motion Parameter

ACTION: Returns the state of the trigger input labeled EVNT1 or sets the trigger
polarity and enable for a Movehome and Movereg cycle.

PROGRAM SYNTAX: EVENT1(axis)=number cr
EVENT1=number1, ... , number8 cr
EVENT1(axis) cr
EVENT1 cr

REMARKS: See Programming Command EVENT1.

EXAMPLES: EVENT1(2)=0
disables Event1 as a MOVEREG trigger on axis 2

EVENT1(2)=1
enables Event1 to trigger when activated on axis 2

EVENT1(2)=-1
enables Event1 to trigger when open circuited on axis 2.

EVENT1(2)
Returns the current input state for the EVNT1 input on axis 2.

EVENT1
Returns the current input states for all EVNT1 inputs on all assigned
axes.

Programming Commands 201

EVENT2 Motion Parameter

ACTION: Returns the state of the trigger input labeled EVNT2 or sets the trigger
polarity and enable for a Movehome and Movereg cycle.

PROGRAM SYNTAX: EVENT2(axis)=number cr
EVENT2=number1, ... , number8 cr
EVENT2(axis) cr
EVENT2 cr

REMARKS: See Programming Command EVENT2.

EXAMPLES: EVENT2(2)=0
disables Event2 as a MOVEREG trigger on axis 2.

EVENT2(2)=1
enables Event2 to trigger when activated on axis 2.

EVENT2(2)=-1
enables Event2 to trigger when open circuited on axis 2.

EVENT2(2)
Returns the current input state for the EVNT2 input on axis 2.

EVENT2
Returns the current input states for all EVNT2 inputs on all assigned
axes.

EXIN I/O Function

ACTION: Returns the state of the specified expansion I/O inputs.

PROGRAM SYNTAX: EXIN(nnn) cr
EXIN(nnn,len) cr

REMARKS: See Programming Command EXIN.

EXAMPLE: EXIN(207)
returns the state of board 2 input 7

EXIN(207,3)
Returns a number 0-7 depending on the states of inputs 207-209.
EXIN(207)+2*EXIN(208)+4*EXIN(209)

202 Programming Commands

EXOUT I/O Function

ACTION: Sets or returns the state of the specified expansion I/O outputs.

PROGRAM SYNTAX: EXOUT(nnn) cr
EXOUT(nnn,len) cr
EXOUT(nnn)=number cr
EXOUT(nnn,len)=number cr

REMARKS: See Programming Command EXOUT.

EXAMPLES: EXOUT(207)=-3
turns output 7 on board 2 on

EXOUT(207)=0
turns output 7 on board 2 off

EXOUT(207)
Returns the last commanded output for 207.

EXOUT(207,3)=6.2
outputs 209=on, output 208=on and output 207=off

EXOUT(207,3)=4
output 209=on, output 208=off and output 207=off.

EXOUT(208,2)
Returns the last commanded state for output 208 and 209

FILTER Miscellaneous Command

ACTION: Sets the filter value for the for the defined analog input

PROGRAM SYNTAX: FILTER(b0n)=number cr
FILTER(b0n) cr

REMARKS: The "b" specifies the board (1-4).

The "n" specifies the analog input (1-4).

The number sets the filter value (.01 - 1). Where 1.0 is no filtering.

FILTER(b0n)=number
Sets the filter value for the designated board and input.

FILTER(b0n)
Returns the filter value for the designated board and input.

EXAMPLES: FILTER(101)=.1
Sets the filter value for board 1 input to a value of .1.

FILTER(302)=.1
Sets the filter value for board 1 input to a value of .1.

Programming Commands 203

FOLERR Motion Parameter

ACTION: Sets or returns the maximum position error allowed during motion, herein
referred to as "following error."

COMMAND SYNTAX: FOLERR(axis)=number cr
FOLERR=number1, number2, . . . , number8 cr
FOLERR(axis) cr
FOLERR cr

REMARKS: See Programming Command FOLERR.

Note: ENCFOL can be substituted for FOLERR.

EXAMPLES: FOLERR(2)=.4
Sets the following error of axis 2 to .4 units.

FOLERR=.4,, .3
Sets the following error of axis 1 to .4 units, axis 2 is unchanged and axis
3 is set to .3 units.

FOLERR(2)
Returns the current following error set for axis 2.

FOLERR
Returns the current following error set for all assigned axes.

FREE Miscellaneous Command

ACTION: Transfers the free space, in sectors, available in non-volatile memory.

COMMAND SYNTAX: FREE cr

REMARKS: A sector consists of 128 bytes of non-volatile memory. With no pro-
gram(s) loaded, the free space value is 2044 sectors.

The transfer format is:
 free space = nnnncr

204 Programming Commands

FREEMEM Miscellaneous Command

ACTION: Returns the amount of free memory for program execution allocation.

COMMAND SYNTAX: FREEMEM cr

REMARKS: The value returned is the number of 32 bit word free for allocation.

The DIM command uses free memory for allocating an area for arrays.

A new variable string uses free memory for storing the string characters.

The maximum free memory size is 45055 words.

If an "Out of Memory" error occurs during program execution the
FREEMEM command can be used to determine whether the error was
created by a string command or that the memory allocated for program
storage was exceeded. If the FREEMEM command returns a negative
value the memory allocated for program storage was exceeded.

EXAMPLE: FREEMEM

HARDLIMNEG Over Travel Limit

ACTION: Returns the -LIMIT state for the selected axis.

PROGRAM SYNTAX: HARDLIMNEG cr
HARDLIMNEG(axis) cr

REMARKS: See Programming Command HARDLIMNEG.

EXAMPLES: HARDLIMNEG(2)
Returns the -LIMIT state of axis 2.

HARDLIMNEG
Returns the -LIMIT state of all assigned axes.

HARDLIMPOS Over Travel Limit

 ACTION: Returns the +LIMIT state of the selected axis.

PROGRAM SYNTAX: HARDLIMPOS cr
HARDLIMPOS(n) cr

REMARKS: See Programming Command HARDLIMPOS.

EXAMPLES: HARDLIMPOS(2)
Returns the +LIMIT state of axis 2.

HARDLIMPOS
Returns the +LIMIT state of all assigned axes.

Programming Commands 205

IN I/O Function

ACTION: Returns the state of the specified digital I/O inputs.

PROGRAM SYNTAX: IN(bnn) cr
IN(bnn,len) cr

REMARKS: See Programming command IN.

EXAMPLES: IN(207)
Returns the state of board 2 input 7.

IN(207,3)
Returns the sum of input states 7-9 on board 2. The value returned will
be: IN(207) + (2*IN(208) + (4*IN(209).

INTLIM Servo Parameter

ACTION: Sets the Integral limit for the controller. This is the limit of the contribu-
tion to the servo output from the integral of the position error.

PROGRAM SYNTAX: INTLIM(axis)=number cr
INTLIM=number1, ... , number8 cr
INTLIM(axis) cr
INTLIM cr

REMARKS: See Programming Command INTLIM.

EXAMPLES: INTLIM(2)=50
sets the integral limit for axis 2 to 50 volts.

INTLIM(2)
returns the integral limit of axis 2.

INTLIM=50,,100
sets the integral limit for axis 1 to 50 volts, axis 2 is unchanged and axis 3
is set to 100 volts.

INTLIM
Returns the integral limits on all assigned axes.

206 Programming Commands

JOG Motion Parameter

ACTION: Runs the motor continuously in a specified direction.

PROGRAM SYNTAX: JOGSTART(axis)=number cr
JOGSTART=number1, ... ,number8 cr

Note: JOGSTART can be substituted for JOG

REMARKS: See Programming Command JOG.

EXAMPLES: JOGSTART(2)=1
Runs axis 2 continuously in the +direction.

JOGSTART=1,,-1
Runs axis 1 continuously in the +direction, axis 2 is unchanged and axis 3
runs continuously in the -direction.

KAFF Servo Parameter

ACTION: Sets or returns the acceleration feed forward gain for a servo axis.

PROGRAM SYNTAX: KAFF(axis)=number cr
KAFF=number1, ... , number8 cr
KAFF(axis) cr
KAFF cr

REMARKS: See Programming Command KAFF.

EXAMPLES: KAFF(2)=.5
Sets the acceleration feed forward gain of axis 2 to .5 volts/encoder
count/msec2.

KAFF=.2,,0
Sets the acceleration feed forward gain of axis 1 to .2 volts/encoder
count/msec2, axis 2 is unchanged and axis 3 is set to 0 volts/encoder
count/msec2.

KAFF(2)
Returns the acceleration feed forward gain of axis 2.

KAFF
Returns the acceleration feed forward gain of all assigned axes.

Programming Commands 207

KD Servo Parameter

ACTION: Sets or returns the derivative gain for the servo axis.

PROGRAM SYNTAX: KD(axis)=number cr
KD=number1, ... , number8 cr
KD(axis) cr
KD cr

REMARKS: See Programming Command KD.

EXAMPLES: KD(2)=4
Sets the derivative gain of axis 2 to 4 milliseconds.

KD=10,,8
Sets the derivative gain of axis 1 to 10 milliseconds, axis 2 is unchanged
and axis 3 is set to 8 milliseconds.

KD(2)
Returns the derivative gain of axis 2.

KD
Returns the derivative gain of all assigned axes.

KI Servo Parameter

ACTION: Sets or returns the integral gain of a servo axis.

PROGRAM SYNTAX: KI(axis)=number cr
KI=number1, ... , number8 cr
KI(axis) cr
KI cr

REMARKS: See Programming Command KI.

EXAMPLES: KI(2)=4
Sets the Integral gain of axis 2 to 4 milliseconds.

KI=1,,4
Sets the Integral gain of axis 1 to 1 milliseconds, axis 2 is unchanged and
axis 3 is set to 4 milliseconds.

KI(2)
Returns the Integral gain of axis 2.

KI
Returns the Integral gain of all assigned axes.

208 Programming Commands

KP Servo Parameter

ACTION: Sets or returns the proportional gain of the servo axis.

PROGRAM SYNTAX: KP(axis)=number cr
KP=number1, ... , number8 cr
KP(axis) cr
KP cr

REMARKS: See Programming Command KP.

EXAMPLES: KP(2)=20
Sets the Proportional gain of axis 2 to 20 millivolts/encoder count.

KP=18,,20
Sets the Proportional gain of axis 1 to 18 millivolts/encoder count, axis 2 is
unchanged and axis 3 is set to 20 millivolts/encoder count.

KP(2)
Returns the Proportional gain of axis 2.

KP
Returns the Proportional gain of all assigned axes.

KVFF Servo Parameter

ACTION: Sets or returns the velocity feed forward gain for the servo axis.

PROGRAM SYNTAX: KVFF(axis)=number cr
KVFF=number1, ... , number8 cr
KVFF(axis) cr
KVFF cr

REMARKS: See Programming Command KVFF.

EXAMPLES: KVFF(2)=95
Sets the Velocity feed forward gain of axis 2 to 95%.

KVFF=98,,95
Sets the Velocity feed forward gain of axis 1 to 98% , axis 2 is un-
changed and axis 3 is set to 95%.

KVFF(2)
Returns the Velocity feed forward gain of axis 2.

KVFF
Returns the Velocity feed forward gain of all assigned axes.

Programming Commands 209

LINE Motion Parameter

ACTION: Initiates a coordinated linear move involving up to 8 axes.

PROGRAM SYNTAX: LINE=number1, ... , number8 cr

REMARKS: See Programming Command LINE.

EXAMPLES: LINE=1.0,,-2.0
Linear interpolated axis 1 and 3. Axis 1 moves +1.0 units , and axis 3
moves -2.0 units.

LOAD Miscellaneous Command

ACTION: Loads the designated project from non-volatile memory into operating
memory.

COMMAND SYNTAX: LOAD project name cr

REMARKS: The name is limited to eight characters.

EXAMPLES: LOAD CONVEYER
Load project CONVEYER into operating memory.

LOWSPD Trajectory Parameter

ACTION: Sets or returns the Low Speed (starting speed) value of a stepping motor
axis.

PROGRAM SYNTAX: LOWSPD(axis)=number cr
LOWSPD=number1, ... ,number8 cr
LOWSPD(axis) cr
LOWSPD cr

REMARKS: See Programming Command LOWSPD.

EXAMPLES: LOWSPD(2)=1.5
sets axis 2 to 1.5 units/second.

LOWSPD=1.3,, 1.5
sets axis 1 to 1.3 units/second, axis 2 is unchanged, and axis 3 to 1.5
units/second.

LOWSPD(2)
Returns the low speed value for axis 2.

LOWSPD
Returns the low speed value for all assigned axes.

210 Programming Commands

Programming Commands 211

MAXSPD Trajectory Parameter

ACTION: Sets or returns the maximum allowed speed of the specified axis.

PROGRAM SYNTAX: MAXSPD(axis)=number cr
MAXSPD=number1, ... , number 8 cr
MAXSPD(axis) cr
MAXSPD cr

REMARKS: See Programming Command MAXSPD.

EXAMPLES: MAXSPD(3)=50
Sets the maximum speed for axis 3 to 50 units/second.

MAXSPD=50,,60
Sets the maximum speed for axis 1 to 50 units/second, axis 2 is un-
changed and axis 3 to 60 units/second.

MAXSPD(2)
Returns the maximum speed for axis 2.

MAXSPD
Returns the maximum speed for all assigned axes.

MOVE Motion Parameter

ACTION: Initiates a non-coordinated move.

PROGRAM SYNTAX: MOVE(axis)=number cr
MOVE=number1, ... , number8

REMARKS: See Programming Command MOVE.

EXAMPLES: POSMODE(1,3)=0,0
MOVE(3)=-2
axis 3 moves -2 units.

MOVE=1,,3
axis 1 moves +1 units, and axis 3 moves +3 units.

212 Programming Commands

MOVEHOME Motion Parameter

ACTION: Runs the motor until the home input is activated, captures and records the
position of the switch activation as home (electrical zero), then decele r-
ates the motor to a stop.

PROGRAM SYNTAX: MOVEHOME(axis)=number
MOVEHOME=number1, ... , number8

REMARKS: See Programming Command MOVEHOME.

EXAMPLES: MOVEHOME(3)=1
Axis 3 executes a home cycle in the positive direction.

MOVEHOME=-2,,3
Axis 1 executes a home cycle in the negative direction, axis 2 is un-
changed and axis 3 executes a home cycle in the positive direction.

MOVEREG Motion Parameter

ACTION: Runs the motor until the mark registration input is activated; then moves
the motor the desired registration distance.

PROGRAM SYNTAX: MOVEREG(axis)=number
MOVEREG=number1, ... , number8

REMARKS: See Programming Command MOVEREG.

EXAMPLES: MOVEREG(3)=2
Initiates a positive registration cycle of 2 units for axis 3.

MOVEREG=1,,-2
Initiates a positive registration cycle of 1 unit for axis 1, axis 2 is un-
changed and initiates a negative registration cycle of 2 units for axis 3.

NVR Miscellaneous Command

ACTION: The NVR array is used for non-volatile variable storage.

PROGRAM SYNTAX: NVR(number) cr
NVR(number)=value cr

REMARKS: See Programming Command NVR.

EXAMPLES: NVR(2)
Returns the NVR element 2 value.

NVR(2048)=10.5
Sets the NVR element 2048 to a value of 10.5.

Programming Commands 213

NVRBIT Miscellaneous Command

ACTION: Store or return the bit value in NVR memory.

PROGRAM SYNTAX: NVRBIT(bit)= number cr
NVRBIT(bit) cr

REMARKS: See Programming Command NVRBIT.

EXAMPLES: NVRBIT(65505)=1
sets Bit 1 of element 2048 = 1

NVRBIT(65536)=0
sets Bit 32 of element 2048 = 0

NVRBYTE Miscellaneous Command

ACTION: Stores or returns the byte value in NVR memory.

PROGRAM SYNTAX: NVRBYTE(byte)=number cr
NVRBYTE(byte) cr

REMARKS: See Programming Command NVRBYTE.

EXAMPLES: NVRBYTE(8192)=255
sets MSB byte = 255 in element 2048

NVRBYTE(8189)=0
sets LSB byte = 0 in element 2048

OUT I/O Function

ACTION: Sets or returns the condition of a specified digital output.

PROGRAM SYNTAX: OUT(bnn)=number cr
OUT(bnn,len)=number cr
OUT(bnn) cr
OUT(bnn,len) cr

REMARKS: See Programming Command OUT.

EXAMPLES: OUT(107)=1
Digital I/O board 1 output 7 is set to a 1.

OUT(101,6)=48
digital I/O board 1 outputs 1-4 are set to a 0 and outputs 5 and 6 are set
to a 1.

OUT(107)
Returns output 7 on digital I/O board 1.

OUT(101,7)
Returns outputs 1-7 on digital I/O board 1.

214 Programming Commands

OUTLIMIT Servo Parameter

ACTION: Sets or returns the servo command voltage limit.

PROGRAM SYNTAX: OUTLIMIT(axis)=number cr
OUTLIMIT=number1, ... , number8 cr
OUTLIMIT(axis) cr
OUTLIMIT cr

REMARKS: See Programming Command OUTLIMIT.

EXAMPLES: OUTLIMIT(2)=5
Limits the magnitude of the servo output voltage for axis 2 to ± 5 volts.

OUTLIMIT=5,,10
Limits the magnitude of the servo output for axis 1 to ± 5 volts, axis 2 is
unchanged and axis 3 to ± 10 volts.

OUTLIMIT(2)
Returns the magnitude of the servo output for axis 2.

OUTLIMIT
Returns the magnitude of the servo output for all assigned axes.

POSERR Trajectory Parameter

ACTION: Returns the position error (absolute position - encoder position) of the

selected axis.

COMMAND SYNTAX: POSERR(axis) cr
POSERR cr

Note: ENCERR can be substituted for POSERR

REMARKS: See Programming Command POSERR.

EXAMPLES: POSERR(1)
Returns the present position error of the specified axis.

POSERR
Returns the present position error of all assigned axes.

Programming Commands 215

POSMODE Motion Parameter

ACTION: Sets or returns the positioning mode for the specified axis.

PROGRAM SYNTAX: POSMODE(axis)=number cr
POSMODE=number1, ... , number8 cr
POSMODE(axis) cr
POSMODE cr

REMARKS: See Programming Command POSMODE.

EXAMPLES: POSMODE(2)=1
Sets the positioning mode for axis 2 to absolute.

POSMODE=1,,0
Sets the positioning mode for axis 1 to absolute, axis 2 is unchanged and
axis 3 is set to incremental positioning mode.

POSMODE(2)
Returns the positioning mode for axis 2.

POSMODE
Returns the positioning mode for all assigned axes.

PROFILE Trajectory Parameter

ACTION: Determines how the motor speed changes.

PROGRAM SYNTAX: PROFILE(axis)=number cr
PROFILE=number1, ... , number8 cr
PROFILE(axis) cr
PROFILE cr

REMARKS: See Programming Command PROFILE.

EXAMPLES: PROFILE(2)=10
axis 2 profile is set to a value of 10.

PROFILE=16,,32
axis 1 profile is set to a value of 16 and axis 3 profile is set to 32.

PROFILE(2)
Returns the profile value for axis 2.

PROFILE
Returns the profile value for all assigned axes.

216 Programming Commands

REGLIMIT Over Travel Limit

ACTION: Sets or returns the distance to be moved during a MOVEREG cycle,
while awaiting a trigger.

PROGRAM SYNTAX: REGLIMIT(axis)=number cr
REGLIMIT=number1, ... , number8 cr
REGLIMIT(axis) cr
REGLIMIT cr

REMARKS: See Programming Command REGLIMIT.

EXAMPLES: REGLIMIT(2)= 10
set the MOVEREG travel distance limit on axis 2 to 10 units

REGLIMIT=0,,10
disables the REGLIMIT for axis 1, axis 2 is unchanged and axis 3 has
MOVEREG travel distance limit of 10 units.

REGLIMIT(2)
Returns the Registration travel limit for axis 2.

REGLIMIT
Returns the Registration travel limit for all assigned axes.

RESET Miscellaneous Command

ACTION: Resets the MX2000 controller.

COMMAND SYNTAX: RESET cr

REMARKS: This command causes the system to halt, and then restart as though
power had been recycled.

REVISION Miscellaneous Command

ACTION: Returns the current revision level of the controller's operating system
software.

COMMAND SYNTAX: REVISION cr

REMARKS: The return format for this command is:
 MX2000 REV n , date

where "n" is the current revision number and "date" is the release
date.

Programming Commands 217

RUN Miscellaneous Command

ACTION: Runs the loaded project or specified task number.

COMMAND SYNTAX: RUN cr

REMARKS: RUN starts execution of all loaded tasks from their respective
beginnings.

SNVR Miscellaneous Command

ACTION: Sets the default value for the designated NVR elements.

COMMAND SYNTAX: SNVR(start, end)=value cr lf

REMARKS: start is the starting element number in NVR. The range is 1-2048.

end is the ending element in NVR. The range start-2048.

The value is stored from the starting element to the ending element.

A hardware option is available that allows up to 32720 variables to be
saved.

EXAMPLES: SNVR(1,2000)=0
Sets NVR(1-2000) to 0

SNVR(10,100)=-1
Sets NVR(10-100) to -1

SNVR(1000,1200)=0xff
Sets NVR(100,1200) to 255.

218 Programming Commands

SOFTLIMNEG Over Travel Limit

ACTION: Programmable "software limit switch" for motion in the negative direc-
tion. Sets or returns the absolute negative travel position value for the
specified axis.

PROGRAM SYNTAX: SOFTLIMNEG(axis)=number cr
SOFTLIMNEG=number1, ... ,number8 cr
SOFTLIMNEG(axis) cr
SOFTLIMNEG cr

REMARKS: See Programming Command SOFTLIMNEG.

EXAMPLES: SOFTLIMNEG(2) =-4
Sets the negative direction soft limit of axis 2 at -4 units.

SOFTLIMNEG=-5,,-6
Sets the negative direction soft limit of axis 1 at -5 units, axis 2 is un-
changed and axis 3 is set to -6 units.

SOFTLIMNEG(2)
Returns the negative direction soft limit value for axis 2.

SOFTLIMNEG
Returns the negative direction soft limit value for all assigned axes.

SOFTLIMPOS Over Travel Limit

ACTION: Programmable "software limit switch" for motion in the positive direction.
Sets or returns the absolute positive travel position value for the specified
axis.

PROGRAM SYNTAX: SOFTLIMPOS(axis)=number cr
SOFTLIMPOS=number1, ... ,number8 cr
SOFTLIMPOS(axis) cr
SOFTLIMPOS cr

REMARKS: See Programming Command SOFTLIMPOS.

EXAMPLES: SOFTLIMPOS(2) =4
Sets the positive direction soft limit of axis 2 at +4 units.

SOFTLIMPOS=5,,6
Sets the positive direction soft limit of axis 1 at +5 units, axis 2 is un-
changed and axis 3 is set to +6 units.

SOFTLIMPOS(2)
Returns the positive direction soft limit value for axis 2.

SOFTLIMPOS
Returns the positive direction soft limit value for all assigned axes.

Programming Commands 219

SPEED Trajectory Parameter

ACTION: Sets and returns the target velocity of the motor.

PROGRAM SYNTAX: SPEED(axis)=number cr
SPEED=number1, ... , number8 cr
SPEED(axis) cr
SPEED cr

REMARKS: See Programming Command SPEED.

EXAMPLES: SPEED(2)=10
Sets the speed of axis 2 to 10 units/second.

SPEED=0,,5
Sets the speed of axis 1 to 0 units/second, axis 2 is unchanged and axis 3
to 5 units/second.

SPEED(2)
Returns the speed value for axis 2.

SPEED
Returns the speed value for all assigned axes.

STOP Motion Parameter

ACTION: Stops any motion with a control stop.

PROGRAM SYNTAX: STOP(axis)=number cr
STOP=number1 , ... , number8

REMARKS: See Programming Command STOP.

note: JOGSTOP can be substituted for STOP.

EXAMPLES: STOP(2)=1
requests axis 2 to stop.

STOP=1,,1
requests axis 1 and axis 3 to stop.

220 Programming Commands

STOPERR Motion Parameter

ACTION: Sets or returns the maximum position error allowed when motion is
stopped, referred to herein as "position error band."

COMMAND SYNTAX: STOPERR(axis)=number cr
STOPERR=number1, … , number8 cr
STOPERR(axis) cr
STOPERR cr

REMARKS: See Programming Command STOPERR.

Note: ENCBAND can be substituted for STOPERR.

EXAMPLES: STOPERR(3)=.1
Sets the maximum position error for axis 3 to .1 units.

STOPERR=.1,,,.15
Sets the maximum position error for axis 1 to .1 units and axis 4 to .15
units.

STOPERR(3)
Returns the maximum position error value of axis 3.

UNIT Miscellaneous Command

ACTION: Returns the pulses/ unit value. Used for programming in "user units,"
such as inches or revolutions or meters, etc.

COMMAND SYNTAX: UNIT(axis) cr
UNIT cr

REMARKS: The axis specifies the number of the axis (1-8).

Unit is a signed value, and represents the number of pulses or counts per
unit. A positive value defines CW direction as the positive direction. A
negative value defines CCW direction as the positive direction.

EXAMPLES: UNIT(2)
Returns the unit value for axis 2.

UNIT
Returns the unit value for all assigned axes.

Programming Commands 221

VELOCITY Trajectory Parameter

ACTION: Sets or returns the path speed to be used for coordinated motion.

COMMAND SYNTAX: VELOCITY = number cr
VELOCITY cr

REMARKS: This velocity is only used as the path speed for the Host commands LINE
and ARC.

EXAMPLES: VELOCITY=1.0
Sets the coordinated for linear motion to 1 unit/second.

VELOCITY
Returns the current velocity for host mode.

WARNING Miscellaneous Command

ACTION: Returns the warning number of each task.

PROGRAM SYNTAX: WARNING cr

REMARKS: Returns the warning number for task 1-7 and clears the task warnings
and axis which created the warning.

The Warning return format is:
 nn nn nn nn nn nn nn <cr><lf>
 where: nn is a 0 or 11-25

The Predefined Warning codes are listed in the Programming Command
WARNING.

EXAMPLES: ERRAXIS : WARNING
Returns the axis which created the warning and the warning number for
task 1-7.

222 Programming Commands

WNDGS Motion Parameter

ACTION: Enables or disable a motor drive.

PROGRAM SYNTAX: WNDGS(axis)=number cr
WNDGS=number1, ... ,number8 cr
WNDGS(axis) cr
WNDGS cr

REMARKS: See Programming Command WNDGS.

EXAMPLES: WNDGS(2)=1
Sets the WNDGS state to 1 on axis 2.

WNDGS=0,,1
Sets the WNDGS state on axis 1 to a 0, axis 2 is unchanged and axis 3
WNDGS state is 1.

WNDGS(2)
Returns the winding state for axis 2.

WNDGS
Returns the winding state for all assigned axes.

"XON XOFF" Miscellaneous Command

ACTION: The XON/XOFF command is a serial communication protocol, executed
in software, that allows communications between two devices without the
need for additional hardware control. The protocol is used for controlling
the flow of data between the Control and another device.

COMMAND SYNTAX: Xon (ASCII 17)
Xoff (ASCII 19)

REMARKS: The Xoff character is used to stop the transmission of RS232 or
RS485 characters. When one device sends an Xoff to the other device, it
is telling the other to stop transmitting characters. The transmitting device
should comply with the request.

The Xon character is used to resume transmission of the RS232 or
RS485 characters. When one device sends an Xon character to the other,
it is signifying that it is ready to receive more characters.

The MX2000 controller sends an Xoff character when the host buffer
gets within 80 characters from being full and a minimum of one CR or LF
has been received. The receiver will continue to receive characters until
the buffer is full. The controller will than issues an Xon character when
the host buffer has only 25 characters left in the buffer.

Programming Commands 223

This page left intentionally blank

Following for MX2000 version 4.0 203

Section 8
Following

204 Following for MX2000 version 4.0

8.1 - Following Description

The controller has the ability to position follow numerous
axes from a single master device. The following features
are listed below.

• Flexible Follower definition.
• Programmable follower ratio.
• Three types of following motions can be

performed, (JOG, MOVE and MOVEREG).
• Programmable Follower motion trigger.
• Programmable Delay Distance before Follower

motion.
• Programmable Follower Acceleration distance.
• Programmable Follower Deceleration distance.
• Positional advance/recede cycles can be

performed during a FOLJOG cycle.

8.1.1 - Follower Definition

The initialization of the follower requires the
follower axes as well as the follower source to be
defined. This is accomplished using the FOLINPUT
command. When this command is encountered
during program execution it enables following.

Note: If a new follower definition command is
encountered during program execution it will
become the follower definition.

Command Syntax:
FOLINPUT(Axis,…,Axis) = ACTSPD(Axis)
FOLINPUT(Axis,…,Axis) = ENCSPD(Axis)
FOLINPUT(Axis,…,Axis)=ANALOG(b0n)*exp
FOLINPUT(Axis,…,Axis)=variable

Axis defines the follower axes. These axes must be
numeric values and be assigned to the task this
command is being used in.

Exp may be an equation, variable, command
and/or a constant.

equation operators are limited to multiply, add and
subtract.

variable can be a LOCAL or COMMON variable.

command listing:
ACTSPD(axis) commanded velocity of an axis
ENCSPD(axis) encoder velocity of an axis
ANALOG(b0n) analog input voltage

1=A side for analog input
2=B side for analog input
Board # of dual axis board

8.1.1.1 - Analog Following

An analog input with a center frequency and a
deviation frequency for a 10 volt input can be
defined as the master source for following.

Command Syntax:
FOLINPUT(axis, ... ,axis) =
(ANALOG (b0n) * .1 * DevFreq) + CenterFreq

ANALOG(b0n) defines the analog source.
 1=A side for analog input
 2=B side for analog input
 Board # of dual axes board

The .1 * DevFreq defines the velocity change per
analog input volt in Units/second. DevFreq can be a
variable or a constant.

The CenterFreq variable defines the 0 volt input
velocity in Units/sec. The ACTSPD or ENCSPD
commands can be substituted for the CenterFreq
variable.

8.1.1.2 - Encoder Following

An Encoder input can be defined as the master
source. If the master axis is a stepper axis it must
configured as a closed loop stepper with the error
action set to disabled.

Command Syntax:
FOLINPUT (axis, ... ,axis)=ENCSPD (axis)

The ENCSPD (axis) defines the master encoder axis
(1-8) and can be assigned to any task. A
mathematical operators and/or Constant can be used
in conjunction with ENCSPD if desired.

8.1.1.3 – Command & Variable
 Following

The Master source can be defined by specific basic
command or variable. The commands are:
ACTSPD and ENCSPD. The variable can be a
COMMON or LOCAL variable.

Command Syntax:
FOLINPUT(axis, ... ,axis)=ACTSPD(MASTER)
FOLINPUT(axis, ... ,axis)=ENCSPD(MASTER)
FOLINPUT(axis, ... ,axis)=SpeedControl

axis specifies the number of the following axis.

MASTER is defined for a particular axis using the
#DEFINE statement.

ACTSPD & ENCSPD may have a mathematical
operator and/or Constants used in conjunction with
these commands.
SpeedControl can be a local variable or a shared
variable. Mathematical operators and/ or Constants

Following for MX2000 version 4.0 205

can be used in conjunction with this variable as well.
This expression specifies the velocity of the master
source in units/seconds.

8.1.2 - Following Ratio

The ratio of the follower axis to the master is
specified by the FOLRATIO command. A value of
1.0 represents 100% of master. Any REAL value can
be used and a negative value will be converted to its
absolute value. The ratio of the follower can be
changed during motion but will only become
effective when the follower is in synchronization
with the master device. The rate at which the ratio
will change is controlled by the FOLRATIOINC
command. This command specifies the following
ratio change per second. The maximum
recommended ratio is 10.0.

Command Syntax:
FOLRATIO(axis) = exp
FOLRATIO = exp, … , exp
FOLRATIO(axis, … , axis) = exp, … , exp

axis specifies the number of the following axis.

exp specifies the following axis ratio to the master
velocity.

Command Syntax:
FOLRATIOINC = exp, … , exp
FOLRATIOINC(axis, … , axis) = exp, … , exp

axis specifies the number of the following axis.

exp specifies the ratio acceleration rate in ratio
increment per second.

Example:
 FOLRATIO(2)=.5 ‘ 50% of master velocity
 FOLRATIOINC(2)= 5 ‘ 500% change per second

is the rate to achieve a
new folratio during
motion.

Note: If folratio(2)=1 is commanded during
motion it would take .1 seconds to achieve 100%
((100-50)/500).

8.1.3 - Follower Motions

There are three following motion commands
FOLJOG, FOLMOVE and FOLMOVEREG.

FOLJOG commands continuous motion and allows
a positional advance/recede cycle to be performed.
The STOP command is used to stop this cycle.

Command Syntax:
FOLJOG(axis) = exp
FOLJOG = exp, … , exp
FOLJOG(axis, … , axis) = exp, … , exp

axis specifies the number of the following axis.

exp specifies the direction of travel for the follower.

FOLMOVE moves the follower a specific distance.

Command Syntax:
FOLMOVE(axis) = exp
FOLMOVE = exp, … , exp
FOLMOVE(axis, … , axis) = exp, … , exp

axis specifies the number of the following axis.

exp specifies the follower distance to travel.

FOLMOVEREG performs a mark registration
move once a registration trigger occurs.

Command Syntax:
FOLMOVEREG(axis) = exp
FOLMOVEREG = exp, … , exp
FOLMOVEREG(axis, … , axis) = exp, … , exp

axis specifies the number of the following axis.

exp specifies the registration distance for the
follower axis.

STOP command can be used to stop any of the
above motion.

Command Syntax:
STOP(axis)
STOP=exp, … , exp
STOP(axis, … , axis)

axis specifies the number of the following axis.

exp stops the designated axes.

206 Following for MX2000 version 4.0

8.1.4 - Basic Following States

The basic following states for all motion commands
consist of a wait for trigger state, wait for distance
state, Acceleration state, Constant state,
Deceleration state and Done state. These states are
depicted in the figure below.

Basic Following States

8.1.4.1 - Following Trigger

A starting trigger for follower motion can be
programmed with the FOLTRIG command. If the
FOLTRIG value of a follower axis is non-zero, the
follower motion will not begin until the specified
trigger condition is met.

The trigger choices are:
 0 no trigger
 1 Event1 input on closure
 2 Event2 input on closure
 3 Event1 input on opening
 4 Event2 input on opening

The Event inputs are located on the follower axis.

Command Syntax:
FOLTRIG(axis)=exp
FOLTRIG=exp, … , exp
FOLTRIG(axis, … , axis)=exp, … , exp

axis specifies the number of the following axis.

exp specifies the starting trigger value.

8.1.4.2 - Follower Start Delay Distance

A start distance delay can be introduced after the
follower trigger condition is met using the
FOLSTARTDIST command. The master must
travel the programmed distance before the follower
axis motion begins.

Command Syntax:
FOLSTARTDIST(axis)=exp
FOLSTARTDIST=exp, … , exp
FOLSTARTDIST(axis, … , axis)=exp, … , exp

axis specifies the number of the following axis.

exp specifies the master travel distance in units.

8.1.4.3 - Follower Acceleration

The follower acceleration rate to initially
synchronize with the master device at motion start is
controlled by the FOLACCDIST command. This
command defines the distance, in units, that the
master device must travel for the follower to
synchronize with it.

The follower velocity starts at 0 and ramps linearly
to the master speed. The average speed for the
follower is 50% of the master during this time thus,
the follower distance traveled during acceleration is
(.5 * FOLACCDIST * FOLRATIO).

Command Syntax:
FOLACCDIST(axis) = exp
FOLACCDIST = exp, … , exp
FOLACCDIST(axis, … , axis) = exp, … , exp

axis specifies the number of the following axis.

exp specifies the master travel distance in units.

8.1.4.4 - Follower Synchronization

The follower is considered in Synchronization when
the follower velocity matches the master velocity
times the following ratio of the follower axis. This
synchronization state can be monitored using the
FOLSYNC or MOTIONSTATE command.

Command Syntax:
FOLSYNC(axis) - used in an expression
MOTIONSTATE(axis) - used in an expression

axis specifies the number of the following axis.

Each follower axis contains a register that indicates
the current state of the follower. The individual
follower states are defined as a series of unique
numbers 0, 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512.
The MOTIONSTATE command is used to return the
current follower state number.

8.1.4.5 - Follower Deceleration

The follower Deceleration rate is controlled by the
FOLDCCDIST command. This command defines
the distance, in units, that the master device must
travel for the follower to stop and terminate motion.

FOLTRIG
M OTION STATE(1)

FOLSTA RTDIST
M OTION STATE(2)

FOLA CCD IST
M OTION STATE(4)

FOLD CCD IST
M OTION STATE(16)

FOLSYNC
M OTION STATE(8)

DON E
M OTION STATE(0)

STOP

Following for MX2000 version 4.0 207

Command Syntax:
FOLDCCDIST(axis) = exp
FOLDCCDIST = exp, … , exp
FOLDCCDIST(axis, … , axis) = exp, … , exp

axis specifies the number of the following axis.

exp specifies the master travel distance in units.

The follower velocity starts at master velocity and
ramps linearly to 0. The average speed for the
follower is 50% of the master during this time thus,
the follower distance traveled during deceleration is
(.5 * FOLDCCDIST * FOLRATIO).

Note: Issuing a STOP command can stop
Follower motion. The master will travel the
FOLDCCDIST before the follower terminates
motion. The exception would be if the master
velocity reaches zero before the FOLDCCDIST
has been traveled. It is recommended that the
WAITDONE command be used to allow a
complete stop prior to executing the next line of
code.

8.1.5 - Advance/Recede cycle

The follower position can only be advanced or
receded during a FOLJOG cycle. The issuing of a
FOLOFFSET commands a positional offset to be
performed when the follower and master velocities
are in synchronization. The FOLOFFSET cycle
consists of two parts a synchronization portion and
an offset portion. If material is to be cut it is done
during the synchronization portion of this cycle.

Command Syntax:
FOLOFFSET(axis)=exp
FOLOFFSET=exp1, … , exp8
FOLOFFSET (axis, … , axis)=exp, … , exp

axis specifies the number of the following axis.

exp specifies the follower travel distance in units. If
the travel distance is positive a positional advance
cycle will be performed. If the travel distance is
negative a positional recede cycle will be performed.

8.1.5.1 - Offset Wait Distance

An Offset wait distance can be programmed at the
start of an advance/recede cycle via the
FOLSYNCDIST command. This wait distance can
be used as the cutting distance in a flying shear
application, material and rotary knife
synchronization distance or any other operation
requiring synchronization at the beginning of an
advance/recede cycle.

Command Syntax:
FOLSYNCDIST(axis) = exp
FOLSYNCDIST = exp, … , exp
FOLSYNCDIST (axis, … , axis) = exp, … , exp

axis specifies the number of the following axis.

exp specifies the master device travel distance in
units.

8.1.5.2 - Offset Velocity Limits

A velocity limit can be imposed on an
advance/recede cycle. The limit is specified as a
ratio of the master device velocity. The advance
cycle velocity limit is specified by the
FOLMAXRATIO command and must be a positive
number and a value greater than the FOLRATIO
value.

Command Syntax:
FOLMAXRATIO(axis) = exp
FOLMAXRATIO = exp, … , exp
FOLMAXRATIO (axis, … , axis)=exp, … , exp

axis specifies the number of the following axis.

exp specifies the maximum velocity.

The recede cycle velocity limit is specified by the
FOLMINRATIO command and may be a negative
value if the follower direction is allowed to reverse.
If the value is positive it must be less than the
FOLRATIO value.

Command Syntax:
FOLMINRATIO(axis) = exp
FOLMINRATIO = exp1, … , exp8
FOLMINRATIO(axis, … , axis) = exp, … , exp

axis specifies the number of the following axis.

exp specifies the minimum velocity allowed.

8.1.5.3 - Offset Distances

The distance the follower will advance or recede
from the master during an offset cycle is specified
by the FOLOFFSET command. The distance
traveled by the master during the advance/recede
part of an offset cycle is specified by the
FOLOFFSETDIST command. If the FOLOFFSET
distance sign is positive the follower will advance by
this distance and if the sign is negative the follower
will recede by this distance.

208 Following for MX2000 version 4.0

Command Syntax:
FOLOFFSETDIST(axis) = exp
FOLOFFSETDIST = exp, … , exp
FOLOFFSETDIST(axis,…, axis)=exp, … , exp

axis specifies the number of the following axis.

exp specifies the master device travel distance in
units during an offset cycle.

Command Syntax:
FOLOFFSET(axis) = exp
FOLOFFSET = exp1, … , exp8
FOLOFFSET(axis, … , axis) = exp, … , exp

axis specifies the number of the following axis.

exp specifies the follower travel distance in units
during an offset cycle.

Foloffset Cycle Velocity Profile

FOLSYNCDIST
MOTIONSTATE(32)

FOLSYNC
MOTIONSTATE(8)

MOTIONSTATE(64)

MOTIONSTATE(128)

MOTIONSTATE(256)

FOLSYNC
MOTIONSTATE(8)

FOLOFFSETDIST
Master distance traveled

FOLMAXRATIO

FOLMINRATIO

FOLOFFSET
Follower advance distance traveled

advance cycle

recede cycle

MOTIONSTATE(128)

MOTIONSTATE(64) MOTIONSTATE(256)

FOLOFFSET
Follower recede distance traveled

Following for MX2000 version 4.0 209

8.1.6 - Following program Template

The following template can be used as a guideline
for writing a follower program.

‘****** Follower Parameter initialization *********
#DEFINE FOLLOWER 1
#DEFINE MASTER 2

FOLTRIG(FOLLOWER)=0
FOLSTARTDIST(FOLLOWER)=0
FOLACCDIST(FOLLOWER)=expression
FOLDCCDIST(FOLLOWER)=expression
FOLRATIO(FOLLOWER)=1
FOLRATIOINC(FOLLOWER)=10
FOLMAXRATIO(FOLLOWER)=2
FOLMINRATIO(FOLLOWER)=0
‘ *** Follower and Master definitions (chose one) ***
FOLINPUT(FOLLOWER)=variable
FOLINPUT(FOLLOWER)=ACTSPD(MASTER)
FOLINPUT(FOLLOWER)=ENCSPD(MASTER)
FOLINPUT(FOLLOWER)=ANALOG(b0n)*expression
‘ ********** advance/recede motion *************
FOLJOG(FOLLOWER)==1

DO
LOOP UNTIL FOLSYNC(FOLLOWER)=1

DO
FOLSYNCDIST(FOLLOWER)=expression
FOLOFFSETDIST(FOLLOWER)=expression
FOLOFFSET(FOLLOWER)=expression

DO
LOOP UNTIL MOTIONSTATE(FOLLOWER)=32

 ‘cut material statements (in synchronization)

DO
LOOP UNTIL MOTIONSTATE(FOLLOWER)<>32

LOOP UNTIL EXIN(100)=1

DO : LOOP UNTIL FOLSYNC(FOLLOWER)=1
STOP(FOLLOWER)
WAITDONE(FOLLOWER)
‘ *********** Follower move cycle *************
FOLMOVE(FOLLOWER)=expression
WAITDONE(FOLLOWER)
‘ ******* Follower mark registration cycle ********
 REGLIMIT(FOLLOWER)=expression
FOLMOVEREG(FOLLOWER)=expression
WAITDONE(FOLLOWER)

8.1.7 – Distance Measurements

The distance between items can be measured by
using the combination of the CAPTURE, CAPPOS
and DELTACAPPOS commands. These commands
can be helpful when uniform spacing between items
is required.

The CAPTURE command arms a position capture
cycle or returns the current capture status. The
captured position can be read via the CAPPOS
command. The distance between capture positions
can be read via the DELTACAPPOS command.

Command Syntax:
CAPTURE(axis)=exp
CAPTURE=exp1, … , exp8
CAPTURE(axis, … , axis)=exp, … , exp
CAPTURE(axis) – used in an expression

axis specifies the number of the axis.

exp specifies the trigger condition.

Command Syntax:
CAPPOS(axis) – used in an expression

axis specifies the number of the axis.

Command Syntax:
DELTACAPPOS(axis) – used in an expression

axis specifies the number of the axis.

210 Following for MX2000 version 4.0

8.1.8 - Cut to length Example

The cutting cycle requires that the material and
cutter be in synchronization when the material is
being cut and that the cutter be returned to the next
cutting position.

Example: The material is to be cut in 11 units
lengths. The cutting portion of the cycle will take 1
second and the material is moving at 1 unit/second.
The FOLRATIO is assumed to be 1.0.

This cutting cycle is accomplished by using the
FOLOFFSET command. The FOLOFFSET cycle
consists of a synchronization section
(FOLSYNCDIST) and offset travel section

(FOLOFFSET and FOLOFFSETDIST). The
FOLSYNCDIST command is used to define the
material cutting distance and the FOLOFFSET,
FOLOFFSETDIST for defining the next cutting
position.

The cut length is the summation of the
FOLSYNCDIST and the FOLOFFSETDIST
distances. This is the incremental distance traveled
by the master during the cycle.

The FOLOFFSET distance is the negation of the cut
length. This is the recede distance traveled by the
follower during the offset cycle.

Cut to length Cycle

Fig 1. Shows the Velocity Profile for this Fig 2. Shows the Positional Profile for this
 application application.

Ave Vel = -(11/10) + 1 = -.1 (-10%)
Peak Vel = (-.1 * 2) – 1 = -1.2 (-120%)
Max + direction distance traveled =
(.5 * (1/(1 + .1)) * (10/4)) + 1 = +2.136 units
Max – direction distance traveled =
- (.5 * (1/(1 + .1)) * (10/4)) = -1.136 units

Notes:
1) The cutting position is considered the 0
position on the Positional Profile.
2) The longest cut length creates the maximum
distance excursion around the cutting position.
3) The shortest cut length creates the highest
Peak Velocity.

Ave Vel

max + direction
distance

max - direction
distance

FOLOFFSETDIST/4

FOLOFFSET start FOLOFFSET end

Peak Vel

FOLMINRATIO

Cut Length

Ave Vel = - (cut length / FOLOFFSETDIST) + 1
Peak Vel = (Ave Vel * 2) - 1
max + direction distance = (.5*(1/(1+abs(Ave Vel))*(FOLOFFSETDIST/4))+FOLSYNCDIST
max - direction distance = - (.5 * (1/(1+abs(Ave Vel)) * (FOLOFFSETDIST/4))

FOLSYNCDIST

Master
Velocity

100%

0%

M aster
Follow er

D istance

Tim e

0-2 -1 1 2 3 4 5 6 7 8 9 10 11

FOLSYNCDIST=1

FOLO FFSETDIST=10

FOLO FFSET= -11

FOLRATIO=0

0 Velocity

0 Velocity

FOLOFFSET
STAR T

FOLOFFSET
End

FOLOFFSETDIST
END

FOLSYNCDIST

Following for MX2000 version 4.0 211

8.1.8.1 - Cut to Length Program Example

#DEFINE MASTER 1 ‘master axis number
#DEFINE FOLLOWER 2 ‘follower axis number
#DEFINE SYNC_DIST_FLAG 32 ‘wait for Sync distance
#DEFINE CUT_LENGTH 11 ‘material cutting length
#DEFINE IN_SYNC_DIST 1 ‘distance master travels in sync with follower

‘********* initialize follower parameters ************************
ABSPOS(MASTER,FOLLOWER)=0,0 ‘ set starting position to 0
PROFILE(FOLLOWER)=16 ‘ profile set to S Curve with setting of 16
FOLRATIO(FOLLOWER)=1.0 ‘ follow at 100% of master velocity
FOLTRIG(FOLLOWER)=0 ‘ no trigger required
FOLSTARTDIST(FOLLOWER)=0 ‘ no delay distance
FOLACCDIST(FOLLOWER)=1 ‘ master travels 1 unit before follower matches master velocity
FOLDCCDIST(FOLLOWER)=1 ‘ master travels 1 unit before follower stops
FOLSYNCDIST(FOLLOWER)=IN_SYNC_DIST ‘distance master travels in sync with follower
FOLMINRATIO(FOLLOWER)=-1.5 ‘ offset velocity allowed to reverse up to 150% of master
SPEED(MASTER)=1 ‘ master velocity 1 units/sec

‘******** define and activate follower axis **********************
JOG(MASTER)=1 ‘ start master axis
FOLINPUT(FOLLOWER)=ACTSPD(MASTER)
FOLJOG(FOLLOWER)=1 ‘ follow in the same direction as master source

DO : LOOP UNTIL FOLSYNC(FOLLOWER)=1 ‘wait for initial velocity synchronization

‘******** perform cut to length cycle ***************************
DO

FOLOFFSETDIST(FOLLOWER) = CUT_LENGTH – IN_SYNC_DIST ‘ setup offset cycle
FOLOFFSET(FOLLOWER) = -CUT_LENGTH ‘ command offset cycle

‘***** wait for offset cycle in synchronization portion to begin *****
DO : LOOP UNTIL MOTIONSTATE(FOLLOWER) = SYNC_DIST_FLAG

 ‘ Material cutting statements
‘***** wait for offset portion of cycle to begin *********
DO : LOOP UNTIL MOTIONSTATE(FOLLOWER) <> SYNC_DIST_FLAG

LOOP UNTIL EXIN(101)=1 ‘ exit on stop request

‘****** cut to length cycle termination requested *******
‘****** wait for velocity synchronization *****
DO : LOOP UNTIL FOLSYNC(FOLLOWER) = 1

‘******* stop follower and wait for motion stopped **********************
‘******* follower moves FOLSYNCDIST before deceleration occurs ********
STOP(FOLLOWER)
WAITDONE(FOLLOWER)

‘******* stop master and wait for motion stopped **********************
STOP(MASTER)
WAITDONE(MASTER)

‘******** move to starting position of follower ***********************
POSMODE(FOLLOWER)=1
MOVE(FOLLOWER)=0
WAITDONE(FOLLOWER)
END

212 Following for MX2000 version 4.0

8.1.9 - Rotating Knife Examples

A knife located on the follower axis is synchronized
with the material controlled by the master axis. The
knife is located at 12 o’clock initially and its cutting
area is located 36° on each side of 6 o’clock. Thus
the Knife must be in synchronization with the master
in the material cutting area. This system is set up
such that one revolution of the master and follower
axes is equivalent to 1 unit. The rotating knife axis is
not allowed to reverse for safety purposes.

The FOLACCDIST command value is used to
synchronize the Knife with material at startup. This
is accomplished by setting the FOLACCDIST to
twice the distance required to move the follower the
initial 144° ((144/360)*2= .8 units) to the cutting
area.

The FOLSYNCDIST command is used to control
the cutting area of the knife. Since 72° of cutting
area is required the FOLSYNCDIST is set to
(72/360) .2 units.

The FOLOFFSET command controls the moving of
the knife to the new cutting position. Thus the
FOLOFFSET = (1 – cut length)) and varies with
different cut lengths. The FOLOFFSET command
can create an advance or recede cycle depending on
the cut length.

The cut length is controlled by the distance traveled
by FOLSYNCDIST + FOLOFFSETDIST. Thus the
FOLOFFSETDIST = cut length – FOLSYNCDIST
and varies with different cut lengths.

The FOLMINRATIO command controls the
minimum speed allowed by the follower during an
Offset cycle. Since the follower axis is not allowed
to reverse direction the FOLMINRATIO must be set
to 0. This command comes into play whenever cut
length is greater than 1.

The FOLMAXRATIO command controls the
maximum speed allowed by the follower during an
Offset cycle. This command comes into play
whenever the cut length is less than 1. The
maximum attainable speed for the follower axis
limits the minimum cutting distance in this
application. Although this speed can be limited by
the FOLMAXRATIO the slope of the
acceleration/deceleration becomes steeper as the cut
distance becomes shorter.

The FOLMAXRATIO value must be set in between
the instantaneous rate and the triangular rate that is
calculated as follows:

Instantaneous rate = FOLRATIO *
((FOLOFFSET / FOLOFFSETDIST) + 1)

Triangular rate = FOLRATIO *
(((FOLOFFSET / FOLOFFSETDIST) * 2) + 1)

where :
FOLOFFSET = 1 – cut length
FOLOFFSETDIST = cut length – FOLSYNCDIST

8.1.9.1 Rotating Knife Cycle

When a FOLJOG is commanded the follower axis
ramps up to match the master velocity. The distance
traveled by the follower is .4 units (144°). It is now
in position 1 of the Rotary Knife Cycle. This is the
starting position for cutting the material.

An offset cycle is commanded and the follower and
master move .2 units in synchronization, 72° of
motion on the follower axis. The material is cut
during this portion of the cycle. It is now in position
2 of the Rotary Knife Cycle.

The offset portion of the cycle is now executed. The
master moves the FOLOFFSETDIST distance and
the follower end up at the starting position for
cutting the material (144°). It is now in position 3 of
the Rotary Knife Cycle. The material has now
moved the cut length.

This cutting cycle continues until EXIN(101)=1.
Then the program now waits for the last offset cycle
to complete. It is now in position 3 of the Rotary
Knife Cycle. A follower axis stop is now
commanded.

Both axes now travel the FOLSYNCDIST. It is now
in position 2 of the Rotary Knife Cycle.

The follower now decelerates to a stop. The distance
traveled by the follower is .4 units (144°). This puts
the knife back at 12 o’clock, which is the starting
position.

The master axis is now commanded to stop ending
the cutting cycle.

Following for MX2000 version 4.0 213

Advance Advance Advance

Recede Recede Recede

Master
Velocity

100%

200% FOLMAXRATIO

FOLMINRATIO0%

Program Start Program End

STOP

1 2 2 2 2

333

4

After
FOLDCCDIST

&
End of Program

(4)

Start of Program

After
FOLOFFSETDIST

&
FOLOFFSET

(3)

After
FOLSYNCDIST

(2)

After Initial
FOLACCDIST

(1)

Rotary Knife Cycle

214 Following for MX2000 version 4.0

Example 1: Material is cut in .7 units lengths and the knife cutting area is 72° (.2 units).
FOLRATIO 1
FOLSYNCDIST (72/360) = .2
FOLOFFSET .3 (1 – cut length)
FOLOFFSETDIST .5 (cut length – FOLSYNCDIST)
Instantaneous rate = ((.3 / .5) + 1) * 1 = 1.6 (160%)
Triangular rate = (((.3 / .5) * 2)) + 1 = 2.2 (220%)
FOLMAXRATIO 2 (1.6 to 2.2)

Distance traveled by follower during offset is always (1 – cut length)

Example 2: Material is cut in 2.2 unit lengths and the knife cutting area is 72° (.2 units).
FOLRATIO 1
FOLSYNCDIST .2
FOLOFFSET -1.2 (1 – cut length)
FOLOFFSETDIST 2.0 (cut length – FOLSYNCDIST)
FOLMINRATIO 0

Distance traveled by follower during offset is always (1 – cut length)

FO LO FFS E TD IS T
d is tance m aste r trave ls

fo llow er a lw ays advances
(1 - cu t leng th)

cu t leng th

FO LM A X R A TIO (200%)

M aste r V e loc ity (100%)

FO LS Y N C D IS T
d is tance bo th trave l

FOLOFFSETDIST
distance master travels

Follower always recedes
(1 - cut length)

FOLSYNCDIST

0%

100%

cut length

FOLMINRATIO

Master
Velocity

Following for MX2000 version 4.0 215

8.1.9.2 - Rotating Knife Program Example 1 (advance cycle)

#DEFINE MASTER 1 ‘master axis number
#DEFINE FOLLOWER 2 ‘follower axis number
#DEFINE IN_SYNC 8 ‘wait for in sync state
#DEFINE SYNC_DIST_FLAG 32 ‘wait for Sync distance state
#DEFINE CUT_LENGTH .7 ‘material cutting length

‘********* initialize follower parameters *************************
FOLSYNCDIST(FOLLOWER)=72/360 ‘ distance the master must travel for material to be cut
ABSPOS(MASTER,FOLLOWER)=0,0 ‘set position to 0
PROFILE(FOLLOWER)=16 ‘ profile set to S Curve with a setting of 16
FOLRATIO(FOLLOWER)=1.0 ‘ follow at 100% of master velocity
FOLTRIG(FOLLOWER)=0 ‘ no trigger required
FOLSTARTDIST(FOLLOWER)=0 ‘ no delay distance
FOLACCDIST(FOLLOWER)=(144/360) * 2 ‘align knife with cutting surface
FOLDCCDIST(FOLLOWER)=(144/360) * 2 ‘ align knife at 12 o’clock
FOLMAXRATIO(FOLLOWER)=2.0 ‘ maximum offset velocity is 200% of master
SPEED(MASTER)=5 ‘ master velocity set to 5 units/sec

‘********* define and activate follower axis ***********************
JOG(MASTER)=1 ‘ start master axis
FOLINPUT(FOLLOWER)=ACTSPD(MASTER)
FOLJOG(FOLLOWER)=1 ‘ follow master source in same direction

DO : LOOP UNTIL FOLSYNC(FOLLOWER)=1 ‘wait for initial velocity synchronization

DO
FOLOFFSETDIST(FOLLOWER)= CUT_LENGTH - FOLSYNCDIST(FOLLOWER) ‘setup offset cycle
FOLOFFSET(FOLLOWER)= 1 - CUT_LENGTH ‘command offset cycle

‘******** wait for offset cycle in synchronization portion to begin ********
DO : LOOP UNTIL MOTIONSTATE(FOLLOWER)=SYNC_DIST_FLAG
‘******** wait for offset portion of cycle to begin ************************
DO:LOOP UNTIL MOTIONSTATE(FOLLOWER) <> SYNC_DIST_FLAG

LOOP UNTIL EXIN(101)=1 ‘ wait for stop input

‘********* rotary cutter cycle termination request *********************
‘********* wait for velocity synchronization *************************
DO:LOOP UNTIL MOTIONSTATE(FOLLOWER)=IN_SYNC

‘******** stop follower and wait for motion to stop
‘******* follower moves FOLSYNCDIST before deceleration occurs ********
STOP(FOLLOWER) ‘ motion stops after master travels the FOLDCCDIST.
WAITDONE(FOLLOWER) ‘ wait for follower axis to stop

‘******** stop master and wait for motion to stop
STOP(MASTER)
WAITDONE(MASTER)
END

216 Following for MX2000 version 4.0

8.1.9.3 - Rotating Knife Program Example 2 (recede cycle)

#DEFINE MASTER 1 ‘master axis number
#DEFINE FOLLOWER 2 ‘follower axis number
#DEFINE IN_SYNC 8
#DEFINE SYNC_DIST_FLAG 32 ‘wait for Sync distance state
#DEFINE CUT_LENGTH 2.2 ‘material cutting length in units

‘******* initialize follower parameters ************************
FOLSYNCDIST(FOLLOWER)=72/360 ‘ distance the master must travel for material to be cut
ABSPOS(MASTER,FOLLOWER)=0,0 ‘ set position to 0
PROFILE(FOLLOWER)=16 ‘ profile set to S Curve with a setting of 16
FOLRATIO(FOLLOWER)=1 ‘ follow at 100% of master velocity
FOLTRIG(FOLLOWER)=0 ‘ no trigger required
FOLSTARTDIST(FOLLOWER)=0 ‘ no delay distance
FOLACCDIST(FOLLOWER)=(144/360) * 2 ‘ align knife with cutting surface 144° from start
FOLDCCDIST(FOLLOWER)=(144/360) * 2 ‘ align knife at 12 o’clock
FOLMINRATIO(FOLLOWER)=0 ‘ offset cycle not allowed to reverse
SPEED(MASTER)=5 ‘ master velocity set to 5 units/sec

‘********* define and activate follower axis ***********************
JOG(MASTER)=1 ‘ start master axis
FOLINPUT(FOLLOWER)=ACTSPD(MASTER)
FOLJOG(FOLLOWER)=1 ‘ follower in the master direction

‘********* wait for initial velocity synchronization ******************
DO : LOOP UNTIL FOLSYNC(FOLLOWER)=1

‘********* perform rotary cutter cycle ****************************
DO

FOLOFFSETDIST(FOLLOWER)= CUT_LENGTH - FOLSYNCDIST(FOLLOWER) ‘setup offset cycle
FOLOFFSET(FOLLOWER)= 1 - CUT_LENGTH ‘command offset cycle

‘******** wait for offset cycle in synchronization portion to begin ********
DO:LOOP UNTIL MOTIONSTATE(FOLLOWER)=SYNC_DIST_FLAG
‘******** wait for offset portion of cycle to begin ************************

DO:LOOP UNTIL MOTIONSTATE(FOLLOWER) <> SYNC_DIST_FLAG

LOOP UNTIL EXIN(101)=1 ‘ wait for stop input

‘********* rotary cutter cycle termination request *********************
‘********* wait for velocity synchronization *************************
DO:LOOP UNTIL MOTIONSTATE(FOLLOWER)=IN_SYNC

‘******** stop follower and wait for motion to stop
‘******* follower moves FOLSYNCDIST before deceleration occurs ********
STOP(FOLLOWER)
WAITDONE(FOLLOWER)

‘******** stop master and wait for motion to stop
STOP(MASTER)
WAITDONE(MASTER)
END

Following for MX2000 version 4.0 217

8.1.10 - Gear Box Following Example

This type of application only requires a ratio between 2 axes that must be synchronized.

Program Example
This example simulates a gearbox with a 5:1 reduction.

#DEFINE MASTER 1
#DEFINE FOLLOWER 2

‘******* initialize master axis and follower parameters **********
ACCEL(MASTER)=50 ‘ master axis acceleration = 50 units/sec2

DECEL(MASTER)=50 ‘ master axis deceleration = 50 units/sec2

SPEED(MASTER)=5 ‘ master axis speed = 5 units/sec
PROFILE(MASTER,FOLLOWER)=16,16 ‘ profile set to S Curve with a setting of 16
ABSPOS(MASTER,FOLLOWER)=0,0 ‘ set position to 0
FOLRATIO(FOLLOWER)=0.2 ‘ follows at 20% of master velocity
FOLSTARTDIST(FOLLOWER)=0 ‘ no delay distance
FOLACCDIST(FOLLOWER)=0 ‘ no acceleration distance
FOLDCCDIST(FOLLOWER)=0 ‘ no deceleration distance
FOLTRIG(FOLLOWER)=0 ‘ no following trigger required

‘********* define and activate follower axis ***********************
FOLINPUT(FOLLOWER)=ACTSPD(MASTER) ‘follower cycle definition
FOLJOG(FOLLOWER)=1 ‘ start follower axis

‘******** Execute main program *******************************
DO

‘ Program statements
LOOP UNTIL EXIN(100)=1 ‘ wait for program end

STOP(FOLLOWER) ‘ motion stops
WAITDONE(FOLLOWER) ‘ wait for FOLLOWER axis to stop
END

218 Following for MX2000 version 4.0

8.1.11 – Following Command Listing

ACTSPD Trajectory Parameter

ACTION: Returns the current commanded velocity of an axis in
Units/second.

PROGRAM SYNTAX: ACTSPD(axis) - used in an expression

REMARK: This command can be used in conjunction with a FOLINPUT
command to specify the master source. It can also be used to
monitor the current commanded velocity of an axis.

EXAMPLES: FOLINPUT(1,3)=ACTSPD(2)
‘Sets the current commanded velocity of axis 2 as the master
velocity. Axis 1 and axis 3 are follower axes.

axspd=ACTSPD(2)
‘Sets variable axspd to the current commanded velocity of axis 2.

ENCSPD Trajectory Parameter

ACTION: Returns the current encoder speed in units/second.

PROGRAM SYNTAX: ENCSPD(axis) - used in an expression

REMARK: The encoder speed is monitored at the sample rate selected for the
axis. This results in an encoder count/sample time value that is
converted to units/second. Since this value is digital and not
filtered a velocity, deviations will result.

EXAMPLE: X=ENCSPD(2)
Sets variable X to the current encoder speed of axis 2.

outputspd=0 ‘ initial value
FOR x=1 TO 10 ‘ number of samples
 outputspd=outputspd+ENCSPD(1) ‘ sample update
 wait=.001 ‘ sample time
NEXT x
outputspd=outputspd/10 ‘ filtered value

FOLINPUT(1,3)=ENCSPD(2)
‘ Sets the current encoder velocity of axis 2 as the master source for following. Axis 1 and axis 3 are
follower axes.

Following for MX2000 version 4.0 219

FOLINPUT Following Parameter
ACTION: This command specifies the follower axes and the master velocity

source.

PROGRAM SYNTAX: FOLINPUT(axis, ... ,axis)= expression

The axis specifies the follower axes (1-8). These axes must be
assigned to the task the FOLINPUT command is used.

The expression specifies the master velocity source for the
follower. The expression may be an equation, variable, command
or a constant. The mathematical operators that are allowed in the
expression are limited to multiply, add and subtract. If a variable is
used it can be a LOCAL or COMMON variable. The commands
allowed in the expression are limited to: VELOCITY which
specifies the velocity of a task, SPEED(axis) which specifies the
target velocity of the specified axis, ACTSPD(axis) which
specifies the current commanded velocity of the specified axis,
ENCSPD(axis) which specifies the encoder (mechanical) velocity
of the specified axis, ANALOG(b0n) which specifies the analog
input port to use in the expression and ABSPOS(axis) the current
absolute position of an axis.

EXAMPLES: FOLINPUT(1, 3)=(analog(101) * .1 * DevFreq) +VELOCITY
Analog follow axis board 1 "A input". The follower axes are axis
1 and axis 3. The VELOCITY command controls the center
frequency and variable DevFreq controls the 10 volt deviation
frequency from the center frequency. The sign of the Analog input
voltage control how the deviation frequency is applied to the center
frequency (add or subtract). The commands ACTSPD, SPEED or
ABSPOS can be substituted for the VELOCITY in the expression
if desired.

FOLINPUT(1,3)=ENCSPD(2)
encoder follow axis 1 and axis 3 using the encoder input of axis 2
as the master velocity.

FOLINPUT(2,3)=ACTSPD(1)
Axis 2 and axis 3 follows the actual commanded speed of axis 1.
Note: Commands VELOCITY(1), SPEED(1) or ABSPOS(1) can
be substituted for ACTSPD(1).

FOLINPUT(2,3)= MasterSpd
Axis 2 and axis 3 follows the numeric value of variable MasterSpd.
A numeric value can also be substituted for variable MasterSpd if
desired.

220 Following for MX2000 version 4.0

FOLTRIG Following Parameter
ACTION: Defines the follower starting trigger for motion.

PROGRAM SYNTAX: FOLTRIG(axis)=expression
FOLTRIG=expression1, ... , expression8
FOLTRIG(axis, ... ,axis)=expression, ... , expression
FOLTRIG(axis) - used in an expression

REMARKS: The axis specifies the number of the following axis (1-8).

The expression specifies the starting trigger.

Value Specified Trigger

0 No trigger

1 Event 1 on closure

2 Event 2 on closure

3 Event 1 on opening

4 Event 2 on opening

This command is related to the FOLSTARTDIST command as
follows. The follower will not start motion until the
FOLSTARTDIST has been traveled by the master source once the
trigger condition of the FOLTRIG command has been met.

EXAMPLES: FOLTRIG(1)=2
sets event 2 on closure as the starting trigger for axis 1.

FOLTRIG=0,,3
sets no trigger for axis 1, sets event 1 on opening as starting trigger
for axis 3.

FOLTRIG(1,3)=0,3
sets no trigger for axis 1, sets event 1 on opening as starting trigger
for axis 3.

FOLSTARTDIST

FOLTRIG condition met

FOLJOG or FOLMOVE or FOLEMOVEREG
 commanded

FOLACCDISTMaster
Velocity

100%

Follower
Velocity Profile

Following for MX2000 version 4.0 221

FOLSTARTDIST Following Parameter
ACTION: Specifies a master distance that is used as a delay distance for

starting motion. The distance delay starts when the specified
starting trigger of FOLTRIG command occurs.

PROGRAM SYNTAX: FOLSTARTDIST(axis)=expression
FOLSTARTDIST=expression1, ... , expression8
FOLSTARTDIST(axis) - used in an expression
FOLSTARTDIST(axis,axis)=expression, ... , expression

REMARKS: The axis specifies the number of the following axis (1-8).

The expression specifies the master distance traveled in units.

This command is related to the FOLTRIG command as follows.
The follower will not start motion until the FOLSTARTDIST has
been traveled by the master source once the trigger condition of the
FOLTRIG command has been met.

EXAMPLE: FOLSTARTDIST(1)=1.5
axis 1 master distance delay is 1.5 units before starting motion.

FOLSTARTDIST=1,,3
axis 1 master distance delay is 1 unit and axis 3 master distance
delay is 3 units before starting motion.

FOLSTARTDIST(1,4)=1,3
axis 1 master distance delay is 1 unit and axis 4 master distance
delay is 3 units before starting motion.

FOLSTARTDIST

FOLTRIG condition met

FOLJOG or FOLMOVE or FOLEMOVEREG
 commanded

FOLACCDISTMaster
Velocity

100%

Follower
Velocity Profile

222 Following for MX2000 version 4.0

FOLACCDIST Following Parameter
ACTION: Specifies the master distance traveled for the follower to catch the

master velocity after follower motion begins.

PROGRAM SYNTAX: FOLACCDIST(axis)=expression
FOLACCDIST=expression1, ... , expression8
FOLACCDIST(axis, ... ,axis)=expression, ... , expression
FOLACCDIST(axis) - used in an expression

REMARKS: The axis specifies the number of the following axis (1-8).

The expression specifies the master distance to travel in Units.

The follower axis will start motion once the trigger condition is
met and the master distance specified by the FOLSTARTDIST
command is achieved. Once motion begins the follower will match
the master velocity in the specified master distance. The distance
traveled by the follower is 50% of the FOLACCDIST distance
times the FOLRATIO value.

EXAMPLES: FOLACCDIST(1)=1.5
axis 1 match the master velocity in 1.5 units after starting motion.

FOLACCDIST=1,,3
axis 1 match the master velocity in 1 unit and axis 3 match the
master velocity in 3 units after starting motion.

FOLACCDIST(1,4)=1,3
axis 1 match the master velocity in 1 unit, axis 4 match the master
velocity in 3 units after starting motion.

FOLSTARTDIST

FOLTRIG condition met

FOLJOG or FOLMOVE or FOLEMOVEREG
commanded

FOLACCDISTMaster
Velocity

100%

Follower
Velocity Profile

Following for MX2000 version 4.0 223

FOLDCCDIST Following Parameter

ACTION: Specifies the master distance traveled for the follower to attain a
velocity of zero from the current velocity.

PROGRAM SYNTAX: FOLDCCDIST(axis)=expression
FOLDCCDIST=expression1, ... , expression8
FOLACCDIST(axis, ... ,axis)=expression, ... , expression
FOLDCCDIST(axis) - used in an expression

REMARKS: The axis specifies the number of the following axis (1-8).

The expression specifies the master distance of travel in Units.

The follower axis will decelerate to a velocity of zero in the
specified master distance. The distance traveled by the follower is
50% of the FOLDCCDIST distance times the FOLRATIO value.

EXAMPLES: FOLDCCDIST(1)=1.5
axis 1 must stop from current velocity in 1.5 units.

FOLDCCDIST=1,,3
axis 1 must stop from the current velocity in 1 unit, axis 3 must
stop from the current velocity in 3 units

FOLDCCDIST(1,4)=1,3
axis 1 must stop from the current velocity in 1 unit, axis 4 must
stop from the current velocity in 3 units.

FOLDCCDIST

Master Velocity100%

0%

224 Following for MX2000 version 4.0

FOLRATIO Following Parameter
ACTION: Sets the ratio of the following axis to the master. A value of 1

represents 100% of the master.

PROGRAM SYNTAX: FOLRATIO(axis)=expression
FOLRATIO=expression1, ... , expression8
FOLRATIO(axis, ... ,axis)=expression, ... , expression
FOLRATIO(axis) - used in an expression

REMARKS: The axis specifies the number of the following axis (1-8).

The expression specifies the following axis ratio to the master.

If the FOLRATIO is changed during a follower motion the
follower will accelerate/decelerate to the new FOLRATIO at the
FOLRATIOINC rate.

EXAMPLES: FOLRATIO(2)=1.5
Sets axis 2 folratio to 150% of the master velocity.

FOLRATIO=1,,1.5
sets axis 1 folratio to 100% and axis 3 to 150% of the master
velocity.

FOLRATIO(1,3)=1,1.5
sets axis 1 folratio to 100% and axis 3 to 150% of the master
velocity.

FOLRATIO 50%

FOLRATIO 150%

FOLRATIO
changed

Master Velocity 100%

0%

Follower Velocity
Profile

FOLRATIOINC
rate

FOLRATIO acceleration tim e = (FOLRATIO(new) - FOLRATIO(old)) / FOLRATIO INC

Following for MX2000 version 4.0 225

FOLRATIOINC Following Parameter
ACTION: Specifies the acceleration rate for a folratio change during motion

in ratio increment per second.

PROGRAM SYNTAX: FOLRATIOINC(axis)=expression
FOLRATIOINC=expression1, ... , expression8
FOLRATIOINC(axis, ... , axis)=expression, ... , expression
FOLRATIOINC(axis) - used in an expression

REMARKS: The axis specifies the number of the following axis (1-8).

The expression specifies the ratio acceleration rate in ratio
increment per second.

Used in conjunction with the FOLRATIO command to specify the
acceleration rate for a FOLRATIO. If the FOLRATIO is changed
during a follower motion the follower will accelerate/decelerate to
the new FOLRATIO at the FOLRATIOINC rate.

EXAMPLES: FOLRATIOINC(1,3)=2,4
axis 1 FOLRATIO changes at a 200% rate every second and axis 3
FOLRATIO changes at a 400% rate every second.

FOLRATIOINC(2)=1
axis 2 FOLRATIO changes at a 100% rate every second.

FOLRATIOINC=2,,4
axis 1 FOLRATIO changes at a 200% rate every second and axis
3 FOLRATIO changes at a 400% rate every second.

FOLRATIO 50%

FOLRATIO 150%

FOLRATIO
changed

Master Velocity 100%

0%

Follower Velocity
Profile

FOLRATIOINC
rate

FOLRATIO acceleration time = (FOLRATIO(new) - FOLRATIO(old)) / FOLRATIOINC

226 Following for MX2000 version 4.0

 FOLJOG Following Motion

ACTION: Requests a Following axis jog cycle.

PROGRAM SYNTAX: FOLJOG(axis)=expression
FOLJOG=expression1 , ... , expression8
FOLJOG(axis, ... , axis)= expression, ... , expression

REMARKS: The axis specifies the number of the following axis (1-8).

The expression specifies the following axis to jog. If the
expression is negative the motion will take place in the opposite
direction of the master. The value of the expression is irrelevant.

EXAMPLES: FOLJOG(2)=1
Requests following axis 2 to start a Jog cycle in the same direction
of the master.

FOLJOG= 1,,-1
Requests following axis 1 to start a Jog cycle in the same direction
as the master and following axis 3 to start a Jog cycle in the
opposite direction of the master.

FOLJOG(1,3)=1,-1
requests following axis 1 to start a Jog cycle in the same direction
as the master and following axis 3 to start a Jog cycle in the
opposite direction of the master.

RELATED COMMANDS: FOLACCDIST
FOLDCCDIST
FOLINPUT
FOLTRIG
FOLRATIO
FOLSYNC
FOLSTARTDIST
MOTIONSTATE
FOLOFFSET
FOLOFFSETDIST
FOLSYNCDIST
STOP
FOLMAXRATIO
FOLMINRATIO

Following for MX2000 version 4.0 227

FOLMOVE Following Motion
ACTION: Request a Following axis move.

PROGRAM SYNTAX: FOLMOVE(axis)=expression
FOLMOVE=expression1 , ... , expression8
FOLMOVE(axis, ... , axis)=expression, ... ,expression

REMARKS: The axis specifies the number of the following axis (1-8).

The expression specifies the incremental move distance in units. If the
expression is negative the motion will take place in the opposite direction
of the master.

EXAMPLES: FOLMOVE(2)=10
requests following axis 2 to move 10 units and follow the master
direction.

FOLMOVE=-5,,10
request following axis 1 to move 5 unit in the opposite direction of the
master. Following axis 3 to move 10 units and follow the master
direction.

FOLMOVE(1,3)=-5,10
request following axis 1 to move 5 unit in the opposite direction of the
master. Following axis 3 to move 10 units and follow the master
direction.

RELATED COMMANDS: FOLACCDIST
FOLDCCDIST
FOLINPUT
FOLTRIG
FOLRATIO
FOLSYNC
FOLSTARTDIST
MOTIONSTATE

FOLMOVE

FOLACCDIST FOLDCCDIST

FOLMOVE
distance traveled

Master
Velocity

100%

228 Following for MX2000 version 4.0

FOLMOVEREG Following Motion
ACTION: Request a Following axis move registration cycle.

PROGRAM SYNTAX: FOLMOVEREG(axis)=expression
FOLMOVEREG=expression1 , ... , expression8
FOLMOVEREG(axis, ... , axis)=expression, ... , expression

REMARKS: The expression specifies the follower distance to move after the
registration trigger occurs.

If the expression is negative the motion will take place in the
opposite direction of the master.

The axis specifies the number of the following axis (1-8).

EXAMPLES: FOLMOVEREG(2)=10
following axis 2 movereg distance is 10 units.

FOLMOVEREG=5,,10
following axis 1 movereg distance is 5 units and following axis 3
movereg distance is 10 units.

FOLMOVEREG(1,3)=5,10
following axis 1 movereg distance is 5 units and following axis 3
movereg distance is 10 units.

RELATED COMMANDS: FOLACCDIST
FOLDCCDIST
FOLINPUT
FOLTRIG
FOLRATIO
FOLSYNC
FOLSTARTDIST
MOTIONSTATE

FOLMOVEREG

FOLACCDIST FOLDCCDIST

FOLMOVEREG
distance traveled

Master
Velocity

100%

trigger occured

Following for MX2000 version 4.0 229

STOP Motion Parameter
ACTION: Stops any motion with a control stop.

PROGRAM SYNTAX: STOP(axis)
STOP=expression1 , ... , expression8
STOP(axis, ... ,axis)

note: JOGSTOP can be substituted for STOP.

REMARKS: The axis specifies the number of the following axis (1-8).

This command will stop any motion using the DECEL value for
normal motion and FOLDCCDIST for following motion.

Any value for the expression will stop the designated axis.

The WAITDONE, DONE or BUSY commands are related to the
STOP command. One of these related commands should follow the
STOP command to assure that motion has stopped in the
designated axes before proceeding with program execution.

EXAMPLES: STOP(2)
requests following axis 2 to stop.
DO : LOOP UNTIL DONE(2)

STOP=1,,1
requests following axis 1 and axis 3 to stop.
WAITDONE(1,3)

STOP(1,3)
requests following axis 1 and axis 3 to stop.
DO : LOOP WHILE BUSY(1,3)

FOLSYNC Following Motion
ACTION: Returns the following sync status of the specified axis.

PROGRAM SYNTAX: FOLSYNC(axis) - used in an expression

REMARKS: The axis specifies the number of the following axis (1-8).

The value returned is either a 0 (out of sync) or 1 (in sync).

EXAMPLE: DO : LOOP UNTIL FOLSYNC(2)=1
wait for axis 2 to synchronize with master velocity.

DO : LOOP WHILE FOLSYNC(2)=0
wait for axis 2 to synchronize with master velocity.

230 Following for MX2000 version 4.0

MOTIONSTATE Trajectory Parameter
ACTION: Returns the motion state for an axis.

PROGRAM SYNTAX: MOTIONSTATE(axis) - used in an expression.

REMARKS: The motion states for a following cycle are:
 0 Following cycle Done.
 1 Waiting for Following Trigger.
 2 Waiting for master to move FOLSTARTDIST distance.
 4 Acceleration to Master Velocity in FOLACCDIST

distance.
 8 In Synchronization with master Velocity.
 16 Decelerating to Stop in FOLDCCDIST master distance.
 32 Offset command issued and Waiting for master to move

FOLSYNCDIST distance before starting the Offset
Acceleration.

 64 Offset Acceleration occurring.
128 At FOLMAXRATIO or FOLMINRATIO limit.
256 Offset Deceleration occurring.
512 Checking for pending Offset Cycle.

Wait
For Sync
Distance

(32)

Another
Offset

command
(512)

Offset
Accel
(64)

Constant
(8)

Offset
Constant

(128)

Offset
Decel
(256)

Wait
For

Distance
(2)

Done
(0)

Wait
for

Trigger
(1)

FOLTRIG

0 no trigger
1 Event 1 active
2 Event 2 active
3 Event 1 inactive
4 Event 2 inactive

FOLSTARTDIST

Trigger occured

FOLMOVE
FOLMOVEREG

FOLJOG

Decel
(16)

FOLDCCDIST
Accel

(4)
FOLACCDIST

Master moved decel
distance

Master traveled Start
Distance

Master traveled Accel
Distance

FOLSYNC

STOP

FOLOFFSET commanded

FOLSYNCDIST

No

Yes

Master moved FOLSYNCDIST
Distance

Master moved FOLOFFSETDIST distance
Follower moved FOLOFFSET distance

Following for MX2000 version 4.0 231

MOTIONSTATE continued

Motion state 0 (Done)
 No following motion is taking place or being commanded.

Motion state 1 (Wait for Trigger)
A following motion has been commanded and is waiting for the
specified trigger to occur. The trigger is specified by the FOLTRIG
command.

Motion state 2 (Waiting for Distance)
Waiting for the master delay distance to be completed. This master
distance traveled is specified by the FOLSTARTDIST command.

Motion state 4 (ACCEL)
The follower motion has started and is accelerating to the master
velocity. The master distance traveled during acceleration is specified
by the FOLACCDIST command.

Motion state 8 (Constant)
The follower is in synchronization with the master velocity and no
offset cycle has been commanded. This state sets the return state of
the FOLSYNC command to a one.

Motion state 16 (DECEL)
The follower is decelerating to a stop.

Motion state 32 (Wait For Sync Distance)
The follower and master velocities are in synchronization. This is the
first portion of the offset cycle. The master travels the
FOLSYNCDIST distance during this portion of the offset cycle.

Motion state 64 (Offset Accel)
The follower is accelerating to the FOLMAXRATIO velocity during
an advance-offset cycle or decelerating to the FOLMINRATIO
velocity during a recede-offset cycle. The master is executing the
FOLOFFSETDIST distance.

Motion state 128 (Offset Constant)
The follower is running at the FOLMAXRATIO or FOLMINRATIO
velocity. The master is still executing the FOLOFFSETDIST distance.

Motion state 256 (Offset Decel)
The follower is decelerating from the FOLMAXRATIO value during
an advance-offset cycle or accelerating from the FOLMINRATIO
value during a recede-offset cycle. The offset cycle will be completed
when the master velocity times the FOLRATIO value is reached. The
master is still executing the FOLOFFSETDIST distance and is
completed when the offset cycle is completed.

Motion state 512 (Another Offset command)
The follower has just completed an offset cycle and is checking to see
if a pending offset cycle is requested. If a pending offset cycle is
requested will proceed to motion state 32 otherwise, will go to motion
state 8.

232 Following for MX2000 version 4.0

FOLMAXRATIO Following Parameter
ACTION: Sets or returns the maximum allowable following axis speed

during an offset advance cycle.

PROGRAM SYNTAX: FOLMAXRATIO(axis)=expression
FOLMAXRATIO=expression1 , ... , expression8
FOLMAXRATIO(axis, ... ,axis)=expression, ... , expression
FOLMAXRATIO(axis) - used in an expression

REMARKS: The expression sets the maximum speed ratio to the master. This
value must be larger than the FOLRATIO of the axis. The value
must be a positive number.

The axis specifies the number of the following axis (1-8).

EXAMPLES: FOLMAXRATIO(2) = 3
sets the folmaxspeed of axis 2 to 300% of the master.

FOLMAXRATIO=.5,,1
sets the folmaxratio of axis 1 to 50% of master and folmaxratio of
axis 3 to 100% of the master.

FOLMAXRATIO(1,3)=.5,1
sets the folmaxratio of axis 1 to 50% of master and folmaxratio of
axis 3 to 100% of the master.

Master Velocity
100%

FOLMAXRATIO
200%

FOLSYNCDIST

FOLOFFSETDIST

FOLLOW ING OFFSET
ADVANCE CYCLE

Following for MX2000 version 4.0 233

FOLMINRATIO Following Parameter
ACTION: Sets or returns the minimum allowable following axis speed during

a recede offset cycle.

PROGRAM SYNTAX: FOLMINRATIO(axis)=expression
FOLMINRATIO=expression1 , ... , expression8
FOLMINRATIO(axis, ... ,axis)=expression, ... , expression
FOLMINRATIO(axis) - used in an expression

REMARKS: The expression sets the minimum speed ratio to the master. This
value must be less than the FOLRATIO of the axis and can be a
negative value.

If the value is a negative number the following axis will be allowed
to reverse the direction during a recede offset cycle.

The axis specifies the number of the following axis (1-8).

EXAMPLES: x=FOLMINRATIO(axis)
Sets the expression to the current FOLMINRATIO of the specified
axis.

FOLMINRATIO(2)= -2.0
sets the following minimum speed for axis 2 to -200% which
allows an offset recede cycle to reverse directions.

FOLMINRATIO=.1,,0
sets the folminratio of axis 1 to 10% of master and folminratio of
axis 3 to 0% of the master.

FOLMINRATIO(1,3)=.1,0
sets the folminratio of axis 1 to 10% of master and folminratio of
axis 3 to 0% of the master.

Master Velocity
100%

FOLMINRATIO
0%

FOLSYNCDIST

FOLOFFSETDIST

FOLLOW ING OFFSET
RECEDE CYCLE

234 Following for MX2000 version 4.0

FOLOFFSET Following Parameter
ACTION: Defines a following incremental offset distance from the current

position.

PROGRAM SYNTAX: FOLOFFSET(axis)=expression
FOLOFFSET=expression1, ... , expression8

REMARKS: The expression specifies the following axis offset in units.

The axis specifies the number of the following axis (1-8).

Used in conjunction with FOLSYNCDIST, FOLOFFSETDIST,
FOLMAXRATIO and FOLMINRATIO to advance or recede the
follower axis. The FOLSYNCDIST defines the master delay
distance travel in synchronization after an FOLOFFSET command
is issued. The FOLOFFSETDIST defines the master distance
traveled while the FOLOFFSET is being performed. The
FOLMAXRATIO defines the upper velocity limit for an advance
cycle. The FOLMINRATIO defines the lower limit velocity for a
recede cycle.

The FOLOFFSET command only works during a FOLJOG cycle .

Follower Position
(Advance cycle)

FOLOFFSET(axis) = 3
FOLOFFSETDIST(axis) = 4

Follower Position
(Recede cycle)

FOLOFFSET(axis) = -3
FOLOFFSETDIST(axis) = 4

Tim e

Position
(units)

1 2 3 4 5 6 7 8 9

FOLSYNDIST(axis) = 1

Master Position

Following for MX2000 version 4.0 235

FOLOFFSET continued

EXAMPLES: FOLOFFSET(1,3)=1,-1
advance axis 1 one unit and recede axis 3 one unit.

FOLOFFSET(2)=1
advance axis 2 one unit.

FOLOFFSET=1,,-1
advance axis 1 one unit and recede axis 3 one unit.

250%

Master
Velocity

100%

-50%

0%

FOLOFFSET(axis) = 3
FOLOFFSETDIST(axis) = 4

ADVANCE CYCLE

FOLOFFSET(axis) = -3
FOLOFFSETDIST(axis) = 4

RECEDE CYCLE

FOLSYNCDIST(axis) = 1

236 Following for MX2000 version 4.0

FOLOFFSETDIST Following Parameter
ACTION: Sets or returns the master distance traveled for a FOLOFFSET

command.

PROGRAM SYNTAX: FOLOFFSETDIST(axis)=expression
FOLOFFSETDIST=expression1, ... , expression8
FOLOFFSETDIST(axis, ... , axis)=expression, ... , expression
FOLOFFSETDIST(axis) - used in an expression

REMARKS: The axis specifies the number of the following axis (1-8).

The expression specifies the master distance traveled in Units.

Used in conjunction with the FOLOFFSET command to specify
the master distance traveled during a FOLOFFSET command.

EXAMPLES: FOLOFFSETDIST(1,3)=1,1
axis 1 master distance is one unit and axis 3 master distance is one
unit.

FOLOFFSETDIST(2)=1
axis 2 master distance is one unit.

FOLOFFSETDIST=1,,1
axis 1 master distance is one unit and axis 3 master distance is one
unit.

Following for MX2000 version 4.0 237

FOLSYNCDIST Following Parameter
ACTION: Specifies the master distance to travel when a FOLOFFSET

command is issued. This distance will be traveled before the
FOLOFFSET command is executed.

PROGRAM SYNTAX: FOLSYNCDIST(axis)=expression
FOLSYNCDIST(axis)=expression1, ... , expression8
FOLSYNCDIST(axis) - used in an expression
FOLSYNCDIST(axis, ... ,axis)=expression, ... ,expression

REMARKS: The axis specifies the number of the following axis (1-8).

The expression specifies the master distance traveled.

Used in conjunction with the FOLOFFSET command to specify
the in synchronization master distance traveled during a
FOLOFFSET cycle.

EXAMPLES: FOLSYNCDIST(2)=.5
sets the master distance traveled for axis 2 to .5 units.

FOLSYNCDIST(1,3)=.5,.6
sets the master distance traveled for axis 1 to .5 units and the
master distance traveled for axis 3 to .6 units

FOLSYNCDIST=.5,,.6
sets the master distance traveled for axis 1 to .5 units and the
master distance traveled for axis 3 to .6 units

250%

Master
Velocity

100%

-50%

0%

FO LOFFSET(axis) = 3
FO LOFFSETDIST(axis) = 4

ADVANCE CYCLE

FO LOFFSET(axis) = -3
FO LOFFSETDIST(axis) = 4

RECEDE CYCLE

FO LSYNCDIST(axis) = 1

238 Following for MX2000 version 4.0

8.1.11 - Follower Exercise

1) Fill in the Motion states and Following Commands on the following sheet. Put the Following
command letter inside the Parenthesis and the motion state number in between brackets. All of the
Following commands and Motion states are used at least once.

2) Write a user program that will generate the velocity profile on the following sheet. The master axis
should be stable before the follower axis is allowed to move.

3) Set up data logging to prove that the profile will be generated.

‘********************* Follower will follow the Master axis speed at 100% ***************************
‘********************* Follower triggers when EVENT 1 is active **********************************
#DEFINE MASTER 2
#DEFINE FOLLOWER 1
SPEED(MASTER)=5 ‘ Master velocity is 5 units/sec
ACCEL(MASTER)=50 ‘ Master acceleration is 50 units/sec2

DECEL(MASTER)=50 ‘ Master deceleration is 50 units/sec2

DRVREADY(FOLLOWER,MASTER)=1,1 ‘ drives not required to run program
JOG(MASTER)=1 ‘START MASTER AXIS
DO : LOOP UNTIL ACTSPD(MASTER) >= 4.9 ‘WAIT FOR MASTER TO ACHIEVE SPEED

STOP(FOLLOWER) ‘ follower axis stop
WAITDONE(FOLLOWER) ‘ wait for follower axis done
STOP (MASTER) ‘ master axis stop
WAITDONE(MASTER) ‘ wait for master axis done
END

Following for MX2000 version 4.0 239

 F
o

llo
w

in
g

 C
o

m
m

a
n

d
s

a
) F

O
L

A
C

C
D

IS
T

b
) F

O
L

D
C

C
D

IS
T

c) F
O

L
JO

G
d

) F
O

L
M

A
X

R
A

T
IO

e
) F

O
L

M
IN

R
A

T
IO

f) F
O

L
O

F
F

S
E

T
g

) F
O

L
O

F
F

S
E

T
D

IS
T

h
) F

O
L

S
T

A
R

T
D

IS
T

i) F
O

L
S

Y
N

C
j) F

O
L

S
Y

N
C

D
IS

T
k) F

O
L

T
R

IG
l) S

T
O

P

 M
o

tio
n

S
ta

te
s

0
F

o
llo

w
in

g
 cycle

 d
o

n
e

1
W

a
itin

g
 fo

r trig
g

e
r

2
W

a
itin

g
 fo

r sta
rt d

ista
n

ce
 to

 e
la

p
se

4
A

cce
lle

ra
tin

g
 to

 m
a

ste
r ve

lo
city

8
In

 V
e

lo
city S

yn
ch

o
n

iza
tio

n
1

6
D

e
ce

le
ra

tin
g

 to
 sto

p
3

2
W

a
itin

g
 fo

r o
ffse

t syn
c d

ista
n

ce
 to

 e
la

p
se

6
4

O
ffse

t cycle
 a

cce
le

ra
tio

n
 ta

kin
g

 p
la

ce
1

2
8

O
ffse

t cycle
 a

t co
n

sta
n

t sp
e

e
d

2
5

6
O

ffse
t cycle

 d
e

ce
le

ra
tio

n
 ta

kin
g

 p
la

ce
5

1
2

C
h

e
ckin

g
 fo

r p
e

n
d

in
g

 o
ffse

t cycle

() e
n

te
r fo

llo
w

in
g

 co
m

m
a

n
d

 le
tte

r
[] e

n
te

r M
o

tio
n

 S
ta

te
 N

u
m

b
e

r

[]

(C
)[] ()()

[]

()
[]

()
[]

[]
[]

[]

()
[]

m
a

ste
r d

ista
n

ce
()

fo
llo

w
e

r d
ista

n
ce

()

[]

[]

[]

[]

m
a

ste
r d

ista
n

ce
()

fo
llo

w
e

r d
ista

n
ce

()

()
[] (L

)

()
[]

()

()

240 Following for MX2000 version 4.0

Program answer:

‘********************* Follower will follow the Master axis speed at 100% ***************************
‘********************* Follower triggers when EVENT 1 is active **********************************
#DEFINE MASTER 2
#DEFINE FOLLOWER 1
SPEED(MASTER)=5 ‘ Master velocity is 5 units/sec
ACCEL(MASTER)=50 ‘ Master acceleration is 50 units/sec2

DECEL(MASTER)=50 ‘ Master deceleration is 50 units/sec2

DRVREADY(FOLLOWER,MASTER)=1,1 ‘ drives not required to run program
JOG(MASTER)=1 ‘START MASTER AXIS
DO : LOOP UNTIL ACTSPD(MASTER) >= 4.9 ‘WAIT FOR MASTER TO ACHIEVE SPEED
‘******* initialize the follower parameters **
FOLRATIO(FOLLOWER)=1.0 ‘ following ratio is 100%
FOLTRIG(FOLLOWER) = 1 ‘ follower triggers on event1 going active
FOLACCDIST(FOLLOWER) = 1 ‘ follower catches master in 1 unit of travel of the master
FOLDCCDIST(FOLLOWER) = 1 ‘ follower stop in 1 unit of travel of the master
FOLMAXRATIO(FOLLOWER) = 2.0 ‘ offset maximum velocity limit is 200% of master
FOLMINRATIO(FOLLOWER) = 0 ‘ offset minimum velocity limit is 0% of master
FOLSTARTDIST(FOLLOWER) = 1 ‘ delay 1 unit of travel of the master before motion
‘******* define follower & master axes **
FOLINPUT(FOLLOWER) = ACTSPD(MASTER)
‘******* request for motion start of follower axis
FOLJOG(FOLLOWER) = 1
FOLSYNCDIST (FOLLOWER) = 1 ‘ distance master travels during in sync portion of offset
FOLOFFSETDIST(FOLLOWER) = 1 ‘ distance master travels after in sync portion of offset
FOLOFFSET(FOLLOWER) = 1 ‘ offset cycle request to advance follower 1 unit
‘****** wait for in sync portion of offset cycle to begin ***
DO : LOOP UNTIL MOTIONSTATE(FOLLOWER) = 32

‘****** wait for offset portion of cycle to begin
DO : LOOP UNTIL MOTIONSTATE(FOLLOWER) <> 32

FOLSYNCDIST (FOLLOWER) = 1 ‘ distance master travels during in sync portion of offset
FOLOFFSETDIST(FOLLOWER) = 1 ‘ distance master travels after in sync portion of offset
FOLOFFSET(FOLLOWER) = -1 ‘ offset cycle request to recede follower 1 unit
‘****** wait for offset cycle to finish **
DO : LOOP UNTIL FOLSYNC(FOLLOWER) =1
WAIT=1 ‘ optional wait before stopping
STOP(FOLLOWER) ‘ follower axis stop
WAITDONE(FOLLOWER) ‘ wait for follower axis done
STOP (MASTER) ‘ master axis stop
WAITDONE(MASTER) ‘ wait for master axis done
END

Following for MX2000 version 4.0 241

 F
o

llo
w

in
g

 C
o

m
m

a
n

d
s

A
) F

O
L

A
C

C
D

IS
T

B
) F

O
L

D
C

C
D

IS
T

C
) F

O
L

JO
G

D
) F

O
L

M
A

X
R

A
T

IO
E

) F
O

L
M

IN
R

A
T

IO
F

) F
O

L
O

F
F

S
E

T
G

) F
O

L
O

F
F

S
E

T
D

IS
T

H
) F

O
L

S
T

A
R

T
D

IS
T

 I) F
O

L
S

Y
N

C
J) F

O
L

S
Y

N
C

D
IS

T
K

) F
O

L
T

R
IG

L
) S

T
O

P

 M
o

tio
n

S
ta

te
s

0
F

o
llo

w
in

g
 cycle

 d
o

n
e

1
W

a
itin

g
 fo

r trig
g

e
r

2
W

a
itin

g
 fo

r sta
rt d

ista
n

ce
 to

 e
la

p
se

4
A

cce
lle

ra
tin

g
 to

 m
a

ste
r ve

lo
city

8
In

 V
e

lo
city S

yn
ch

o
n

iza
tio

n
1

6
D

e
ce

le
ra

tin
g

 to
 s

to
p

3
2

W
a

itin
g

 fo
r o

ffs
e

t syn
c d

ista
n

c
e

 to
 e

la
p

s
e

6
4

O
ffs

e
t cycle

 a
cc

e
le

ra
tio

n
 ta

kin
g

 p
la

ce
1

2
8

O
ffs

e
t cycle

 a
t co

n
sta

n
t s

p
e

e
d

2
5

6
O

ffs
e

t cycle
 d

e
ce

le
ra

tio
n

 ta
k

in
g

 p
la

ce
5

1
2

C
h

e
ckin

g
 fo

r p
e

n
d

in
g

 o
ffse

t cyc
le

() e
n

te
r fo

llo
w

in
g

 co
m

m
a

n
d

 le
tte

r
[] e

n
te

r M
o

tio
n

 S
ta

te
 N

u
m

b
e

r

[0
]

(C
)

[1
]

(K
)

(H
)

[2
]

(A
)

[4
]

(J
)

[3
2

]

[6
4

]
[1

2
8

]
[2

5
6

]

(J
)

[3
2

]

m
a

ste
r d

is
ta

n
ce

(G
)

fo
llo

w
e

r d
ista

n
ce

(F
)

[5
1

2
]

[6
4

]

[1
2

8
]

[2
5

6
]

m
a

ste
r d

is
ta

n
ce

(G
)

fo
llo

w
e

r d
ista

n
ce

(F
)

(I)
[8

] (L
)

(B
)

[1
6

]

(D
)

(E
)

242 Following for MX2000 version 4.0

This page left intentionally blank

Servo Drive 243

Section 9
Servo Drive

244 Servo Drive

9.1 - Servo Control

A servo is a closed loop system. The loop is closed by
taking a measurement of the actual output (usually a po-
sition or velocity) and comparing it to the desired com-
mand or reference input. Subtracting the output signal
from the reference generates an error signal. The error
signal tells the controller how far away the output is from
the desired position. Then, a control law (algorithm)
modifies this error signal to provide an output to drive a
servo amplifier.

The controller uses a modified form of the classic PID
(Proportional, Integral, Derivative) control law with ve-
locity feed forward. The commanded position is com-
pared to the Encoder position and a position error is gen-
erated. A control algorithm modifies this error to provide
an output torque command to drive the servo amplifier.
The PID control loop uses or derives the following pa-
rameters or commands:

Servo Block Diagram

The user project configuration allows access to the ma-
jority of the servo parameters and in some case this is the
only access.

The servo parameters that can be modified in the program
configuration only are Integration during motion (Servo
Drive Folder), Sample time (Servo Drive Folder), En-
coder line count (Encoder Folder), Encoder direction
(Encoder Folder). The Integration during motion pa-
rameter control whether the integral term has any effect
on the output voltage to the servo drive during motion.
The Sample time controls how often the voltage output is
updated. The Encoder line count indicates the resolution
of the encoder. This value must match the encoder line
count of the servo motor encoder. The pulse count per
revolution is four times the Encoder Line count. One
pulse count is the finest resolution that can be attained.
The Encoder direction parameter allows a convenient
method of changing the encoder direction if incorrect.

If the servo drive has a limitation on the commanded in-
put voltage, other than +10v to –10v, a limit could be im-

posed using the OUTLIM command. However, this pa-
rameter is limited to a user program command only. This
command must be placed at the beginning of the user
program to protect a servo drive that has a voltage
input limitation.

The remaining servo parameters can be modified in the
program configuration as well as the users program.
These are Kp (Proportional gain), Ki (Integral gain), Kd
(Derivative gain), Kaff (Acceleration feed forward), Kvff
(Velocity feed forward), INTLIM (integral limit voltage),
FOLERR (maximum error allowed). These parameters
can be modified in the configuration using the Servo
Drive Folder. Note: The Kp, Ki, Kd and Kaff parame-
ters are modified during auto-tuning. Some controls
do not have Kaff as a parameter.

It is highly recommended to tune a servo drive using the
AUTO-TUNE environment. Under certain conditions,
mostly compliant loads, this may not be possible. Thus, if
the servo drive must be manually tuned a means for this is
also available in the servo-tuning environment.

9.1.1 - Servo Tuning

Tuning is a process of determining the PID and feed for-
ward gains to get the desired system response. Typical
performance indicators like: overshoot, response time,
stiffness, settling time, bandwidth and damping can all be
used to measure how well the system is tuned. Tuning a
gain to improve its performance characteristic may cause
another characteristic to get worst.

Before attempting servo tuning the following must be
done: Modify the project configuration for the System
folder, Encoder folder, Servo Drive folder and then Com-
pile and download the user project to the controller.

9.1.1.1 - System folder

The System folder allows the Drive type, Task assign-
ment for the drive, motor direction for a + motion and
Units per motor revolution to be configured.

1) Assign the servo drive to an axis by selecting the
servo drive item from the Drive Type drop list.

2) The servo drive must be assigned to a specific task.
Choose the task from the Task assignment drop list.

3) If the motor direction requires a reversal for a + di-
rection motion make the necessary choice under the
Motor Direction drop list.

4) Define the unit value of the axis. Enter the desired
value in the Units per motor revolution text box.
Example: 1=1 Unit/motor rev.

Ki

1/S
INTLIM

S Kd

+

Kp

Output
(volts)

S Kaff2

S Kvff

+
+

+

+
+

--

Encoder
Position

Absolute
Position

OUTLIM

S ys tem

open loop stepper

+ = cw motor direction

1.0Axis 1

Drive Type M otor Direction Units per motor
resolution

Axis 2

Task assignment

c:\mcpi\name.tsk

c:\mcpi\name.tsk

open loop stepper

+ = cw motor direction

1.0

Servo Drive 245

9.1.1.2 - Encoder Folder

This folder defines the Servo Encoder direction and En-
coder resolution.

Encoder type must be set to quadrature.

Encoder direction determines how the encoder rotation
direction is interpreted. The choices are normal direction
or reverse direction. Use the default setting to start.

Encoder line count defines the encoder resolution in
lines for a quadrature encoder. An Encoder with 1000
lines will provide 4000 counts/revolution, or quadrature
counts. Set this value to the encoder line count of the ser-
vomotor.

Pulse count defines the pulse count per motor revolution.
This value is always 4 times the Encoder line count. If the
encoder input is pulse and direction, the pulses/rev value
should be entered here.

9.1.1.3 - Servo Drive Folder

This folder allows the user project servo drive parameters
to be modified. The PID loop gains, acceleration feed
forward gain, velocity feed forward gain, integral limit,
following error, sample time, and enable/disable integra-
tion during motion. The default settings for this folder are
suggested before tuning the servo drive.

This folder is modified during auto or manual tuning of a
servo drive and requires compilation and downloading of
the project to save the tuning settings.

Proportional gain
This gain is multiplied by the position error and thus
contributes proportionally to the output torque.
Generally, the higher the Kp, the lower the error at
any time during the move. However, if Kp is too
high, the system can overshoot severely or “buzz”
loudly. This type of buzzing instability may be seen
as “grass” on the error response curve in the move re-
sponse screen. In this case, Kp should be lowered. Kd
may also be lowered, but to a lesser extent.

Generally the range for Kp is 10 to 150. Kp less than
10 will usually produce a soft or sluggish system. Kp
over 175 produces a stiff system, but one that may be
approaching instability. Note these are general
ranges, not absolute requirements.

Integral gain
The reciprocal (1/Ki) of this term is multiplied by the
sum of the position error over time. The effect of Ki
is thus time related, and affects the steady state error.
The higher Ki, the longer it will take for the control-
ler to “integrate out” any steady state error. The ef-
fect of Ki is seen mostly at constant speed (including
standstill). Ki is NOT required for stability, and gen-
erally has a de-stabilizing effect on the system, espe-
cially if it is too low. If Ki is TOO LOW the system
may oscillate slowly and wildly back and forth like a
washing machine. Ki is required, if the system must
achieve a very low steady state error (within a few
counts).

The general range for Ki is 10 to 70. Ki less than 10
may lead to wild, low frequency oscillations. If
steady state error is not a consideration, Ki may be
set to zero. Ki is often disabled during motion to re-
duce overshoot at the end of the move.

Derivative gain
This term is multiplied by the encoder velocity at any
point in time. Generally, raising Kd will reduce over-
shoot in the move response, however, Kd is the term
most susceptible to “digital instability”. This is where
the quantification effects of the digital encoder feed-
back in conjunction with too high a Kd cause the
system to “buzz”.

The general range for Kd is 5 to 20. Kd less than 5
usually leads to an unstable system, Kd >20 usually
leads to “buzzing”.

Accel feed forward
Some controllers have a Kaff term. This term is mul-
tiplied by the commanded acceleration to contribute
to the output torque command. This term only takes
effect to reduce the error during acceleration and de-
celeration. Generally Kaff is less than 4. Most appli-
cations will run fine with Kaff set at zero.

0.0Axis 1

Integral gain
(msec)

0.0 0.0

Accel feed forward
(volts/count/msec)

 Proportional
 gain
 (millivolts/count)

0.05

 Derivative gain
(msec)

Velocity feed
forward (%)

enabled

0.0

100.0

0.0

Axis 2 0.0 0.0 0.0 0.0 0.0

Axis 2

Axis 1

Integral lim it
(volts)

100.0

Following error
(units)

0.05

Sample time
(milliseconds)

1.024 msec

1.024 msec

Integration
during motion

enabled

S e rvo d rive

S e rvo d rive

2

Encoder
 d irection

Axis 1 normal d irection

Line count
(lines / rev)

500

E n co d er

Encoder type

quadrature

pulse count
(pulses/rev)

2000

Axis 2 quadrature normal d irection 500 2000

246 Servo Drive

Velocity feed forward
This term is multiplied by the commanded velocity to
contribute to the output torque command. It has no
effect on general stability, and may be set to as high
as 100% to reduce position error during motion. Too
high a Kvff causes undue motor heating. Generally,
Kvff should be set between 50 and 100.

Integral limit
Limits the contribution of the integral term to the
servo loop’s output. This limit is imposed on the in-
ternal calculation within the controller, and is used to
prevent excessive buildup of the integrator output
which can occur if a constant error is allowed to exist
for extended periods of time. Too low an integral
limit may reduce the effectiveness of the integrator
by limiting its contribution to the output torque
command. This would cause a constant steady state
error. Too high an integral limit may allow the inte-
grator to build up a large error stored in the controller
memory. This error would then be “unwound” at the
end of a move causing excessive overshoot and a
long settling time. The limit can be set between 0 and
319 volts. A setting of 100 is a good midrange start-
ing point, and this parameter rarely needs adjustment.

Following error
Defines the maximum error allowed during motion in
units. If this limit is exceeded the servo drive shuts
down. The default setting is a good starting point.

Sample time
Determines how often the servo loop output is up-
dated. The possible settings are .256 milliseconds to
2.048 milliseconds in .256 millisecond increments. A
setting of 1.024 is a good starting point.

Integration during motion
This feature allows you to select whether the integra-
tion gain is used during the profile motion. Enabling
the integrator during motion will reduce your error at
speed, but may cause some unacceptable overshoot in
the response. Some controllers allow you to set this
parameter in the servo tuning screen, while others re-
quire that you change it in the Servo folder in the
program configuration (be sure to compile and
download the project each time you change the con-
figuration or the change will not take effect).

Note: A program does not have to be written
in the task in order to tune the servomotor.

9.1.1.4 – Servo Tuning Environment

The servo-tuning Environment allows a servo drive to be
manually tuned, auto-tuned and testing the results of the
tuning.

Clicking on the Servo Tuning command button can ac-
cess the servo-tuning Environment. The project in the
controller must match the project in the PC. If necessary
compile and download the project at this time.

The servo gains, Integration Limit, Sample Time, Inte-
gration during motion parameters can be modified for an
individual axis on the opening screen. The four steps for
tuning a servo can be executed from this screen as well.

Command Buttons
Zoom toggles between displaying the graph between
cursors and the full screen view. The two vertical
lines in the display window are the cursors.

Save Graph saves the currently displayed graph and
appears as an item on the drop list.

Freeze scale freezes the current logged scale value.

UnFreeze allows the next commanded motion graph
to be auto scaled.

Graph setup allows for the selection of color and
style for each logged item.

Print prints the current graph.

Quit exits the Servo Tuning environment.

Shutdown disables the servo drive and outputs a
torque command of 0 volts. The Update controller
gains command button will re-enable the servo out-
put voltage.

Apply vo ltage

M easure
system gain

!! M otor m ay turn !!

E xecute m ove
using updated

controller gains

SHUTDO W N

Update contro ller
w ith calcu lated

servo gains

2

0.0 %Kvff

100.0 vo ltsIn tLim

1.024 m s
S am ple

tim e

S tep 3: Update

0.0 vo lts

30 hertz

Calcu late servo gains
based on m easured

system gain

0.0 revs/sec /v
2

S ystem G ain

S ystem Bandw idth

S tep 2: Calcu lation

2.048 secsDisp lay
tim e

Disab le in tegrator during m otion

Trapezo idalP rofile

0.0 m v/cntKp

0.0 m sKi

10.0 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10.0 un its/secS peed

10.0 un itsM ove

units/sec2

un its/sec2

S tep 1: M easure S tep 4: Response

0.0 m s 1024.00 m s 2048.0 m s

Freeze scale

P rin t

G raph setup

S ave graph

Zoom

0.0

0.0

0.0

Left cursor
0.000 m s

Right cursor
2048.000 m s

View Logged Data _ X

5.0

Distance L im it - un its

10.0

S peed - un its/sec

2.0

O utput - volts

1S ervo axis

Servo Tuning environm ent

Q uit

Servo Drive 247

Step 1: Measure
Servo axis selects the servo axis.

Output – volts selects the stimulus voltage for meas-
uring system gain. The default is 2 volts.

Speed – units/sec selects the target speed for meas-
uring system gain. The default is 10 units/sec.

Distance Limit – units limits the bump travel dis-
tance allowed when measuring system gain. The de-
fault is 5 units.

Measure system gain commands a system gain
measurement when clicked. The System Gain will
be updated when the cycle is completed.

Step 2: Calculation
System Gain displays the result of a measure system
gain cycle or a manually entered value.

System Bandwidth selects the system bandwidth for
the Gain Calculation. The default is 30 hertz.

Calculate servo gains commands a gain calculation
cycle. The Kp, Ki, Kd and Kaff values will be up-
dated at the completion of the cycle.

Step 3: Update
Kp displays the current value of the proportional
gain. This can be manually changed if desired.

Ki displays the current value of the integral gain.
This can be manually changed if desired.

Kd displays the current value of the derivative gain.
This can be manually changed if desired.

Kaff displays the current value of the acceleration
feed forward gain. This can be manually changed if
desired.

Kvff displays the current value of the velocity feed
forward gain. This is used to reduce the positional er-
ror during acceleration. This can be manually
changed if desired.

IntLim displays the current value of the integral
limit. This can be manually changed if desired.

Sample Time selects the servo sample time of the
servo axis.

Update controller gains transfers the current values
of Kp, Ki, Kd, Kaff, Kvff, IntLim and Sample time to
the controller. The servo drive is now enabled.

Step 4: Response
Accel selects the acceleration rate for a move re-
sponse. Default is 100 units/sec2.

Decel selects the deceleration rate for a move re-
sponse. Default is 100 units/sec2.

Speed selects the target speed for a move response.
Default is 10 units/sec.

Move select the incremental distance traveled during
a move response. Default is 10 units.

Profile selects the motion profile for a move re-
sponse. Default is trapezoidal.

Disable integrator during Motion enables or dis-
ables the integrator during motion. When checked the
integrator is disabled during motion.

Display time selects the logging period for a move
response cycle. Up to 10 seconds can be logged.

Execute move commands a move response. The log-
ging results are transferred when the cycle is com-
pleted. The individual logged items can be selected
by clicking on the arrow in the Display Drop List.

Display
Display Drop list selects the logged item to be dis-
played.

View Port displays the results of a move response
cycle.

Torque Control
Volts select the stimulus torque voltage that will be
applied to the servo drive when the Apply voltage
button is clicked.

Apply voltage transfers the selected stimulus voltage
selected by the volts spin controller as the torque
command for the servo drive.

9.1.1.5 - Auto Tuning

Before a servo can run properly, the servo gains Kp, Ki,
Kd, and Kvff must be set up to yield the appropriate move
response. The controller has the ability to automatically
set the servo gains using an automatic tuning procedure.

Auto-tuning can be broken into four separate steps meas-
ure gain (step 1), calculate gains (step 2), update gains
(step 3) and move Response (step 4).

248 Servo Drive

Step 1: Measure
The system gain is a measure of the overall responsive-
ness of the system. Higher inertia and/or lower torque
yields lower system gain. Lower inertia and/or higher
torque yields higher system gain. The system gain
number is used when the software calculates the servo
gains. A lower system gain requires higher calculated
controller gains in order for the motor to track a given
profile response.

Clicking Measure System Gain instructs the controller
to provide a “bump” of torque to the motor. Three pa-
rameters, Output, Speed, and Distance Limit are used
to measure system gain.

The Output text box is used to select the amount of
voltage that the controller will use to bump the motor.
The range of the Output is 0 to 10 volts where 10 volts
represents peak torque. Typically the default parameter
of 2 volts is adequate, although some large inertia sys-
tems may require the Output be set to 3 or 4 volts.

The Speed text box is used to select the target velocity
for the gain measurement. During gain measurement,
the output torque will be applied to the motor until the
speed set here is reached. The default speed is usually
sufficient if revs/sec is used for the unit of measure.

The value in the Distance Limit text box limits the
distance that the motor will turn during the gain meas-
urement. If the distance limit is reached before the
motor reaches the speed indicated, or if the speed can-
not be reached with the voltage entered, an error mes-
sage will appear. If an error appears, try increasing the
distance limit or raising the voltage output slightly.

Generally, the default parameters for these three pa-
rameters should be used during the gain measurement,
provided that the unit per motor rev was left at the de-
fault of 1.

Caution! When the Measure System Gain
button is clicked, the motor will move quickly
and abruptly for a short distance.

If the gain measurement is unsuccessful, verify that the
motor moves properly with a constant torque command
applied. Clicking the Apply Voltage button on the tun-
ing screen will do this. Clicking the Apply Voltage
button will output a constant torque to the motor pro-
portional to the command voltage. Start with zero and
click on the up or down arrows to apply positive or
negative torque respectively. Unless the system has
high friction, the motor should begin to move with less
than one volt applied. Check that the motor torque is
smooth and continuous in both directions by applying
small amounts of positive and negative voltage.

Step 2: Calculation
The system bandwidth is essentially the maximum fre-
quency of excitation to which the system will respond.
Generally, higher bandwidth systems are “stiffer” or
“tighter”. Lower bandwidth systems are “soft” or
“sluggish”. Generally bandwidths range between 10 to
60 Hz (cycles per second). The auto tuning procedure
uses the bandwidth setting along with the measured
system gain to calculate the appropriate servo gains for
the system. The default bandwidth of 30 Hz is usually a
good starting point, although sometimes the bandwidth
must be lowered to achieve a stable system, or raised to
achieve a fast enough response.

Calculate Servo Gains
Clicking the Calculate Servo Gains button will use the
bandwidth and measured system gain to calculate the
Kp, Ki, Kd, Intlim (and Kaff if applicable) parameters.
These fields will be updated after the calculation is
complete.

Step 3: Update
Clicking Update Gains will update the gains to the
controller immediately. Caution! Updating the gains
may change the dynamics of the system such that it
becomes unstable and oscillatory. If a loud buzzing
or vibration occurs after updating gains, the Shutdown
button should be clicked. It is also possible that a fault
will occur if the oscillation overtaxes the servo drive. In
this case you will have to enter the terminal screen and
clear the error by typing ERR or ERRM. If necessary,
go to Step 2 and lower the bandwidth and re-calculate
the servo gains. Now update the gains again. Repeat
this process until the system is stable and will smoothly
resist loading in both directions.

Step 4: Response
Step 4 allows test motion profile parameters to be en-
tered so that the proper motion response may be veri-
fied. Accel, Decel, Speed and Move Distance parame-
ters describe the move that the motor will try to follow
during the test. The display time is adjustable so that
shorter or longer moves may be fully displayed. The
unit for each parameter is configured in the System
Folder.

Once the profile parameters setup is complete, the sys-
tem is ready to attempt to execute the move. Clicking
the Execute move command button will command the
motor to execute the move profile. The controller will
log the response of the motor and display the results on
the screen graphically. The position error, torque com-
mand, encoder velocity, etc. may be viewed by clicking
on the drop down list at the top of the window. The
displayed graph of the position error is the error based
on quadrature signal feedback from the encoder (for ex-
ample there are 4000 counts or pulses per revolution on
a 1000 line encoder).The response may be observed to
verify proper performance for the programmed profile.
If the response is acceptable, Quit the servo screen and
Save the configuration. You will now have to Compile
and Download the project for the new servo informa-
tion to permanently take effect.

Servo Drive 249

Step 4A: Response Fine Tuning
Integrate During Motion
This feature allows you to select whether the integration
gain is used during the profile motion. Enabling the in-
tegrator during motion will reduce your position error at
speed, but may cause some unacceptable overshoot in
the response. Some controllers allows this parameter to
be set in the servo tuning screen, while others require
that the change be completed in the Servo folder in the
program configuration. Be sure to compile and down-
load the project each time a change is made to the con-
figuration or the change will not take effect. Stable re-
sponses with and without integration during motion en-
abled are shown below.

Velocity Feed Forward
This term reduces the error during motion. It should
typically be set between 50% and 100%. The figures
below show a response with Kvff set to 0%, 50% and
100%. In all three cases the integration during motion
was disabled, although integration can be enabled if it
yields the response required.

Apply voltage

M easu re
system gain

!! Motor m ay turn !!

Execute m ove
using updated

contro ller ga ins

SHUTDO WN

Update controller
w ith calculated

servo gains

2

50 .0 %Kvff

100.0 voltsIntLim

1.024 m s
Sam p le

tim e

Step 3: Update

0.0 volts

30 hertz

Calcula te servo gain s
based on m easured

system gain

0.0 revs/sec /v
2

System G ain

System Bandwidth

Step 2: Calculation

.768 secsDisplay
tim e

Disable in teg rator during m otion

Trapezoid alProfile

22 .0897 m v/cntKp

18.0467 m sKi

9.0234 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10 .0 units/secSpeed

10.0 unitsM ove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 m s 768.000 m s 768.0 m s

Freeze sca le

Print

G raph setup

Save graph

Zoom

-.09525

.09525

0.0

Left cursor
0.000 m s

Rig ht cursor
768.000 m s

View Logged Data _ X

5.0

Distance Lim it - units

10 .0

Speed - units/sec

2.0

O utput - volts

1Servo axis

Sam e profile as above with Kvff = 50%
Note reduction in error

Axis 1 Position error (units)

Q uit

Apply voltage

Measure
system gain

!! Motor m ay turn !!

Execute m ove
using updated

controller gains

SHUTDOWN

Update controller
with calculated

servo gains

2

70.0 %Kvff

100.0 voltsIntLim

1.024 m s
Sam ple

time

Step 3: Update

0.0 volts

30 hertz

Calculate servo gains
based on m easured

system gain

0.0 revs/sec /v
2

System G ain

System Bandwidth

Step 2: Calculation

.768 secsDisplay
time

Disable integrator during m otion

TrapezoidalProfile

22.0897 m v/cntKp

18.0467 m sKi

9.0234 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10.0 units/secSpeed

10.0 unitsMove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 m s 768.000 ms 768.0 m s

Freeze scale

Print

Graph setup

Save graph

Zoom

-.0285

.0285

0.0

Left cursor
0.000 m s

Right cursor
768.000 ms

View Logged Data _ X

5.0

Distance Lim it - units

10.0

Speed - units/sec

2.0

Output - volts

1Servo axis

Stable response with integration during
motion enabled

Axis 1 Position error (units)

Quit

A pply voltage

M easure
system gain

!! M o tor m ay turn !!

Execute m o ve
using up dated

controller g ains

SHUTDOWN

U pdate controller
w ith ca lcula ted

servo g ains

2

0 .0 %K vff

100 .0 voltsIntLim

1.024 m s
Sam ple

tim e

Step 3: Up date

0 .0 volts

30 hertz

C alcu la te servo g ains
based o n m easu red

system gain

0 .0 revs/sec /v
2

System G ain

System B an dw idth

Step 2: Ca lculation

.768 secsD isplay
tim e

D isab le integrato r du ring m otion

Trapezoida lProfile

22.0897 m v/cntK p

18.0467 m sK i

9 .0234 m sK d

0.0 v /cnt/m sK aff

100 .0A ccel

100 .0D ecel

10.0 un its /secSp eed

10.0 un itsM o ve

un its /sec2

un its /sec2

Step 1: M easure Step 4: Resp on se

0.0 m s 768.000 m s 768.0 m s

Freez e scale

Prin t

G raph setup

Save grap h

Zo om

-.184

.184

0 .0

Left cursor
0 .000 m s

R igh t cursor
768 .000 m s

View Logged Data _ X

5.0

D istan ce L im it - u nits

10.0

Sp eed - u nits /sec

2 .0

O u tput - volts

1Servo axis

Response with Kvff = 0%

A xis 1 Po sition erro r (un its)

Q u it

A pply voltag e

M easu re
system gain

!! M otor m ay tu rn !!

Execu te m ove
using up dated

con tro ller g a in s

SHUTDOWN

U pdate con tro ller
w ith ca lcu la ted

servo ga in s

2

100 .0 %K vff

100 .0 voltsIntLim

1.024 m s
Sam ple

tim e

Step 3: Up date

0 .0 volts

30 hertz

C alcu la te servo ga in s
based o n m easured

system gain

0 .0 revs /sec /v2
System G ain

System Band w idth

Step 2: Ca lcu la tio n

.768 secsD isplay
tim e

D isab le in teg rator d urin g m otion

Trapezo id alProfile

22.0897 m v/cntK p

18.0467 m sK i

9 .0234 m sK d

0.0 v /cnt/m sK aff

100 .0A ccel

100 .0D ecel

10.0 un its /secSp eed

10.0 un itsM o ve

un its /sec2

un its /sec2

Step 1: M easure Step 4: Respo nse

0.0 m s 768.000 m s 768.0 m s

Freez e sca le

Prin t

G raph setu p

Save grap h

Zo om

-.0195

.0195

0.0

Left cursor
0 .000 m s

R ig ht cu rsor
768 .000 m s

View Logged Data _ X

5.0

D istan ce Lim it - un its

10.0

Sp eed - u nits/sec

2 .0

O u tpu t - vo lts

1Servo axis

Sam e profile as above with Kvff = 100%
Note reduction in error

A xis 1 Po sitio n error (u nits)

Q u it

Apply voltage

Measure
system gain

!! Motor m ay turn !!

Execute m ove
using updated

controller gains

SHUTDOWN

Update controller
with calculated

servo gains

2

70.0 %Kvff

100.0 voltsIntLim

1.024 m s
Sam ple

time

Step 3: Update

0.0 volts

30 hertz

Calculate servo gains
based on m easured

system gain

0.0 revs/sec /v
2

System G ain

System Bandwidth

Step 2: Calculation

.768 secsDisplay
time

Disable integrator during m otion

TrapezoidalProfile

22.0897 m v/cntKp

18.0467 m sKi

9.0234 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10.0 units/secSpeed

10.0 unitsMove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 m s 758.000 ms 768.0 m s

Freeze scale

Print

Graph setup

Save graph

Zoom

-.0625

.0625

0.0

Left cursor
0.000 m s

Right cursor
768.000 ms

View Logged Data _ X

5.0

Distance Lim it - units

10.0

Speed - units/sec

2.0

Output - volts

1Servo axis

Stable response with integration during
motion disabled

Axis 1 Position error (units)

Quit

250 Servo Drive

9.1.1.6 - Manual Tuning Adjustment

Most applications work acceptably using the results of the
auto tuning procedure. However, if the results of the auto
tuning sequence do not yield a satisfactory move re-
sponse, the servo gains may be adjusted manually to
achieve the required performance. Manual tuning of the
servo can be quite involved. Be sure to read this section a
few times through before deciding to begin manual ad-
justments.

The single most important rule to remember when ad-
justing the servo manually is to gradually change one
gain at a time. There can be interactions between the
parameters that will affect the response, and changing
more than one gain at a time will certainly lead to confu-
sion.

First let’s begin with some definitions along with a de-
scription of each parameter and its function. The control
loop uses a modified PID algorithm to compensate the
system response. The servo parameters adjust the con-
troller’s output torque command based on position error,
i.e. the difference between commanded position and en-
coder position at any given point in time. The encoder
velocity and commanded velocity are also used in some
cases. Each parameter contributes to the output torque
command in a different way.

Stability or instability:
If the servo system behaves smoothly and without loud
buzzing, vibration or oscillation it is said to be stable.
Conversely, if the system buzzes, vibrates, or oscillates
it is said to be unstable. The first goal of servo tuning
is to achieve a stable system. Once stable the system
may be adjusted or “tweaked” to optimize performance.
Adjustments should only be made if the response is out-
right unacceptable. The figures below show a stable and
unstable system response.

Kp:
Proportional gain. This gain is multiplied by the posi-
tion error and thus contributes proportionally to the
output torque. Generally, the higher the Kp, the lower
the error at any time during the move. However, if Kp
is too high, the system can overshoot severely or “buzz”
loudly. This type of buzzing instability may be seen as
“grass” on the error response curve in the move re-
sponse screen. In this case, Kp should be lowered. Kd
may also be lowered, but to a lesser extent.

Generally the range for Kp is 10 to 150. Kp less than 10
will usually produce a soft or sluggish system. Kp over
175 produces a stiff system, but one that may be ap-
proaching instability. Note these are general ranges, not
absolute requirements.

A pp ly vo ltag e

M easu re
system g ain

!! M oto r m ay tu rn !!

Execu te m o ve
u sing u pd ated

con tro ller g ains

SHUTDOWN

U pd ate co ntro ller
w ith ca lcula ted

servo ga ins

2

70.0 %K vff

100 .0 voltsIntL im

1.024 m s
Sam p le

tim e

Step 3 : U pd ate

0 .0 volts

30 h ertz

C alculate servo ga in s
b ased on m easured

system g ain

0 .0 revs /sec /v2
System G ain

System B an dw idth

Step 2 : C a lcula tio n

.768 secsD isplay
tim e

D isable integrator du ring m otion

T rapez oida lPro file

22.0897 m v/cn tK p

18.0467 m sK i

9 .0234 m sK d

0.0 v /cn t/m sK aff

100 .0A ccel

100 .0D ecel

10.0 u nits/secSp eed

10.0 u nitsM o ve

u nits/sec2

u nits/sec2

Step 1 : M easure Step 4 : R esp on se

0.0 m s 768.000 m s 768.0 m s

F reeze scale

Print

G raph setup

Save g raph

Z oo m

-.0625

.0625

0.0

L eft cu rso r
0 .000 m s

R ig ht curso r
768 .000 m s

View Logged Data _ X

5.0

D istance L im it - un its

10.0

Sp eed - un its /sec

2 .0

O u tpu t - volts

1Servo ax is

Show s stable response

A xis 1 Positio n error (un its)

Q u it

Apply voltage

Measure
system gain

!! Motor may turn !!

Execute move
using updated

controller gains

SHUTDOWN

Update controller
with calculated

servo gains

2

50.0 %Kvff

100.0 voltsIntLim

1.024 ms
Sample

time

Step 3: Update

0.0 volts

30 hertz

Calculate servo gains
based on measured

system gain

0.0 revs/sec /v
2

System Gain

System Bandwidth

Step 2: Calculation

.768 secsDisplay
time

Disable integrator during motion

TrapezoidalProfile

21.0306 mv/cntKp

3.0 msKi

9.0234 msKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10.0 units/secSpeed

10.0 unitsMove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 ms 768.000 ms 768.0 m s

Freeze scale

Print

Graph setup

Save graph

Zoom

-.09525

.09525

0.0

Left cursor
0.000 m s

Right cursor
768.000 ms

View Logged D ata _ X

5.0

Distance Limit - units

10.0

Speed - units/sec

2.0

Output - volts

1Servo axis

Show s unstable response
(due to K i to low)

Axis 1 Position error (units)

Quit

A pp ly voltag e

M easure
system gain

!! M oto r m ay tu rn !!

Execute m ove
u sing up dated

con troller g a in s

SHUTDOWN

U pd ate con tro ller
w ith ca lcu la ted

servo g ain s

2

75.0 %K vff

100 .0 voltsIntL im

1.024 m s
Sam p le

tim e

Step 3 : Up date

0 .0 volts

30 h ertz

C alcula te servo g ain s
b ased on m easu red

system gain

0 .0 revs /sec /v2

System G ain

System B and w id th

Step 2 : Ca lcu la tion

.768 secsD isp lay
tim e

D isable integ rato r d uring m o tion

T rap ez oida lPro file

75.0 m v/cn tK p

18.0467 m sK i

30.0 m sK d

0.0 v /cn t/m sK aff

100 .0A ccel

100 .0D ecel

10.0 u nits/secSp eed

10.0 u nitsM o ve

u nits/sec2

u nits/sec2

Step 1 : M easu re Step 4 : Respo nse

0.0 m s 768.000 m s 768.0 m s

F reeze sca le

Print

G rap h setu p

Save g rap h

Z oo m

-.093

.093

0 .0

L eft cursor
0 .000 m s

R ig ht cursor
768 .000 m s

View Logged Data _ X

5.0

D istance L im it - u n its

10.0

Sp eed - u nits /sec

2 .0

O utp ut - vo lts

1Servo axis

Shows unstable response
(due to Kp and/or Kd too high)

Note "fuzz" from m otor "buzzing"

A xis 1 Po sition error (u n its)

Q uit

Servo Drive 251

Ki:
Integral gain. The reciprocal (1/Ki) of this term is
multiplied by the sum of the position error over time.
The effect of Ki is thus time related, and affects the
steady state error. The higher Ki, the longer it will take
for the controller to “integrate out” any steady state er-
ror. The effect of Ki is seen mostly at constant speed
(including standstill). Ki is NOT required for stability,
and generally has a de-stabilizing effect on the system,
especially if it is too low. If Ki is TOO LOW the sys-
tem may oscillate slowly and wildly back and forth like
a washing machine. Ki is required, though, if the sys-
tem must achieve a very low steady state error (within a
few counts).

The general range for Ki is 10 to 70. Ki less than 10
may lead to wild, low frequency oscillations. If steady
state error is not a consideration, Ki may be set to zero.
Ki is often disabled during motion to reduce overshoot
at the end of the move.

Kd:
Derivative gain. This term is multiplied by the encoder
velocity at any point in time. Generally, raising Kd will
reduce overshoot in the move response, however, Kd is
the term most susceptible to “digital instability”. This is
where the quantification effects of the digital encoder
feedback in conjunction with too high a Kd cause the
system to “buzz”.

The general range for Kd is 5 to 20. Kd less than 5 usu-
ally leads to an unstable system, Kd >20 usually leads
to “buzzing”.

Kvff:
Feed forward velocity gain. This term is multiplied by
the commanded velocity to contribute to the output
torque command. It has no effect on general stability,
and may be set to as high as 100% to reduce position
error during motion. Too high a Kvff causes undue
motor heating.

Generally, Kvff should be set between 50 and 100.

Kaff:
Some controllers have a Kaff term. This term is multi-
plied by the commanded acceleration to contribute to
the output torque command. This term only takes effect
to reduce the error during acceleration and deceleration.
Generally Kaff is less than 4. Most applications will
run fine with Kaff set at zero.

9.1.1.6.1 - Adjustment based on auto
 tune calculation

It is usually desirable to use the auto tuning gains as a
starting point for further adjustment. If the system is un-
stable at given bandwidth, the bandwidth may be lowered,
and the auto tuning run again. If the move response at this
lower bandwidth is unacceptable, the following procedure
may be attempted.

Set bandwidth to 25 Hz and calculate gains. Then:

1) Update gains and energize system .
2) If the system “buzzes”, cut Kp in half, and lower Kd

by 25%.
3) If the system no longer buzzes, check your move

response.
4) If the move response over shoots too much, or the

system buzzes sometimes, then lower Kp until the
buzz goes away and the overshoot is acceptable.

5) Check your move response, and set Kvff to between
50-100%. This should reduce the error during the
move, and may also improve the overshoot.

6) If the response is well behaved, but sluggish, raise Kp
in increments of 2 until acceptable response is
achieved. If ever the system “buzzes” Kp must be
lowered again.

7) Verify proper response.
8) The system should now be stable and well behaved.

9.1.1.6.2 - Full Manual Adjustment

Although it is much more involved, the servo can be
tuned “from scratch”. The trick here is to be very patient
and methodical. Make sure to record each change and its
resultant effect on the response. In step 1 the measure
system gain button is used to determine proper encoder
direction. Step 2 is not used at all. Step 3 is used to enter
and update the servo gains. Step 4 is used to enter the
move profile parameters and execute a move response.
Make sure to Update Gains after each adjustment so they
take effect. You can use the example response screens at
the end of this procedure as a guide. CAUTION! Motor
instability can cause severe vibration or sudden
movements. Insure that appropriate safety measures
such as mechanical limits are employed to prevent
dangerous movements of the motor and load.

1) Click measure system gain. Caution! the motor
will move suddenly during this process. This will
verify that the encoder direction is correct for the
servo to run properly.

2) If the encoder direction is found to be reversed, then
quit the auto tune screen immediately and enter the
Configuration. Select the encoder folder and change
the encoder direction to the opposite of the present
setting. Save the configuration information, compile
and download the modified project.

3) Re-enter the servo tuning screen and set Ki, Kvff, and
Kaff to zero.

4) Together, set Kp to a low number, say 5, and Kd to a
mid-range number, say 10.

5) Update the gains and see if the motor is stable by
moving the load slightly by hand (if this is safe). Be
ready to shutdown if the motor oscillates.

6) If the motor is stable and does not vibrate, raise Kp
by 2.

7) If not, lower Kp by 1. Repeat until the motor is sta-
ble.

8) Once Kp is as high as it will go and still be stable,
reduce Kp by 50% to provide some stability margin.

9) Now try your move response.
10) If the move is stable but overshoots severely, lower

Kp slightly. Slight overshoot is o.k. at this point.

252 Servo Drive

11) Continue lowering Kp until the overshoot is close to
acceptable.

12) Now we can try to reduce the error during the mo-
tion.

13) Set Kvff to 50 and check the response.
14) If the error is not acceptable increase Kvff by 10 and

check the response, repeat until the response is ac-
ceptable.

15) Now let’s try to use Ki to reduce the error at rest.
16) Set Ki to a high number, say 75 and check the move

response.
17) If the response smooth out takes a long time to settle

at the end, then decrease Ki by 10. If the motor goes
unstable, raise Ki back up again.

18) Verify the proper response to your profiles.
19) If the response still exhibits oscillation or overshoot,

you may need to dampen the system response by
raising Kd and repeating the process from step num-
ber 5. See the effect of lower Kp and higher Kd in the
response graphs below.

20) If the motor will not respond as required, check the
torque command response in the pull down window
to verify that the controller is not saturating at 10
volts during accel/decel. This would indicate too high
an acceleration for this motor and load. Lower the
accel or decrease the load inertia.

21) THAT’S IT!

The following screens show examples of tuning re-
sponses. Each has a description of what caused the re-
sponse shown.

Apply voltage

Measure
system gain

!! Motor m ay turn !!

Execute m ove
using updated

controller gains

SHUTDOW N

Update controller
with calculated

servo gains

2

50.0 %Kvff

100.0 voltsIntLim

1.024 m s
Sam ple

tim e

Step 3: Update

0.0 volts

30 hertz

Calculate servo gains
based on m easured

system gain

0.0 revs/sec /v2

System Gain

System Bandwidth

Step 2: Calculation

1.536 secsDisplay
tim e

Disable integrator during m otion

TrapezoidalProfile

.1 m v/cntKp

18.0 m sKi

200.0 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10.0 units/secSpeed

10.0 unitsMove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 m s 1536.00 m s 1536 ms

Freeze scale

Print

Graph setup

Save graph

Zoom

-2.552

2.552

0.0

Left cursor
0.000 m s

Right cursor
1536.000 m s

View Logged Data _ X

5.0

Distance Lim it - un its

10.0

Speed - units/sec

2.0

Output - volts

1Servo axis

S luggish response
(due to low Kp and high Kd)

Axis 1 Position error (units)

Quit

Apply voltage

Measure
system gain

!! Motor m ay turn !!

Execute m ove
using updated

controller gains

SHUTDOW N

Update controller
with calculated

servo gains

2

80.0 %Kvff

100.0 voltsIntLim

1.024 m s
Sam ple

tim e

Step 3: Update

0.0 volts

30 hertz

Calculate servo gains
based on m easured

system gain

0.0 revs/sec /v2

System Gain

System Bandwidth

Step 2: Calculation

1.536 secsDisplay
tim e

Disable integrator during m otion

TrapezoidalProfile

70.0 m v/cntKp

18.0467 m sKi

4.0 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10.0 units/secSpeed

10.0 unitsMove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 m s 1536.00 m s 1536 ms

Freeze scale

Print

Graph setup

Save graph

Zoom

-.02

.02

0.0

Left cursor
0.000 m s

Right cursor
1536.000 m s

View Logged Data _ X

5.0

Distance Lim it - un its

10.0

Speed - units/sec

2.0

Output - volts

1Servo axis

S tiff response
(w ith high Kp and low Kd)

Axis 1 Position error (units)

Quit

Apply voltage

Measure
system gain

!! Motor m ay turn !!

Execute m ove
using updated

controller gains

SHUTDOW N

Update controller
with calculated

servo gains

2

80.0 %Kvff

100.0 voltsIntLim

1.024 m s
Sam ple

tim e

Step 3: Update

0.0 volts

30 hertz

Calculate servo gains
based on m easured

system gain

0.0 revs/sec /v
2

System Gain

System Bandwidth

Step 2: Calculation

1.536 secsDisplay
tim e

Disable integrator during m otion

TrapezoidalProfile

22.3306 m v/cntKp

200.0 m sKi

9.0234 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10.0 units/secSpeed

10.0 unitsMove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 m s 1536.00 m s 1536 ms

Freeze scale

Print

Graph setup

Save graph

Zoom

-.0445

.0445

0.0

Left cursor
0.000 m s

Right cursor
1536.000 m s

View Logged Data _ X

5.0

Distance Lim it - un its

10.0

Speed - units/sec

2.0

Output - volts

1Servo axis

Response w ith high Ki and
integration enabled during m otion

Note very long settling tim e

Axis 1 Position error (units)

Quit

Apply voltage

Measure
system gain

!! Motor m ay turn !!

Execute m ove
using updated

controller gains

SHUTDOW N

Update controller
with calculated

servo gains

2

80.0 %Kvff

100.0 voltsIntLim

1.024 m s
Sam ple

tim e

Step 3: Update

0.0 volts

30 hertz

Calculate servo gains
based on m easured

system gain

0.0 revs/sec /v
2

System Gain

System Bandwidth

Step 2: Calculation

1.536 secsDisplay
tim e

Disable integrator during m otion

TrapezoidalProfile

22.0105 m v/cntKp

4.5 m sKi

9.0234 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10.0 units/secSpeed

10.0 unitsMove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 m s 1536.00 m s 1536 ms

Freeze scale

Print

Graph setup

Save graph

Zoom

-.014

.014

0.0

Left cursor
0.000 m s

Right cursor
1536.000 m s

View Logged Data _ X

5.0

Distance Lim it - un its

10.0

Speed - units/sec

2.0

Output - volts

1Servo axis

Response w ith low Ki and
integration enabled during m otion

Note excessive ringing

Axis 1 Position error (units)

Quit

Servo Drive 253

Apply voltage

Measure
system gain

!! M otor m ay turn !!

Execute m ove
using updated

controller gains

SHUTDOWN

Update controller
w ith calculated

servo gains

2

80.0 %Kvff

100.0 voltsIntLim

1.024 m s
Sam ple

tim e

Step 3: Update

0.0 volts

30 hertz

Calculate servo gains
based on m easured

system gain

0.0 revs/sec /v
2

System Gain

System Bandw idth

Step 2: Calculation

X

1.536 secsDisplay
tim e

Disable integrator during m otion

TrapezoidalProfile

22.0105 m v/cntKp

4.0 m sKi

9.0234 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10.0 units/secSpeed

10.0 unitsMove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 m s 1536.00 m s 1536 m s

Freeze sca le

Print

G raph setup

Save graph

Zoom

-.0485

.0485

0.0

Left cursor
0.000 m s

Right cursor
1536.000 m s

View Logged Data _ X

5.0

Distance Lim it - units

10.0

Speed - units/sec

2.0

O utput - volts

1Servo axis

Response with low Ki and
integrator disabled during m otion

Note excessive ringingout at the end of the
m ove only. The integrator is engaged w hen

the profile stops

Axis 1 Position error (units)

Q uit

Apply voltage

M easure
system gain

!! Motor m ay turn !!

Execute m ove
using updated

controller gains

SHUTDOWN

Update controller
w ith calculated

servo gains

2

80.0 %Kvff

100 .0 voltsIntLim

1.024 m s
Sam ple

tim e

Step 3: Update

0.0 volts

30 hertz

Calculate servo gains
based on m easured

system gain

0.0 revs/sec /v
2

System Gain

System Bandwidth

Step 2: Calculation

1.536 secsDisplay

tim e

Disable integrator during m otion

TrapezoidalProfile

70.0 m v/cntKp

18.0 m sKi

9.0234 m sKd

0.0 v/cnt/m sKaff

100 .0Accel

100 .0Decel

10.0 units/secSpeed

10.0 unitsM ove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 m s 1536.00 m s 1536 m s

Freeze scale

Print

G raph setup

Save graph

Zoom

-.054

.054

0.0

Left cursor
0.000 m s

Right cursor
1536.000 m s

View Logged Data _ X

5.0

Distance Lim it - units

10.0

Speed - units/sec

2.0

O utput - volts

1Servo axis

Response with high Kp
Note instability can be seen as vibration.

Kp should be lowered to elim inate instability.

Axis 1 Position error (units)

Q uit

Apply voltage

Measure
system gain

!! Motor m ay turn !!

Execute m ove
using updated

controller gains

SHUTDOWN

Update controller
w ith calculated

servo gains

2

80.0 %Kvff

100.0 voltsIntLim

1.024 m s
Sam ple

tim e

Step 3: Update

0.0 volts

30 hertz

Calculate servo gains
based on m easured

system gain

0.0 revs/sec /v
2

System G ain

System Bandw idth

Step 2: Calcula tion

1.536 secsDisplay
tim e

Disable integrator during m otion

Trapezoida lProfile

6.0 m v/cntKp

18.0 m sKi

9.0234 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10.0 units/secSpeed

10.0 unitsMove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 m s 1536.00 m s 1536 m s

Freeze scale

Print

G raph setup

Save graph

Zoom

-.11325

.11325

0.0

Left cursor
0.000 m s

Right cursor
1536.000 m s

View Logged Data _ X

5.0

Distance Lim it - units

10.0

Speed - units/sec

2.0

O utput - volts

1Servo axis

Response w ith low Kp. Note oscillation.
 If Kp can not be raised, Kd m ay be raised

to reduce the ringing as show n below .

Axis 1 Position error (units)

Q uit

Apply voltage

M easu re
system gain

!! Motor m ay turn !!

Execute m ove
using updated

contro ller ga ins

SHUTDO WN

Update controller
w ith calculated

servo gains

2

80 .0 %Kvff

100.0 voltsIntLim

1.024 m s
Sam p le

tim e

Step 3: Update

0.0 volts

30 hertz

Calcula te servo gain s
based on m easured

system gain

0.0 revs/sec /v
2

System G ain

System Bandwidth

Step 2: Calculation

1.536 secsDisplay
tim e

Disable in teg rator during m otion

Trapezoid alProfile

6.0 m v/cntKp

18.0 m sKi

30 .0 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10 .0 units/secSpeed

10.0 unitsM ove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 m s 1536.00 m s 1536 m s

Freeze sca le

Print

G raph setup

Save graph

Zoom

-.131

.131

0.0

Left cursor
0.000 m s

Rig ht cursor
1536.000 m s

View Logged Data _ X

5.0

Distance Lim it - units

10 .0

Speed - units/sec

2.0

O utput - volts

1Servo axis

Previous profile w ith Kd raised
to dam pen out oscillation.

Axis 1 Position error (units)

Q uit

App ly voltage

M easure
system gain

!! M otor m ay turn !!

Execute m ove
using updated

co ntroller ga ins

SHUTDO WN

Upd ate contro ller
w ith calculated

servo ga ins

2

0.0 %Kvff

100.0 vo ltsIn tLim

1.024 m s
Sam ple

tim e

Step 3: Up date

0.0 vo lts

30 hertz

Calcu late servo ga ins
based on m easured

system gain

0.0 revs /sec /v
2

System G ain

System Ban dw idth

Step 2: Ca lcula tion

1.536 secsDisplay
tim e

Disab le integ rator du ring m otion

Trapezoida lPro file

22 .5769 m v/cntKp

18.0467 m sKi

3.5 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10 .0 units /secSpeed

10.0 unitsM ove

units /sec2

units /sec2

Step 1: M easure Step 4: Respon se

0.0 m s 1536.00 m s 1536 m s

Freeze scale

Print

G raph setup

Save g raph

Zoom

-.082

.082

0.0

Left cursor
0.000 m s

Right cu rsor
1536.000 m s

View Logged Data _ X

5.0

Distance L im it - un its

10 .0

Speed - units/sec

2.0

O utput - volts

1Servo ax is

Response with low Kd.
Note oscillation at end of profile.

Axis 1 Position error (units)

Q uit

App ly voltage

M easure
system g ain

!! M otor m ay tu rn !!

Execute m ove
using updated

co ntroller g ain s

SHUTDOW N

Upd ate controller
w ith ca lcu lated

servo g ain s

2

0.0 %Kvff

13 .0 vo ltsIn tL im

1.024 m s
Sam ple

tim e

Step 3: U pdate

0.0 vo lts

30 hertz

Calcula te servo g ain s
based on m easured

system g ain

0.0 revs /sec /v
2

System G ain

System Bandw id th

Step 2: C alcula tion

1.536 secsDisplay
tim e

Disable in tegrator during m o tion

Trapezoid alPro file

22 .5769 m v/cntKp

18.0467 m sKi

9.0234 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10 .0 units/secSpeed

10.0 unitsM ove

units/sec2

units/sec2

Step 1: M easure Step 4: R esp onse

0.0 m s 1536.00 m s 1536 m s

Freeze sca le

Print

G raph setup

Save graph

Zoo m

-.082

.082

0.0

Left cursor
0.000 m s

Right cursor
1536.000 m s

View Logged Data _ X

5.0

Distance Lim it - units

10 .0

Speed - units /sec

2.0

O utput - volts

1Servo ax is

Response if IntLim is too low and
integrator enabled during m otion.

Note that the integrator cannot bring the error
to zero during the flat top part of the profile

Axis 1 Position error (units)

Q uit

254 Servo Drive

Apply voltage

Measure
system gain

!! M otor m ay turn !!

Execute m ove
using updated

controller gains

SHUTDOWN

Update controller
w ith calculated

servo gains

2

0.0 %Kvff

100.0 voltsIntLim

1.024 m s
Sample

tim e

Step 3: Update

0.0 volts

30 hertz

Calculate servo gains
based on m easured

system gain

0.0 revs/sec /v
2

System G ain

System Bandwidth

Step 2: Calculation

.768 secsDisplay
tim e

Disable integrator during m otion

TrapezoidalProfile

22.5769 m v/cntKp

18.0467 m sKi

9.0234 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10.0 units/secSpeed

10.0 unitsMove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 ms 768.00 m s 768 m s

Freeze scale

Print

G raph setup

Save graph

Zoom

-.318

.318

0.0

Left cursor
0.000 m s

Right cursor
768.000 m s

View Logged Data _ X

5.0

Distance Lim it - units

10.0

Speed - units/sec

2.0

O utput - volts

1Servo axis

Response if the program m ed speed is too
high for the m otor. This also can be caused

by the drive running at too low a bus voltage.

Axis 1 Position error (units)

Q uit

Apply voltage

Measure
system gain

!! M otor m ay turn !!

Execute m ove
using updated

controller gains

SHUTDOWN

Update controller
w ith calculated

servo gains

2

0.0 %Kvff

100.0 voltsIntLim

1.024 m s
Sample

tim e

Step 3: Update

0.0 volts

30 hertz

Calculate servo gains
based on m easured

system gain

0.0 revs/sec /v
2

System G ain

System Bandwidth

Step 2: Calculation

2.048 secsDisplay
tim e

Disable integrator during m otion

"S" curve = 16Profile

22.5769 m v/cntKp

18.0467 m sKi

9.0234 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10.0 units/secSpeed

10.0 unitsMove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 ms 1024.00 m s 2048 m s

Freeze scale

Print

G raph setup

Save graph

Zoom

-10.025

10.025

0.0

Left cursor
512.000 m s

Right cursor
1586.000 m s

View Logged Data _ X

5.0

Distance Lim it - units

10.0

Speed - units/sec

2.0

O utput - volts

1Servo axis

Encoder velocity profile

Axis 1 Encoder velocity (units/sec)

Q uit

Apply voltage

Measure
system gain

!! M otor m ay turn !!

Execute m ove
using updated

controller gains

SHUTDOWN

Update controller
w ith calculated

servo gains

2

0.0 %Kvff

100.0 voltsIntLim

1.024 m s
Sample

tim e

Step 3: Update

0.0 volts

30 hertz

Calculate servo gains
based on m easured

system gain

0.0 revs/sec /v
2

System G ain

System Bandwidth

Step 2: Calculation

2.048 secsDisplay
tim e

Disable integrator during m otion

"S" curve = 16Profile

22.5769 m v/cntKp

18.0467 m sKi

9.0234 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10.0 units/secSpeed

10.0 unitsMove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 ms 1024.00 m s 2048 m s

Freeze scale

Print

G raph setup

Save graph

Zoom

-10.0

10.0

0.0

Left cursor
512.000 m s

Right cursor
1586.000 m s

View Logged Data _ X

5.0

Distance Lim it - units

10.0

Speed - units/sec

2.0

O utput - volts

1Servo axis

Com m and velocity profile

Axis 1 Com m and velocity (units/sec)

Q uit

Apply voltage

Measure
system gain

!! M otor m ay turn !!

Execute m ove
using updated

controller gains

SHUTDOWN

Update controller
w ith calculated

servo gains

2

0.0 %Kvff

100.0 voltsIntLim

1.024 m s
Sample

tim e

Step 3: Update

0.0 volts

30 hertz

Calculate servo gains
based on m easured

system gain

0.0 revs/sec /v
2

System G ain

System Bandwidth

Step 2: Calculation

1.280 secsDisplay
tim e

Disable integrator during m otion

TrapezoidalProfile

22.5769 m v/cntKp

18.0467 m sKi

9.0234 m sKd

0.0 v/cnt/m sKaff

100.0Accel

100.0Decel

10.0 units/secSpeed

10.0 unitsMove

units/sec2

units/sec2

Step 1: Measure Step 4: Response

0.0 ms 1280.00 m s 1280 m s

Freeze scale

Print

G raph setup

Save graph

Zoom

-9.9951

9.9951

0.0

Left cursor
0.000 m s

Right cursor
1280.000 m s

View Logged Data _ X

5.0

Distance Lim it - units

10.0

Speed - units/sec

2.0

O utput - volts

1Servo axis

Response of the torque com m and for the
previous profile w ith speed set too high.

Note that the torque com m and saturates at 10
volts. Any tim e the com m and goes + or -10V,

the m otor is not producing the required
torque to bring the error down.

Axis 1 Analog output / Torque (volts)

Q uit

Servo Drive 255

9.1.2 Excessive Duty Cycle Shutdown

As the servo system responds to shaft displacement
due to move commands or reaction torque’s, the
servo amplifier produces current to drive the motor.
A feature has been added that prevents the unit from
generating too much current and/or motor heating
due to an excessive duty cycle situation. Here, duty
cycle refers to the percentage of time that the system
is required to generate a current (and therefore re-
sultant torque) above its continuous rating.

The peak current is assumed to be twice the continu-
ous current rating of the servo amplifier. Also, the
servo amplifier produces peak current when a 10-
volt signal is applied to the amplifier. For example a
4 ampere continuous current rating (5-volt amplifier
signal) would produce a peak available current of 8
amperes (10-volt amplifier signal). The continuous
current can be maintained indefinitely. However,
currents above the continuous current rating (up to
the peak current) can only be generated for a limited
length of time before damage to the servo amplifier
and/or motor will result. If the amplifier and motor
are allowed to cool (i.e. the motor rests for a short
period) as a result of the current dropping below the
continuous current rating, then repetitive occur-
rences of currents above the continuous current rat-
ing may be acceptable.

If an excessive duty cycle situation occurs, the user
task will error trap and all motors in the task will be
stopped. The servo axis with the excessive duty cy-
cle will be disabled resulting in the motor shaft
spinning freely unless it is held by an external
brake. Error code 26, IXT Servo Error will be gen-
erated for this axis. The axis that created the error
can be interrogated using the ERRAXIS command.
The error that created the error trap can be interro-
gated using the ERR command. This error can be
cleared by commanding an ERR=0,0 statement in
the error handler.

The excessive duty cycle is defined as a time that the
amplifier is saturated (peak current). The default
time is 3 seconds and can be changed using basic
command IXT in a user task. The excessive duty
cycle check can be disabled if the time value for the
IXT command is zero. A Peak Current vs. Time-
out chart is depicted below. This chart can be used
to calculate the excessive duty cycle time for cur-
rents above the continuous current rating of the am-
plifier.

Example:
Amplifier continuous rating is 4 amperes.
Amplifier peak current is 8 amperes.
IXT time is set to 3 seconds (default)

Continuous Current
(Amperes)

Current
(%)

Timeout
(seconds)

4.2 52.5 60
4.4 55 30
4.8 60 15
5.2 65 10
5.6 70 7.5
6.0 75 6
6.4 80 5
6.8 85 4.286
7.2 90 3.75
7.6 95 3.333
8.0 100 3

IXT trip point = (rated peak current * .5) * IXT time
IXT trip point = (8 * .5) * 3 = 12 amp seconds

Timeout (secs)=IXT trip point/(current – cont. rated)
Timeout (secs)= 12/(6-4) = 6 seconds for 6 amperes

50 60 70 80 90 100

Peak Current (%)

1.0

5.0

10 .0

15 .0

20 .0

T
im

e
o

u
t

F
a

c
to

r

PEAK CURRENT vs TIMEOUT

D
e

fa
u

lt
 T

im
e

o
u

t
(s

e
c

o
n

d
s

)

3

15

30

45

60

256 Servo Drive

9.2 – Servo Drive Command Listing

FOLERR Motion Parameter
ACTION: Sets or returns the maximum position error allowed during motion,

herein referred to as "following error."

COMMAND SYNTAX: FOLERR(axis)=expression
FOLERR=expression1, number2, . . . , number8
FOLERR(axis, … , axis)=expression, … , expression
FOLERR (axis) - Used in an expression

Note: ENCFOL can be substituted for FOLERR.

REMARKS: The axis specifies the number of the axis (1-8).

The expression specifies the maximum position error allowed during
motion in units.

Position error = absolute position - encoder position.

EXAMPLES: FOLERR(2)=.4
Sets the following error of axis 2 to .4 units.

FOLERR=.4,, .3
Sets the following error of axis 1 to .4 units and axis 3 is set to .3 units.

FOLERR(1,3)=.4,.3
Sets the following error of axis 1 to .4 units and axis 3 is set to .3 units.

Servo Drive 257

INTLIM Servo Parameter
ACTION: Sets the Integral limit for the servo output. This is the limit of the contri-

bution to the servo output from the integral of the position error.

PROGRAM SYNTAX: INTLIM (axis)=expression
INTLIM=expression1, ... , expression8
INTLIM (axis,...,axis)=expression, ... ,expression
INTLIM (axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The setting limits the contribution of the integral term to the servo loop's
output. This limit is imposed on the internal calculation within the con-
troller, and is used to prevent excessive buildup of the integrator output
which can occur if a constant error is allowed to exist for extended peri-
ods of time. Too low an integral limit may reduce the effectiveness of the
integrator by limiting its contribution to the output torque command.
This would cause a constant steady state error. Too high an integral limit
may allow the integrator to build up a large error stored in the controller
memory. This error would then be “unwound” at the end of a move
causing excessive overshoot and a long settling time. The limit can be set
between 0 and 319 volts. A setting of 100 is a good midrange starting
point, and this parameter rarely needs adjustment.

If the input value is out of range, the previous setting is retained. Read-
ing INTLIM returns the present setting in volts.

EXAMPLES: INTLIM(2) = 5 ‘ sets the integral limit for axis 2 to 5 volts.

X = INTLIM(2) ‘ sets x to the integral limit of axis 2.

258 Servo Drive

IXT Servo Parameter
ACTION: Sets or returns the Excessive Duty Cycle Shutdown time in seconds.

PROGRAM SYNTAX: IXT(axis) = expression
IXT(axis, … , axis) =expression, … , expression
IXT = expression, … , expression
IXT(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression specifies the time the servo peak current can be main-
tained. The time value is in seconds and the default value for each axis is
3 seconds. Setting the expression equal to 0 will disable the Excessive
Duty Cycle Shutdown check.

Caution: Disabling the Excess Duty Cycle or setting the time too
large may result in damage to the servo drive and/or motor if the
duty cycle of the servo amplifier is exceeded.

The IXT(axis)=expression program command should precede the
WNDGS(axis)=1 command.

The default value for IXT is set each time a project is loaded or executed.
Thus, adding an IXT basic command to a task is the only way to change
the default value.

If an Excessive Duty Cycle Shutdown occurs the user task will error trap
and all motors in the task will be stopped. The servo axis with the exces-
sive duty cycle will be disabled resulting in the motor shaft spinning
freely unless it is held by and external brake. Error code 26, IXT Servo
Error will be generated for this axis.

EXAMPLES: IXT(1) = 5
‘ sets the Peak Current time for axis 1 to 5 secs.
WNDGS(1)=1
‘ enable the servo drive on axis 1.

IXT(1,3) = 5,6
‘ sets the Peak Current time for axis 1 to 5 secs and axis 3 to 6 secs.
WNDGS(1,3)=1,1
‘ enable the servo drive on axis 1 and axis 3.

IXT = 5, ,6
‘ sets the Peak Current time for axis 1 to 5 secs and axis 3 to 6 secs.
WNDGS(1,3)=1,1
‘ enable the servo drive on axis 1 and axis 3.

time = IXT(1)
‘ return the Peak Current time setting of axis 1

Servo Drive 259

KAFF Servo Parameter
ACTION: Sets or returns the acceleration feed forward gain for a servo axis.

PROGRAM SYNTAX: KAFF(axis)=expression
KAFF=expression1,..., expression8
KAFF(axis,…,axis)=expression,...,expression
KAFF(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression is the acceleration feed forward gain of the servo axis.
The expression value must be positive.

The KAFF units are in volts/encoder count/msec2.

EXAMPLES: KAFF(2)=.5
Sets the acceleration feed forward gain of axis 2 to .5 volts/encoder
count/msec2.

KAFF=.2,,0
Sets the acceleration feed forward gain of axis 1 to .2 volts/encoder
count/msec2 and axis 3 is set to 0 volts/encoder count/msec2.

KAFF(1,3)=.2,0
Sets the acceleration feed forward gain of axis 1 to .2 volts/encoder
count/msec2 and axis 3 is set to 0 volts/encoder count/msec2.

KD Servo Parameter
ACTION: Sets or returns the derivative gain for the servo axis.

PROGRAM SYNTAX: KD(axis)=expression
KD=expression1, ... , expression8
KD(axis, ... ,axis)=expression, ... ,expression
KD(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression is the derivative gain value of the servo axis. The expres-
sion value must be positive.

The KD units are milliseconds.

KD must be non-zero for system stability. Setting KD affects the gains
for the velocity and feed forward terms. Reading KD returns the present
setting.

EXAMPLES: KD(2)=4
Sets the derivative gain of axis 2 to 4 milliseconds.

KD=10,,8
Sets the derivative gain of axis 1 to 10 milliseconds and axis 3 is set to 8
milliseconds.

KD(1,3)=10,8
Sets the derivative gain of axis 1 to 10 milliseconds and axis 3 is set to 8
milliseconds.

260 Servo Drive

KI Servo Parameter
ACTION: Sets or returns the integral gain of a servo axis.

PROGRAM SYNTAX: KI(axis)=expression
KI=expression1, ... , expression8
KI(axis, ... ,axis)=expression, ... ,expression
KI(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression is the Integral gain value of the servo axis. The expres-
sion value must be positive.

The KI units are milliseconds.

KI determines how fast the integral term grows with a non-zero position
error. The growth rate is inversely related to the value of KI. For exam-
ple the integral term grows 5 times faster with KI=10 than with KI=50.
A special case is Ki=0, which disables the integral action and set the in-
tegral term to zero. When the drive is disabled, the integral term is set to
zero. Setting KI only affects the gain for the integral term. Reading KI
returns the present setting.

EXAMPLES: KI(2)=4
Sets the Integral gain of axis 2 to 4 milliseconds.

KI=1,,4
Sets the Integral gain of axis 1 to 1 milliseconds and axis 3 is set to 4
milliseconds.

KI(1,3)=1,4
Sets the derivative gain of axis 1 to 1 milliseconds and axis 3 is set to 4
milliseconds.

Servo Drive 261

KP Servo Parameter
ACTION: Sets or returns the proportional gain of the servo axis.

PROGRAM SYNTAX: KP(axis)=expression
KP=expression1, ... , expression8
KP(axis, ... ,axis)=expression, ... ,expression
KP(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression is the proportional gain value of the servo axis. The ex-
pression value must be positive.

The KP units are millivolts/encoder count.

KP determines the size of the proportional term for a given position er-
ror. Setting KP affect the gains for the proportional, integral, velocity
and feed forward terms. Reading KP returns the present setting.

EXAMPLES: KP(2)=20
Sets the Proportional gain of axis 2 to 20 millivolts/encoder count.

KP=18,,20
Sets the Proportional gain of axis 1 to 18 millivolts/encoder count and
axis 3 is set to 20 millivolts/encoder count.

KP(1,3)=18,20
Sets the Proportional gain of axis 1 to 18 millivolts/encoder count and
axis 3 is set to 20 millivolts/encoder count.

262 Servo Drive

KVFF Servo Parameter
ACTION: Sets or returns the velocity feed forward gain for the servo axis.

PROGRAM SYNTAX: KVFF(axis)=expression
KVFF=expression1, ... , expression8
KVFF(axis, ... ,axis)=expression, ... ,expression
KVFF(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression is the velocity feed forward gain value of the servo axis.
The expression value must be positive.

The KVFF units are percent.

KVFF can be used to reduce the position error during motion. It does not
affect system stability. The minimum error occurs with KVFF near
100%. Setting KVFF only affects the gain for the velocity feed forward
term. Reading KVFF returns the present setting.

EXAMPLES: KVFF(2)=95
Sets the Velocity feed forward gain of axis 2 to 95%.

KVFF=98,,95
Sets the Velocity feed forward gain of axis 1 to 98% and axis 3 is set to
95%.

KVFF(1,3)=98,95
Sets the Velocity feed forward gain of axis 1 to 98% and axis 3 is set to
95%.

OUTLIMIT Servo Parameter
ACTION: Sets or returns the servo command voltage limit.

PROGRAM SYNTAX: OUTLIMIT(axis)=expression
OUTLIMIT=expression1, ... , expression8
OUTLIMIT(axis, ... , axis)=expression, ... , expression
OUTLIMIT(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression is the OUTLIMIT value set for the designated axis.

Limits the magnitude of the servo loop’s output voltage. OUTLIMIT is
set to 10 volts at power up. OUTLIMIT can be set between 0 and 10
volts inclusive. Setting it to a value outside this range will cause it to be
set to the nearest valid value.

EXAMPLES: OUTLIMIT(2)=5
Limits the magnitude of the servo output voltage for axis 2 to ±±±± 5 volts.

OUTLIMIT=5,,10
Limits the magnitude of the servo output for axis 1 to ±±±± 5 volts and axis 3 to
±±±± 10 volts.

OUTLIMIT(1,3)=5,10
Limits the magnitude of the servo output for axis 1 to ±±±± 5 volts (50% torque
output) and axis 3 to ±±±± 10 volts (100% torque output).

Servo Drive 263

STOPERR Motion Parameter
ACTION: Sets or returns the maximum position error allowed when motion is

stopped, referred to herein as "position error band."

COMMAND SYNTAX: STOPERR(axis) =expression
STOPERR=expression1, … , expression8
STOPERR(axis, … , axis)=expression, … , expression
STOPERR(axis) - Used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression specifies the maximum position error allowed.

The STOPERR specifies the maximum position error allowed when mo-
tion is stopped for a servo motor without causing an error.

EXAMPLES: STOPERR(3)=.1
Sets the maximum position error for axis 3 to .1 units

STOPERR=.1,,,.15
Sets the maximum position error for axis 1 to .1 units and axis 4 to .15
units.

STOPERR(1,4)=.1,.15
Sets the maximum position error for axis 1 to .1 units and axis 4 to .15
units.

264 Servo Drive

WNDGS Motion Parameter
ACTION: Enables or disable a servo drive.

PROGRAM SYNTAX: WNDGS(axis)=expression
WNDGS=expression1, ... ,expression8
WNDGS(axis, ... , axis)=expression, ... , expression
WNDGS(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression enables or disables the specified servo drive, a zero dis-
ables the servo drive and a non-zero enables the servo drive.

The WNDGS command is set to zero on power up. This ensures a safe
condition for a servo drive.

Although the WNDGS command can be executed at any time, it be-
comes effective when no motion is taking place on an axis.

When a servo drive axis is disabled, the servo loop’s integral term is ze-
roed and the servo loop output voltage is 0 volts. When the servo drive
axis is enabled, the commanded position (ABSPOS) is set equal to the
encoder position (ENCPOS). This forces the position error to zero so that
the servo loop output does not cause unexpected motion.

EXAMPLES: WNDGS(2)=1
Disables the servo drive on axis 2.

WNDGS=0,,1
Disables the servo drive on axis 1 and enables the servo drive on axis 3.

WNDGS(1,3)=0,1
Disables the servo drive on axis 1 and enables the servo drive on axis 3.

Stepper Drive 265

Section 10
Stepper Drive

266 Stepper Drive

10.1 – Stepper Features

The MX2000 provides some additional stepper drive
controls features.

• Allows a starting speed for the stepper to be
programmed.

• Reducing motor heating at standstill.

• Ability to increase motor current during motion.

• Configurable as an open loop or closed loop
stepper drive.

• Position Verification and Correction capability
on a closed loop stepper.

The starting speed of the stepper can be controlled
using the LOWSPD command. A good starting
point is 1.5 revolution/second. This is important if
low speed mechanical resonance is encountered
during acceleration or deceleration of the load.

A stepping motor can get hot when no motion is
taking place, the selected drive current is flowing in
the windings at standstill causing heating. This
heating can be reduced by enabling the REDUCE
current feature of the stepper, this reduces the drive
current to 50% when the motor is standing still. An-
other method of reducing heating of the motor is
turning off the current to the windings at standstill.
Some caution should be taken under certain condi-
tions when doing this since the motor has no holding
torque. The WNDGS command is used to control
this.

A stepping motor may require some additional
torque during acceleration or deceleration of the
load. A 50% increase in current can be realized dur-
ing motion with the use of the BOOST command.
This should be used with caution since it produces
additional motor heating during motion. A consid-
eration to duty cycle should be taken into account
when using this feature.

A stepper motor without an encoder must be config-
ured as an open loop stepper in the System Configu-
ration. The default configuration settings for the
open loop stepper can be selected in the Open Loop
Stepper folder in the user program configuration.
Some of these setting can be modified during pro-
gram execution. The Low speed setting can be modi-
fied by the LOWSPD command. Motor standstill
current can be modified by the REDUCE or
WNDGS command. The Motor Boost current setting
can be altered by the BOOST command. The Steps
per motor revolution and Motor current delay are
only selectable in the Open Loop Stepper folder.

A stepper motor with an encoder can be used for
position verification and or position correction. This
feature can be selected in the user program configu-
ration System folder by assigning this motor axis as
a closed loop stepper. The default configuration for a
closed loop stepper can be selected in the Closed
Loop Stepper folder in the user program configura-
tion. Some of these setting can be modified during
program execution. The Low speed setting can be
modified by the LOWSPD command. Motor stand-
still current can be modified by the REDUCE or
WNDGS command. The Motor Boost current setting
can be altered by the BOOST command. Error Ac-
tion can be changed using the ENCMODE com-
mand. Following error can be modified using the
FOLERR command and the Position Error can be
modified using the STOPERR command. The Steps
per motor revolution, Motor current delay, Correc-
tion attempts and Time between attempts are only
selectable in the Closed Loop Stepper folder. The
Encoder folder is used to configure the stepping
motor encoder, the Encoder direction and Line count
items are used to configure the stepper motor en-
coder.

10.2 - Open Loop Stepper Folder

This folder sets the steps per motor revolution,
Low speed, Motor standstill current, Motor boost
current and Motor current delay for an open loop
stepper drive.

Steps per motor revolution specifies the stepping
motor drive setting for each axis.

Low speed specifies the starting speed of each axis
in units/second.

Motor standstill current specifies the state of the
motor current at standstill for each axis. The choices
are normal (100%), reduced (50%) and off (0%).

Motor boost current enables or disables the boost
current feature of the stepper drive during motion.
The choices are normal (100%) and boost (150%).

Motor current delay specifies the time delay be-
tween current modes in seconds. This allows time
for the drive to respond to the change in current level
as a result of the BOOST or REDUCE command
(see Program Command section).

normal 100%Axis 1

M otor
standstill

current

O pe n Lo op
S tep per

normal 100%

M otor Boost
current

M otor current
delay (sec)

0.05

Steps per
motor

revolution

2000

Low speed
(units/sec)

1.5

Axis 2

2000

1.5 normal 100% normal 100% 0.05

Stepper Drive 267

10.3 – Closed Loop Stepper Folder

This folder sets the Steps per motor revolution,
Starting speed, Motor standstill current, Motor
boost current, Motor current delay, Error Ac-
tion, Following error, Position error, Correction
attempts and Time between attempts for a closed
loop stepper drive.

Steps per motor revolution See open loop Stepper
Folder for description.

Low speed See open Low Speed Folder for descrip-
tion.

Motor standstill current See Open Loop Stepper
Folder for description.

Motor boost current See Open Loop Stepper
Folder for description.

Motor current delay See Open Loop Stepper
Folder for description.

Error action selects what action, if any, is taken by
the controller when the commanded motor position
does not match the encoder position within the range
set by the FOLERR command (see programming
commands). This is also referred to as a stall condi-
tion. Once the FOLERR range is exceeded, one of
four things can happen according to the Error Ac-
tion selected.

If Error action is disabled, the controller takes no
action.

If Error action is stop on error, the motor will stop
and a controller error will result (see ERR com-
mand). The fault light will illuminate.

If Error action is correct on error, separate cor-
rection attempts (moves) will be commanded to try
and re-align the motor. The user may specify how
many correction attempts will occur, and the Time
between attempts. If after the specified maximum
number of correction attempts the motor still is not
aligned, motion stops and a controller error will re-
sult.

If Error Action is Restart on error, the entire
move is restarted. The motor returns to the starting
position of the move in progress, and attempts to
repeat the move. If during this repeat cycle the motor
stalls, the motor will again return to the start position
and retry the move. Each stall and restart counts as a
correction attempt. This continues until the motor
reaches the desired position, or the maximum num-
ber of correction attempts is reached. In the case of
the latter a controller error results and the fault light
illuminates.

Correction attempts specifies the maximum num-
ber of consecutive attempts allowed when error ac-
tion is set to correct on error or restart on error
mode and the motor stalls.

Time between attempts. Specifies the time be-
tween correction attempts when error action is set
to correct on error or restart on error mode and
the motor stalls.

10.4 - Encoder Folder

This folder sets the Encoder direction and Encoder
resolution for a closed loop stepper.

Encoder direction determines how the encoder ro-
tation direction is interpreted. The choices are nor-
mal direction or reverse direction.

Encoder line count defines the encoder resolution
in lines. An Encoder with 1000 lines will provide
4000 counts/revolution, or quadrature counts. Set
this value to the encoder line count of the motor.

2000Axis 1

Low speed
(units/sec)

1.5

C lo se d Lo op
S te p pe r

normal 100%

M otor Boost
current

Steps per
motor revolution

0.05

 motor
standstill
current

M otor current
delay (sec)

0.1

0.05

disabled 10

normal 100%

Axis 2 2000 1.5 normal 100% normal 100% 0.05

C lo se d Lo op
S te p pe r

Axis 2

Axis 1

Error action

disabled

Follow ing error
(units)

0.05

Position error
(units)

0.005

0.005

Correction
attempts

10

Time between
attempts (sec)

0.1

Encoder
 d irection

Axis 1 normal d irection

Line count
(lines / rev)

500

E n co d e r

Encoder type

quadrature

pulse count
(pulses/rev)

2000

Axis 2 quadrature normal d irection 500 2000

268 Stepper Drive

10.5 - Special Programming Notes for Closed-Loop Stepper Operation

The parameters for closed loop are set in the project
configuration of the user’s program. These parame-
ters are:

Encoder resolution
Number of lines the encoder has. The line count
times four is the equivalent of encoder pulses/ revo-
lution. The direction for this parameter controls the
quadrature detection direction value.

Encoder position error (units)
Allowable error at standstill before a correction is
required.

Encoder following error (units)
Allowable error during motion before an error is
reported. This value should be a minimum of 1/20
of a motor revolution.

Number of correction attempts allowed
How many consecutive corrections cycles are al-
lowed.

Time between correction attempts (seconds)
Time between correction attempts. Allows motor to
settle out before correcting.

Error action
This setting selects what action, if any, is taken by
the controller when the commanded motor position
does not match the encoder position within the range
set by the FOLERR command (see programming
commands). This is also referred to as a stall condi-
tion. Once the FOLERR range is exceeded, one of
four things can happen according to the Error Ac-
tion selected. This can be changed during program
execution using the ENCMODE command.

If Error action is disabled (ENCMODE=0), the
controller takes no action.

If Error action is stop on error (ENCMODE=1),
the motor will stop and a controller error will result
(see ERR command). The fault light will illuminate.

If Error action is correct on error
(ENCMODE=2), separate correction attempts
(moves) will be commanded to try and re-align the
motor. The user may specify how many correction
attempts will occur, and the Time between at-
tempts. If after the specified maximum number of
correction attempts the motor still is not aligned,
motion stops and a controller error will result.

If Error Action is Restart on error (ENCMODE
=3), the entire move is restarted. The motor returns
to the starting position of the move in progress, and
attempts to repeat the move. If during this repeat
cycle the motor stalls, the motor will again return to
the start position and retry the move. Each stall and
restart counts as a correction attempt. This continues
until the motor reaches the desired position, or the
maximum number of correction attempts is
reached. In the case of the latter a controller error
results and the fault light illuminates.

Testing closed loop operation
1) Send the following Host commands:

ABSPOS(axis)=0
ENCMODE(axis)=0
MOVE(axis)= 1 ‘ 1 rev of motor

2) After the motion is completed send:
ABSPOS(axis) : ENCPOS(axis)

3) If the absolute position and encoder position val-
ues and signs are alike the closed loop stepper is set
up properly.

4) If the values are the same and the directions are
reversed toggle the Encoder direction setting in the
program Configuration. Recompile the program and
download project and repeat steps 1-3.

5) If the values are different the encoder line count
is not correct or the encoder is miss wired.

Stepper Drive 269

10.6 - Stepper Command Listing

BOOST Stepper Parameter
ACTION: Enables or disables the Boost Current feature or returns the boost enable

status for the specified stepper axis. When enabled the stepper drive
BOOST output turns on during motion. This causes the stepper drive to
boost the motor current by 50% during motion.

PROGRAM SYNTAX: BOOST(axis)=expression
BOOST=expression1, ... , expression8
BOOST(axis, ... , axis)=expression, ... , expression
BOOST(axis) - used in an expression

REMARK: The axis specifies the number of the axis (1-8).

If the expression is true (non-zero) then the BOOST feature is enabled
for the specified axis. If the expression is false (zero) then the BOOST
feature is disabled for the specified axis.

EXAMPLE: BOOST(7)=1
Enables the Boost feature for axis 7.

BOOST=1,,0
Enables the BOOST feature for axis 1 and disables the BOOST feature
for axis 3.

BOOST(1,3)=1,0
Enables the BOOST feature for axis 1 and disables the BOOST feature
for axis 3.

270 Stepper Drive

ENCMODE Closed Loop Stepper Parameter
ACTION: Sets or returns the operating mode of a closed loop stepper axis.

PROGRAM SYNTAX: ENCMODE(axis)=expression
ENCMODE=expression1, ... , expression8
ENCMODE(axis, ... ,axis)=expression, expression
ENCMODE(axis) - used in an expression

REMARK: The axis specifies the number of the axis (1-8).

The operating mode are:
0 closed loop disabled - operates open loop.
1 halt execution on excessive following error.
2 correct position on excessive following error.
3 restart move on excessive following error.

Note: This command is only used for a Closed Loop Stepper.

EXAMPLE: ENCMODE(1)=0
Sets axis 1 to open loop operation.

ENCMODE=1,,2
Sets axis 1 to halt execution on excessive error and axis 3 to correct po-
sition on excessive following error.

ENCMODE(1,3)=1,2
Sets axis 1 to halt execution on excessive error and axis 3 to correct po-
sition on excessive following error.

Stepper Drive 271

FOLERR Closed Loop Stepper Parameter
ACTION: Sets or returns the maximum position error allowed during motion,

herein referred to as "following error."

COMMAND SYNTAX: FOLERR(axis)=expression
FOLERR=expression1, number2, . . . , number8
FOLERR(axis, … , axis)=expression, … , expression
FOLERR (axis) - Used in an expression

Note: ENCFOL can be substituted for FOLERR.

REMARKS: The axis specifies the number of the axis (1-8).

The expression specifies the maximum position error allowed during
motion in units.

Position error = absolute position - encoder position.

EXAMPLES: FOLERR(2)=.4
Sets the following error of axis 2 to .4 units.

FOLERR=.4,, .3
Sets the following error of axis 1 to .4 units and axis 3 is set to .3 units.

FOLERR(1,3)=.4,.3
Sets the following error of axis 1 to .4 units and axis 3 is set to .3 units.

LOWSPD Stepper Parameter
ACTION: Sets or returns the Low Speed (starting speed) value of a stepping motor

axis.

PROGRAM SYNTAX: LOWSPD(axis)=expression
LOWSPD=expression1, ... ,expression 8
LOWSPD(axis, ... ,axis)=expression, ... ,expression
LOWSPD(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression set the LOWSPD value of the specified axis in
units/second.

This command is only used by a stepper axis and is zeroed if the axis is a
servo.

EXAMPLES: LOWSPD(2)=1.5 ‘ set axis 2 to 1.5 units/second.

LOWSPD=1.3,, 1.5 ‘ sets axis 1 to 1.3 units/second and axis 3 to
1.5 units/second.

LOWSPD(1,3)=1.3, 1.5 ‘ sets axis 1 to 1.3 units/second and axis 3 to
1.5 units/second.

272 Stepper Drive

REDUCE Stepper Parameter
ACTION: Enables, disables the Reduce current or returns the enable status.

PROGRAM SYNTAX: REDUCE(axis)=expression
REDUCE=expression1, ... , expression8
REDUCE(axis, ... , axis)=expression, ... , expression
REDUCE(axis) - used in an expression

REMARKS: The "axis" specifies the number of the axis (1-8).

When enabled, the stepper drive REDUCE output turns on when there is
no motion. This causes the drive to reduce the motor current to 50%.
This feature requires a compatible stepper motor drive.

If the expression is true (non-zero) then the REDUCE feature is enabled
for the specified axis. If the expression is false (zero) then the REDUCE
feature is disabled for the specified axis.

EXAMPLES: REDUCE(7)=1
enables the REDUCE feature for axis 7

REDUCE=1,1,,0,0,0,1,0
enables the REDUCE feature for axis 1,2,7, and disables the feature for
axis 4,5,6,8.

Stepper Drive 273

STOPERR Closed Loop Stepper Parameter
ACTION: Sets or returns the maximum position error allowed when motion is

stopped, referred to herein as "position error band."

COMMAND SYNTAX: STOPERR(axis) =expression
STOPERR=expression1, … , expression8
STOPERR(axis, … , axis)=expression, … , expression
STOPERR(axis) - Used in an expression

Note: ENCBAND can be substituted for STOPERR.

REMARKS: The axis specifies the number of the axis (1-8).

The expression specifies the maximum position error allowed.

STOPERR specifies the position dead band allowed for a Closed Loop
Stepper Drive. If this value is exceeded at standstill it creates a correction
motion cycle, and moves to the zero error position.

STOPERR specifies the maximum position error allowed when motion is
stopped for a Stepper Drive.

EXAMPLES: STOPERR(3)=.1
Sets the maximum position error for axis 3 to .1 units

STOPERR=.1,,,.15
Sets the maximum position error for axis 1 to .1 units and axis 4 to .15
units.

STOPERR(1,4)=.1,.15
Sets the maximum position error for axis 1 to .1 units and axis 4 to .15
units.

274 Stepper Drive

WNDGS Stepper Parameter
ACTION: Enables or disables a stepper motor drive, winding current controlled.

PROGRAM SYNTAX: WNDGS(axis)=expression
WNDGS=expression1, ... ,expression8
WNDGS(axis, ... , axis)=expression, ... , expression
WNDGS(axis) - used in an expression

REMARKS: The axis specifies the number of the axis (1-8).

The expression specifies the state of the windings for the specified axis.

A zero indicated normal current or reduced current and a non-zero turns
the stepper motor winding current off.

The WNDGS command is set to zero on power up. This insures a safe
condition for a stepper drive on powered up.

Although the WNDGS command can be executed at any time, it be-
comes affective when no motion is taking place on an axis.

EXAMPLES: WNDGS(2)=1
Sets the WNDGS state to 1 (Windings Off) on axis 2.

WNDGS=0,,1
Sets the WNDGS state on axis 1 to a 0 (Windings On) and axis 3
WNDGS state is 1 (Winding Off).

WNDGS(1,3)=0,1
Sets the WNDGS state on axis 1 to a 0 (Windings On) and axis 3
WNDGS state is 1(Windings Off).

Data Logging for Mx2000 revision 275

Section 11
Data Logging

276 Data Logging for Mx2000 revision 4.0

11.1 - Data Logging

The controller has the capability to perform data
logging of eight items when the selected trigger
occurs. Each logged item has 200 points. The Data
Logging is accessible from the Utility menu.

An MX2000 project in the PC needs to be open to
perform data logging. Data logging can be triggered
by either Host or program execution commanded
motion.

11.1.1 - Parameter & Trigger Setup

The parameter & trigger setup is accessed by
clicking on the Utility menu, Logging item and then
Parameter & Trigger Setup item. A maximum of
eight parameters, independent of the number of axes,
may be selected for data logging. To select or
deselect a data logging item click on the desired axis
of the parameter check box.

The parameter selection list is: Position error,
Absolute position, Encoder position, Integration
error, Analog command, Accel feed forward, Analog
input 1, Analog input 2, Encoder velocity, Event 1
state, Event 2 state, +Limit state, –Limit state and
Command Velocity.

Trigger Axis selects the axis that will trigger the
logging. The trigger occurs when the selected axis
motion starts.

Display Time select the logging period for data
logging in seconds.

Trigger Delay selects the delay, in millisecs, after
the trigger occurs and data logging begins.

Cancel exits the logging Parameter & Trigger setup
without saving the values.

Ok sends the parameter listing, trigger axis, display
time, Trigger delay to the controller and arms the
motion trigger for data logging. The terminal mode
window opens at this time allowing motion to be
commanded.

11.1.1.1 Parameter List Descriptions

Position error is the position difference between the
commanded position and the encoder position. This
waveform is in units.

Absolute position is the commanded position of an
axis. This waveform is in units.

Encoder position is the encoder position of an axis.
This is the actual position of a closed loop stepper or
servo axis. This waveform is in units.

Integration error is the integration error
contribution to the analog output voltage for a servo
drive. This waveform is in volts.

Analog command (torque) is the commanded
torque voltage for a servo drive axis or the
commanded analog output voltage of an axis. This
waveform is in volts.

Analog input 1 is the IN+ input voltage referenced
to AGND if single ended mode is selected or the
differencial input voltage of an axis. This waveform
is in volts.

Analog input 2 is the IN- input voltage referenced
to AGND if single ended mode is selected. This
waveform is in volts.

Encoder velocity is the measured velocity of the
encoder input. This waveform is in units/sec.

Event 1 state is the state of the event 1 input of the
axis.

Event 2 state is the state of the event 2 input of the
axis.

+Limit state is the state of the +limit input of the
axis.

-Limit state is the state of the -limit input of the
axis.

U tility

T erm ina l ...

S ervo Tun ing ...

D eb ug ...

 P ara m e ters & T rig ger S e tu p

 D ata T rans fe r

 V iew D ata

L o gg in g ...

A maximum of eight parameters may be selected

Position error (units)

Absolute position (units)

Parameters

Encoder position (units)

Integration error (volts)

Analog command (torque) (volts)

Ok Cancel
Trigger Axis

1

Display Time

2.048 secs

Trigger Delay

0.0 msecs

Analog input 1 (volts)

Analog input 2 (volts)

Encoder velocity (units/sec)

Event 1 state (state)

Event 2 state (state)

+Limit state (state)

-Limit state (state)

Command Velocity (units/sec)

AXIS 1 AXIS 2

Data Logging for Mx2000 revision 277

Command Velocity is the commanded velocity of
the axis. This waveform is in units/sec.

11.1.2 - Data Transfer

After the selected motion trigger has occurred the
individual logged parameter data transfer can be
enabled, disabled and scaled. To select Data
Transfer click on the Utility menu, Logging item
and then Data Transfer item.

Enable data transfer allows the individual logged
parameters transfer to be enabled or disabled.
Clicking on the check box will toggle the transfer
setting. Data can be selected or deselected for later
viewing.

Data scaling scales the individual logged parameter
for zero-centered, min-max or manual.

Full scale is only allowed if manual scaling is
selected. This sets the peak value for the logged
data.

Offset is only allowed if manual scaling is selected.
This sets the offsetvalue which represents the
vertical center of the displayed graph.

Cancel exits the data transfer without transferring
logged data.

Ok transfers the selected logged data from the
controller. The View Data window opens allowing
the transfered data to be viewed.

11.1.3 - View Data

The individual logged parameter can be viewed by
clicking on the Utility menu, Logging item and then
the View Data item.

Zoom toggles displaying the graph between the two
cursors and the full screen on the view port.

Save Graph saves the currently displayed graph.

Graph setup allows for the selection of color and
style for each logged item.

Print prints the currently displayed graph.

Quit exits the View logged Data environment.

Display Drop list selects the logged item to be
displayed.

The cursors can be dragged to any horizontal
position on the waveform. The elapsed time
from the start of the waveform for the current
cursor position is displayed above the logged
waveform.

A xis 1 Position error (pulses)

V iew Logged D ata

Graph setup

Zoom

Save graph

Freeze scale

Print

Quit

0.0

76.8359

-76.8359

2048.0 m s1024.000

1536.000 m s512.000 ms

Left cursor Right cursor

0.0
Parameters

Axis 1 Position error (units)

Axis 1 Absolute position (units)

Axis 1 Encoder position (units)

No selection

No selection

No selection

No selection

No selection

Enable data transfer Data scaling Full scale Offset

X

X

X

Zero center

Zero center

Zero center

Zero center

Zero center

Zero center

Zero center

Zero center

0.0

0.0

0.0

0

0

0

0

0

0.0

0.0

0.0

Ok Cancel

Data logging - Data transfer

278 Data Logging for MX2000 version 4.0

This page left intentionally blank

Debug Environment 279

Section 12
DEBUG

Environment

280 Debug Environment

12.1 - Setting Project Debugging

To set the debug mode click on the Compile menu
and then on the Debug mode item. The project must
be compiled and downloaded before task debugging
can begin. To cancel the debugging mode selection
click on the Compile menu and then the Release
mode item. To complete this cancellation the proj-
ect must now be compiled and downloaded.

12.2 - Task Debugging

A project that is loaded into the controller can be
debugged if the project has been compiled in Debug
mode and downloaded. The project to be debugged
must be open. To enter the debug environment click
on the Debug command button. This environment
consist of an Exit command button, Step command
button, Halt command button, Break command
button, List Breakpoints command button, Instant
Watch command button, Run command button,
Toggle breakpoints command button, Watch
command button, Update Watch command button,
program status indicator, Terminal window, Watch
window and Program window.

W atch W indow

 P rog ram s ta tu s
 S T O P P E D

Ins tan t w a tch

U pd ate w a tch

L is t B re akpo in ts

W atchT og g le b rea kp o in ts

B rea kH a ltS tepE x it

R un

S ta tus Ind ica to r

Te rm ina l W indow

C om m and B u ttons

P rog ram W indow

C om pile

C om pile project

R elease m ode

D ebug m ode

Debug Environment 281

12.2.1 - Debug program execution

A program can be executed in different ways from
the Debug Environment. Single line execution of the
current line can be initiated by clicking on the Step
command button. The >>>>>> symbol preceding
the line number indicates the line to be executed.
The program can be executed to the next breakpoint
encountered or end of program by clicking on the
Run command button. Clicking on the Halt com-
mand button will stop a Running program. A pro-
gram that is running can also be placed in the Single
line execution mode by clicking on the Step or
Break command button.

Note: The program status indicator shows the
status of program execution. The only time this
status will indicate Stopped is when the program
is halted or has executed an end statement in the
program. The indicator is green for running and
red for stopped.

12.2.2 - Breakpoint Setting/Clearing

Up to five breakpoints can be set in debug mode. To
change the breakpoint setting of a line, click on the
desired line and then click on the Toggle break-
points command button. When a line is set as a
breakpoint, a (BRK) will precede the line. The
breakpoint line numbers can be listed or cleared by
clicking on the List breakpoints command button
and than the appropriate command button.

12.2.3 - Terminal Window

The terminal window allows host command execu-
tion without leaving the Debug Environment. The
Terminal Window is selected by clicking inside the
Terminal window. A blinking cursor indicates that
the Terminal window is selected for host commands.

12.2.4 - Watch variables

The watch variable allows the programmer to view
the values of selected variables. To add or remove a
watch variable from the watch window click on the
Watch command button.

To add a specific variable to the watch list, select the
variable from the Variable list and then click on the
Add watch command button. To remove a specific
variable from the watch list, select the variable from
the Watch list and then click on the Remove watch
command button. To add all the variables to the
watch list click on the Add all command button. To
remove all variables from the watch list click on the
Remove all command button. To return to the De-
bug Environment screen click on the Ok command
button. The variable in the watch list will appear in
the Watch Window and its current value will be
displayed.

Another method of watching a variable is to high-
light the variable and then click on the Instant
Watch command button. The variable name and
value will be displayed. This variable can be added
to the watch window by clicking on the Add watch
command button.

12.2.5 - Exit Debug Environment

The debug environment can be exited by clicking on
the Exit command button.

Instant watch m enu

Add watch Cancel

 Variable
 X

 Value
 0

X

V a ria b le w a tch lis t X

Y

W atc h lis tV a ria b le lis t

X
A d d w a tch

A d d a ll

R e m o ve w a tch

R e m o v e a ll

O K

282 Debug Environment

This page left intensionally blank

Application Examples 283

Section 13
Application Examples

284 Application Examples

13.1 – Using a Joystick to teach an Arbitrary shape program

13.1.1 - MX2000 Joystick connection

A joystick is easily interfaced to the MX2000 analog in-
puts to control two motors. This allows positioning of a
device for setup, or capturing positions for an arbitrary
shape prior to machining, etc. The following diagram
shows the method of connecting a two axis joystick to the
MX2000 controller.

The analog inputs of the joystick axes must be configured
as differential inputs in the user projects. The JOYSTICK
basic command is used to enable the joystick mode of
operation in the user program. The joystick mode can be
canceled in the user program by execution of a STOP
basic command on the joystick axes.

Each axis will run at a speed proportional to the input
voltage and in the direction determined by the polarity of
the input voltage. There is a ±0.25 volt dead band at the
center of the input range, from +4.75 volts to +5.25 volts,
and represents a speed of 0. The axis will run in the nega-
tive direction when the input voltage range is 0 volts to
+4.75 volts. The speed it will attain is :
((4.75 – VIN) / 10) * SPEED(axis). The axis will run in
the positive direction when the input voltage range is
+5.25 volts to +10 volts. The speed it will attain is:
((VIN – 5.25) / 10) * SPEED(axis).

+10V

10V

IN +

IN -

A G N D

10K 10K

15K

15K

5K

5K

2N 2222

IN +

IN -

15K

5K

5K

15K
2N 2222

2
 A

x
e

s
 J

o
y

s
ti

c
k

12 Bit A/D
configured as differential

12 Bit A/D
configured as differential

M X2000 Axis Card
Analog inputs

Application Examples 285

13.1.2 - Example Description

The example program allows an arbitrary shape to be
taught, printed or executed. Four inputs on the axis card
are used to accomplish this. Axis 1 (A side) Event 1 input
is assigned as the Teach input. Axis 1 (A side) Event 2
input is assigned as the Print input. Axis 2 (B side) Event
1 is assigned as the Register input. Axis 2 (B side) Event
2 input is assigned as the Execute input. The Teach input
switch must be a toggle switch and the remaining inputs
can be momentary switches.

A two axis Joystick is connected to the designated axes
analog input. This joystick is used to teach the arbitrary
path to the controller. The circuit above should be used if
possible to accomplish this.

The Program is broken into four distinct sections. The
sections are main, execute taught program, print taught
program, and teach program. These sections are described
in detail below.

A sample program is included on the next page of this
manual.

13.1.3 - Main Section

Moves the axes to the mechanical home positions and
scans the Teach, Print and Execute inputs. When an input
becomes active start executing the selected section.

13.1.4 - Teach section

This subroutine allows the user to trace an arbitrary shape
by positioning, under joystick control, points on the
shape’s periphery. With one task running a maximum of
700 points are allows for a PATH command.

First the joystick is used to position the motors to the
starting position for the desired shape. This position is
recorded in NVR(1) and NVR(2) and becomes the start-
ing position for the shape when the Register button is
pressed.

Thereafter, pressing the Register button and then releasing
it records the different points on the arbitrary shape. The
coordinates of each point are automatically recorded into
the MX2000 non-volatile memory. The X coordinates are
captured in the even NVR elements and the Y coordinates
are captured in the odd elements starting at element 4.
NVR (3) contains the ending element of the coordinates
captured.

The recording session is ended when the Teach input
switch is open circuited.

13.1.5 - Print program section

Transmits ASCII text on the Auxiliary serial port that can
be used as the program text to execute the arbitrary shape
profile. Thus, this program will free up the non-volatile
ram for another shape.

13.1.6 - Execute program section

This section allows the arbitrary shape program to be
tested. The program ends after the arbitrary shape pro-
gram is executed. If the shape needs a correction, print out
the program and adjust the data in the appropriate NVR
locations. Then restart the program and execute the arbi-
trary shape again.

286 Application Examples

************************* EXAMPLE PROGRAM ********************************
‘***** This example program allows a two axis arbitrary path Pattern to be taught, executed or printed.
‘***** Event 1 input, toggle switch, on axis 1 selects the Teach mode.
‘***** Event 2 input, momentary switch, on axis 1 prints the resulting program.
‘***** Event 1 input, momentary switch, on axis 2 registers the pattern points.
‘***** Event 2 input, toggle switch, executes the taught pattern.
‘***** NVR(1-2) is the x-y coordinates for the starting position of the pattern
‘***** NVR(3) is the ending element of the point array
‘***** NVR(4-5) is the first coordinate points of the Pattern
‘***** each additional set of points are in pairs
#DEFINE AX1 1 ‘x axis defined
#DEFINE AX2 2 ‘y axis defined
#DEFINE DCNT 10 ‘input debounce count (msec)
POSMODE(AX1,AX2)=1,1 ‘set absolute position mode
MOVEHOME(AX1,AX2)= -1, -1 ‘GOTO Mechanical Home in -direction
WAITDONE(AX1,AX2) ‘wait until mechanical cycle complete
E1_1=0 ‘initialize variable state
E1_2=0 ‘initialize variable state
E2_1=0 ‘initialize variable state
E2_2=0 ‘initialize variable state
SPEED=10,10 ‘joystick speed for 10 volt differential voltage
DO

state=0
PRINT#1,”Select Teach Program, Print Program or Execute Program”
DO

GOSUB debounce_E1_1 ‘test Teach input
GOSUB debounce_E2_1 ‘test Print input
GOSUB debounce_E2_2 ‘test Execute input
IF E1_1=1 THEN

GOSUB teach ‘Teach input true
state=1

ELSE IF E2_1=1 THEN
GOSUB prt_program ‘Print input true
state=1

ELSE IF E2_2=1 THEN
state=1 ‘Execute input true

END IF
LOOP UNTIL state=1 ‘wait for an input being true

LOOP UNTIL E2_2=1 ‘wait for Execute input being true
IF NVR(3) > 700 then ‘prevents operating system crash

END
END IF
‘***** Execute Program and End
MOVE(AX1,AX2)=NVR(1),NVR(2) ‘goto starting position of pattern
WAITDONE(AX1,AX2) ‘wait until at starting position
element=4 ‘starting element for points
PATH=AX1,AX2 ‘define path axes

DO WHILE element < NVR(3)
POINT=NVR(element), NVR(element + 1)
element = element + 2

LOOP
PATH END
END

Application Examples 287

prt_program:
PRINT#2,”#DEFINE AX1 1”
PRINT#2,”#DEFINE AX2 2”
PRINT#2,
PRINT#2,”POSMODE(AX1,AX2) = 1,1”
PRINT#2,”MOVEHOME(AX1,AX2) = -1,-1”
PRINT#2,”WAITDONE(AX1,AX2)”
PRINT#2,”MOVE(AX1,AX2)=”;NVR(1);”,”;NVR(2)
PRINT#2,”WAITDONE(AX1,AX2)”
PRINT#2,”PATH=AX1,AX2”
FOR X=4 TO NVR(3) STEP 2

PRINT#2,” POINT=”;NVR(X);”,”;NVR(X+1)
NEXT X
PRINT#2,”PATH END”
PRINT#2,”END”
state=1
DO

GOSUB debounce_E2_1 ‘test Print switch
LOOP UNTIL E2_1=0 ‘wait for Print switch to open

RETURN

‘****** debounce Teach Input
debounce_E1_1:

cnt = DCNT ‘debounce delay in msec
DO

IF EVENT1(AX1) = state THEN
RETURN ‘return if same state

ELSE
cnt = cnt – 1
wait=.001 ‘wait 1 msec

END IF
LOOP UNTIL cnt < 1 ‘wait for debounce switch state change
IF state=1 THEN

E1_1 = 0 ‘change state
ELSE

E1_1 = 1 ‘change state
END IF

RETURN ‘return with different state

288 Application Examples

‘****** debounce Register Input
debounce_E1_2:

cnt = DCNT ‘debounce delay in msec
DO

IF EVENT1(AX2) = state THEN
RETURN ‘return if same state

ELSE
cnt = cnt – 1
wait=.001 ‘wait 1 msec

END IF
LOOP UNTIL cnt < 1 ‘wait for debounce switch state change
IF state=1 THEN

E1_2 = 0 ‘change state
ELSE

E1_2 = 1 ‘change state
END IF

RETURN ‘return with different state

‘****** debounce Print Input
debounce_E2_1:

cnt = DCNT ‘debounce delay in msec
DO

IF EVENT2(AX1) = state THEN
RETURN ‘return if same state

ELSE
cnt = cnt – 1
wait=.001 ‘wait 1 msec

END IF
LOOP UNTIL cnt < 1 ‘wait for debounce switch state change
IF state=1 THEN

E2_1 = 0 ‘change state
ELSE

E2_1 = 1 ‘change state
END IF

RETURN ‘return with different state

‘****** debounce Execute Input
debounce_E2_2:

cnt = DCNT ‘debounce delay in msec
DO

IF EVENT2(AX2) = state THEN
RETURN ‘return if same state

ELSE
cnt = cnt – 1
wait=.001 ‘wait 1 msec

END IF
LOOP UNTIL cnt < 1 ‘wait for debounce switch state change
IF state=1 THEN

E2_2 = 0 ‘change state
ELSE

E2_2 = 1 ‘change state
END IF

RETURN ‘return with different state

Application Examples 289

teach:
JOYSTICK(AX1,AX2) ‘ enable 2 axis joystick
NVR(1)=0 ‘ default starting position
NVR(2)=0 ‘ default starting position
NVR(3)=4 ‘ default element

PRINT#1,”Move to pattern starting position”
PRINT#1,” and press Register button”
PRINT#1,” or”
PRINT#1,” open Teach Switch to exit”
DO

DO
state=0
GOSUB debounce_E1_2 ‘test Register button
state=1
GOSUB debounce_E1_1 ‘test Teach input
IF E1_1=0 THEN

STOP(AX1,AX2) ‘disable 2 axis joystick
RETURN ‘teach complete

END IF
LOOP UNTIL E1_2=1 ‘wait for register switch closing

NVR(1)=ABSPOS(AX1) ‘register starting position
NVR(2)=ABSPOS(AX2) ‘register starting position
PRINT#1,”Start Position”,NVR(1),NVR(2)
DO ‘state=1 from above

GOSUB debounce_E1_2 ‘test Register button
LOOP UNTIL E1_2=0 ‘wait for Register switch opening

X=4 ‘starting element
Y=1 ‘point number
DO

state=0
GOSUB debounce_E1_2 ‘test Register button
state=1
GOSUB debounce_E1_1 ‘test Teach input
IF E1_1=0 THEN

STOP(AX1,AX2) ‘disable 2 axis joystick
NVR(3)= X – 1 ‘save last element number
RETURN ‘teach complete

END IF
LOOP UNTIL E1_2=1 ‘wait for Register switch closing

NVR(X) = ABSPOS(AX1) ‘register position
NVR(X+1) = ABSPOS(AX2) ‘register position
PRINT#1,”Point ”;Y,NVR(X),NVR(X+1)
X = X + 2 ‘next element
Y = Y + 1 ‘next point
DO ‘state=1 from above

GOSUB debounce_E1_2 ‘test Register button
LOOP UNTIL E1_2=0 ‘wait for Register switch opening

LOOP UNTIL 1=2 ‘loop indefinitely

290 Application Examples

13.2 - Arbitrary Continuous Motion

This program illustrates the simplicity of using an arbi-
trary continuous motion path in any application.

In this application, the operator places a sheet of sponge
material on a sponge cutting machine and

then activates a cycle start switch (IN101). The cutting
blade moves to a starting position, lowers, and then cuts a
predetermined shape sponge. After a sponge is cut, the
blade is raised and returned to a home position.

Application Examples 291

13.2.1 – EXAMPLE PROGRAM

POSMODE =1,1 'enable absolute mode
DO : LOOP UNTIL IN(101)=1 'loop until input 101 is high
MOVE=2,1 'move to starting position
OUT(111)=1 'turn output 111 on (high)
PATH=1,2 'begin continuous motion path

LINE=6,1 'first coordinate of the path
POINT=7,2 'second coordinate of the path
LINE=7,8
POINT=6,9
LINE=2,9
POINT=1,8
LINE=1,2
POINT=2,1

PATH END 'end of continuous motion path
OUT(111)=0 'turn output 111 off (low)
MOVEHOME=1,1 'return to home position
END

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Y

X

HOME POSITION

292 Application Examples

13.3 - Changing Velocity during motion

This program illustrates changing velocity of an axis
during a path motion and the velocity change is based on
position.

13.3.1 – Example Program

POSMODE(1,2)=1,1 ‘sets absolute position mode
SPEED(1)=10000 'set velocity to 10000 steps/sec
ACCEL(1,2)=20000,20000 'set acceleration to 20000 steps/sec2

MOVEHOME(1,2)=1,1 'go to home position
WAITDONE (1,2) 'wait until axes 1 and 2 are at home position
PATH=1,2

FEEDRATE=0.5 'set velocity to 50% its value (0.5 x 10000 steps/s = 5000 steps/sec)
LINE=10000,0 'move to 10,000 steps
FEEDRATE=1.5 'change velocity to 1.5 x 10000 steps/s = 15000 steps/sec
LINE=90000,0 'move to 90,000 steps
FEEDRATE=1 'set velocity back to 100% (10000 steps/sec)
LINE=150000,0 'move to 150,000 steps

PATH END 'stop motion
END

10,000

V
e

lo
c

it
y

 (
s

te
p

s
/s

e
c

)

15,000

0

5,000

0 1 2 3 4 5 6 7 8

Time (seconds)

Position 10,000 steps

Position 90,000 steps

Position 150,000 steps

9 10 11 12 13 14

Application Examples 293

13.4 -Glue application on a Gasket

This program generates a complex continuous motion
path for applying glue on a gasket.

An operator activates a cycle start switch (EXIN111), the
glue head returns to a home position, and an absolute po-
sition is set to zero. The glue head is moved 5" from
home to a starting position, and absolute position is set to
zero again (all path coordinates are relative to

this point). Next the glue head is lowered (EXOUT102)
and waits for .25 seconds. Then glue is applied along the
pattern, which is described by the x-y coordinates of the
lines, arcs, and paths in the Gluing Subroutine section of
the program. Finally, the glue is turned off and the glue
head is raised (EXOUT101 and 102).

Gasket Pattern:

13.4.1 –Example Program

 ‘******** Parameter Setup **************************************
RADIUS=0 'radius for path blending
VELOCITY=5 'path speed = 5in/sec
ACCEL=10,10 'acceleration rate = 10in/sec2

DECEL=10,10 ‘deceleration rate = 10in/sec2

SOFTLIMIT=0,0 'disable software limits
HARDLIMIT=1,1 'enable hard limits
POSMODE=1,1 ‘enable absolute mode

�����

���
���

���
���
���
���
���
���
���
���
���
��

���
���
���
���
���
���
���
���
���
���
���
���
���

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

-1 0 1 2 3 4 5 6 7 8 9 10 11 12

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

294 Application Examples

‘********* Main Program ***************************************
BEGIN:
DO

DO : LOOP WHILE EXIN(111)=0 'wait for cycle start input
GOSUB HOME 'go to home position
LINE= 5,5 'offset each axis to starting position (5" from home)
WAITDONE=1,1 'wait until axes 1 and 2 are in position
ABSPOS = 0,0 'reset absolute position to zero
GOSUB GLUE_PATH 'go to subroutine GLUE_PATH

LOOP UNTIL 1=2 ‘loop indefinitely

‘******** Gluing Routine ***************************************
GLUE_PATH:

EXOUT(101)=1 'head down
EXOUT(102)=1 'glue on
WAIT=.25 'wait for glue to start flowing
PATH = 1,2 ‘beginning of path

LINE = 0,8
POINT = 0.5,9
LINE =3,10
ARC = 4,10,+540
LINE = 8,9
POINT = 9,8
POINT = 8,6
LINE =8,6
FEEDRATE = 0.5 'decrease velocity to 50% = 2.5in/sec
LINE = 8,3
FEEDRATE = 1 'increase velocity back to 100% = 5in/sec
LINE =8,1
POINT = 7,0
LINE =5,0
POINT = 4.5,.5
POINT = 4,1
LINE = 3,1
POINT =2.5,.5
POINT = 2,0
LINE = 0,0

PATH END 'end of path
EXOUT(101,2)=0 'turn glue off and raise glue head

RETURN 'end of subroutine

'****** Home routine ***
HOME:

EXOUT(123,2)=0 'glue off and head up
SPEED =2,2 'home speed = 2in/sec
MOVEHOME =-1,-1 'move to home switch x & y "-" dir
WAITDONE(1,2)
ABSPOS = 0,0 'set absolute position to 0

RETURN 'end of subroutine

Application Examples 295

13.5 - Spring Winding Machine

In this application two motors must be moved simultane-
ously to wind a spring. An expansion I/O board is used to
provide the required inputs to the controller.

The sequence of events for this application is as follows:
1) A cam will actuate a switch (EXIN(101)) to start the

machine cycle

2) The wire will be fed (EXOUT(112))

3) Delay 0.1 seconds to feed enough wire out before a
clamp (EXOUT(111)), used to hold the wire in place,
is turned on.

4) Next a center form clamp (EXIN(102)), activated by
a cam, is moved into position, the winding pin
(EXOUT(113)) slides in and the wire is cut
(EXOUT(114)).

5) The wire is stopped from being fed (EXOUT(112))
then the wire clamp and the cutter is lifted up
(EXOUT(111) and EXOUT(114)).

6) The cam actuated U-bender (EXIN(103)) bends the
wire into a U shape and the spring is wound.

7) Once the spring has been wound, wire sensing probes
move in (EXOUT(115) & EXOUT(116)) and check
if it has been wound enough (EXIN(105) and
EXIN(106)). If not, the spring is wound one step and
checked again. This procedure is continued for a pre-
defined number of steps.

8) Recoil to release the spring from the arbors, retract
the wire sensing probes (EXOUT(115) &
EXOUT(116)), and slide the winding pin out
(EXOUT(113)) to drop the spring in a bin.

9) Move back to absolute zero.

10) Check whether the auxiliary feed has been depleted,
if so end the cycle, otherwise go back to the begin-
ning of program and make another spring.

296 Application Examples

13.5.1 – Example Program

‘******************** PARAMETER SETUP ****************************
WIND=145 'number of steps to wind wire
AUX=20 '# of steps for auxiliary wind
RECOIL=50 '# of steps to recoil
BOOST=1,1 'enable boost current function
ABSPOS=0,0 'set absolute position to zero

‘******************* START OF MAIN PROGRAM **********************
BEGIN:

DO : LOOP UNTIL EXIN(101)=1 'wait for switch to be activated by cam
WAIT=.1 'wait .1 sec
EXOUT(111)= 1 'turn clamp on(expansion output 111) to hold wire
WAIT=.1 'wait .1 sec
DO : LOOP UNTIL EXIN(102)=1 'wait until center form clamp is in position
EXOUT(113,2)=3 'winding pin in & cutter down
EXOUT(111,2)=0 'turn output 112 (feed) and output 111 (clamp) off
EXOUT(114)=0 'turn output 114(cutter) off
DO : LOOP UNTIL EXIN(103)=1 'wait until U-bender bends spring
MOVE=WIND,WIND 'wind spring "wind" # of steps
EXOUT(115,2)=3 'turn on probe x (out 115) & probe y (out 116)

FOR X=1 TO AUX 'go through loop A number of times
IF EXIN(105)=0 THEN 'if input 105 is off

MOVE=1 'move X-axis 1 step
A=X 'A = number of auxiliary feed steps

END IF
IF EXIN(106)=0 THEN 'if input 106 is off

MOVE=,1 'move y-axis 1 step
A=X 'A = number of auxiliary feed steps

END IF
WAIT=.1 'wait .1 sec

NEXT X

MOVE= -RECOIL,-RECOIL 'move "recoil" # of steps
EXOUT(115,2)=0 'turn output 115 (probe x) & output 116 (probe y) off
EXOUT(113)=0 'turn out 113(winding pin) off
POSMODE=1,1 'enable absolute mode
MOVE=0,0 'move to absolute zero
WAITDONE=1,1 'wait until motion stops on axes 1 and 2
POSMODE=0,0 'switch back to incremental mode

IF A=AUX THEN 'if auxiliary feed equals aux then part is bad
END 'end program

ELSE
GOTO BEGIN 'if go back to beginning and wind another spring

END IF
END

Troubleshooting Guide 297

SECTION 14
TROUBLESHOOTING

 GUIDE

298 Troubleshooting

High voltages are present inside the
unit. Always disconnect the power
before performing any work on the
unit. An electrical shock hazard exists
that may cause serious injury or death
if this unit is operated without its pro-
tective covers in place.

14.1 – Status Indicator Lights

The status indicator lights (red LED's) on the front
panel of the Controller provide an invaluable trou-
bleshooting aid.

14.1.1 - Power Led

The POWER indicator light is located on the Power
Supply Card on the Controller. When lit, it signifies
the unit's power supply is energized. Should this
light fail to come on, follow this procedure:

1) Check if the AC input power is applied; if not,
apply power to the unit.

2) Check if the AC input power is within the opera-
tional range. Refer to page 12-6 for power sup-
ply specifications.

3) Check for an open fuse. Refer to the Power
Supply specifications on page 12-6 for fuse rat-
ings. If the fuse(s) are O.K., or if they fail after
being replaced, an internal failure has occurred
→ contact Superior Electric. Do not apply
power again.

14.1.2 - Fault Led

The "FAULT" indicator light is located on the DSP
controller card. When lit, it signifies a programming
error, a processor error, or a motion error has oc-
curred.

14.1.3 - Busy Led

The "BUSY" indicator lights are located on the dual
axis card. When lit, they signify the control has
received or executed a motion command.

14.2 - Serial Communications

If you are unable to establish serial communications
between a host computer and the Controller:

1) Make sure that all hardware connections have been
made properly, cable lengths do not exceed speci-
fied limits, and that power cables are isolated from
the communications cables.

2) Make sure that a user program is not being executed
while trying to establish communications. If a pro-
gram is running, pressing Ctrl-A from the terminal
mode can stop it.

3) Make sure that the controller's baud rate matches
that of the host computer and the correct communi-
cations protocol (RS232 or RS485) is selected.
Also, ensure that the correct com port is chosen on
the host computer.

The Controller baud rate and communications protocol
is selected with the BAUD switch located on the front
panel of the DSP card. If this switch setting has to be
changed you must cycle power to the controller, since
these switches are read only at power up.

The host computer's baud rate can be selected using the
System menu items Terminal Setting- Com Port. The
serial communications format is 8 data bits, no parity,
and 1 stop bit ("8-N-1").

Verify correct Com Port selection and pin out. Place a
jumper between pins 2 & 3. Press a key on the keyboard
in terminal mode. The letter pressed is the letter that will
appear on the terminal screen.

14.3 - If You Can Not Access Axis I/O

Make sure that the polarity jumper on the Axis card is in
the appropriate setting, sink or source, depending on
your particular application. (Refer to section 5.11)

If a problem persists, contact
Motion Control Applications Engineering Depart-
ment at 1-800-SUPELEC (1-800-787-3532), between
the hours of 8:00 am and 5:00 pm EST.

14.4 – No Motion Occurring

If motion is commanded, the busy LED will illuminate
for the specified axis during motion. No motion occur-
ring indicates that the CLR to COM jumper is not in
place, drive is not ready, windings are not enabled or a
servo drive has not been tuned.

Glossary 299

SECTION 15
GLOSSARY

300 Glossary

ABSOLUTE MODE - Motion mode in which all motor
movements are specified in reference to an electrical
home position.

ABSOLUTE POSITION - A data register in the Con-
troller which keeps track of the commanded motor
position. When the value in this register is zero, the
position is designated "Electrical Home".

ACCELERATION - The rate at which the motor speed
is increased from its present speed to a higher speed
(specified in units/second/second).

ACCURACY (of step motor) - The non-cumulative
incremental error which represents step to step error in
one full motor revolution.

ALL WINDINGS OFF - Applying an average zero
motor current at standstill to alleviate motor heating or
eliminate holding torque.

AMBIENT TEMPERATURE - The temperature of the
air surrounding the motor or drive.

ASCII - (American Standard Code for Information
Interchange). A format to represent alphanumeric and
control characters as seven-or eight-bit codes for data
communications.

ATTENTION CHARACTER - <nn, where "nn" is a
unique integer from 1-99 (set by use of the unit ID#
select switches) that is assigned to a Motion Controller
arrayed in a multi-Controller system. The Attention
Character directs the program command to the specified
Motion Controller.

BASE SPEED - Starting speed for the motor (also
known as low speed).

BAUD RATE - The rate of serial data communications
expressed in binary bits per second.

BCD - (Binary Coded Decimal), a format to represent
the digits 0 through 9 as four digital signals. Systems
using thumb wheel switches may program commands
using BCD digits. A BCD digit uses a standard format to
represent the digits 0 through 9 as four digital signals.

The following table lists the BCD and complementary
BCD representation for those digits. The Motion Con-
troller uses the complementary BCD codes because the
signals are active low.

Complementary
Digit BCD Code BCD Code

0 0000 1111
1 0001 1110
2 0010 1101
3 0011 1100
4 0100 1011
5 0101 1010
6 0110 1001
7 0111 1000
8 1000 0111
9 1001 0110

To represent numbers greater than 9, cascade the BCD
states for each digit. For example, the decimal number
79 is BCD 0111:1001.

BOOST CURRENT - Increase of motor current during
acceleration and deceleration to provide higher torque,
which permits faster acceleration/deceleration times.

CLEAR - Input or Command to immediately halt all
motor motion and program execution.

COLLECTORS (OPEN) - A transistor output that takes
the signal to a low voltage level with no pull-up device;
resistive pull-ups are added to provide the high voltage
level.

CYCLE START - Command to initiate program execu-
tion.

CYCLE STOP - Command to stop program execu-
tion.

DAISY-CHAIN - A method to interface multiple Motion
Controllers via RS485 to a single host using only one
serial port.

DAMPING - A method of applying additional friction or
load to the motor in order to alleviate resonance and ring
out. Stepper motor shaft dampers are commercially
available from several sources, including Superior Elec-
tric.

DECELERATION - The rate in which the motor speed
is decreased from its present speed to a lower speed
(specified in units/second/second).

Glossary 301

DEVICE ADDRESS - A unique number used to assign
which Motion Controller in a multi-drive stepper system
is to respond to commands sent by a host computer or
terminal. Device addresses from 1 - 9 are set by means
of the ID # select switch. "0" is reserved to address all
Motion Controllers in a system. Factory default is 1.

DWELL - See "WAIT".

ELECTRICAL HOME - The motor commanded posi-
tion is zero (the Absolute Position register
is zero).

FEEDRATE - The speed or velocity (in units per sec-
ond) at which a move will occur.

FRICTION - Force that is opposite to the direction of
motion as one body moves over another.

FULL-STEP - Position resolution in which 200 pulses
corresponds to one motor revolution in a 200 step per
revolution (1.8 degree) motor.

HALF-STEP - Position resolution in which 400 pulses
corresponds to one motor revolution for a 200 step per
revolution (1.8 degree) motor.

HANDSHAKE - A computer communications technique
in which one computer's program links up with an-
other's. The Motion Controller uses a software "Xon,
Xoff" handshake method. See "XON" below.

HOST - The computer or terminal that is connected to
the HOST serial port on the motion controller, and is
responsible for primary programming and operation of
the controller.

INCREMENTAL MODE - Motion mode in which all
motor movements are specified in reference to the
present motor position.

INDEXER - A Microprocessor-based programmable
motion controller that controls move distance and
speeds; possesses intelligent interfacing and input/output
capabilities.

INDEX FROM RUN – See Mark Registration.

INERTIA - Measurement of a property of matter that a
body resists a change in speed (must be overcome
during acceleration).

INERTIAL LOAD - A "flywheel" type load affixed to
the shaft of a step motor. All rotary loads (such as gears
or pulleys) have inertia. Sometimes used as a damper to
eliminate resonance.

INSTABILITY - Also frequently called, "mid-range
instability" or "mid-range resonance," this term refers to
a resonance that occurs in the 500 - 1,500 steps/sec
range. Mid-range instability is important because it
refers to a loss of torque or a stalled motor condition at
higher stepping rates. Since step motors do not start
instantaneously above the mid-range resonance fre-
quency, an acceleration scheme will have to be used to
pass through the troublesome region.

JOG MOVE - moves the motor continuously in a
specified direction.

LOAD - This term is used several ways in this and
other manuals.

LOAD (ELECTRICAL) : The current in Amperes pass-
ing through a motor's windings.

LOAD (MECHANICAL): The mass to which motor
torque is being applied (the load being moved by the
system).

LOAD (PROGRAMMING) : Transmits a program from
one commuter to another. "DOWNLOAD" refers to
transmitting a program from a host computer (where a
program has been written) to the Motion Controller
where it will be used. "UPLOAD" refers to transmitting
a program from a Motion Controller back to the host
computer.

MARK REGISTRATION - A motion process (usually
used in web handling applications) whereby a mark
placed on the material is sensed (e.g., through the use of
an optical sensor) and, following detection of this mark,
the material is moved (indexed) a fixed length.

MECHANICAL HOME - The position where a switch
input is used as a reference to establish electrical home.

MICROSTEPPING - A sophisticated form of motor
control that allows for finer resolution than full step (200
 Pulses Per Revolution PPR) or half step (400 PPR) by
adjusting the amount of current being applied to the
motor windings. Microstepping up to 250 pulses per full
step (50,000 PPR on a 200 step/rev or 1.8 degree motor)
is supported. For 200 step per revolution motors, typical
microstepping levels are 1/10-step and 1/125 step (2000
PPR and 25,000 PPR, respectively). Note: this is a
DRIVE function.

MOVE TO MECHANICAL HOME - Function which
allows the Motion Controller to move the motor and seek

a switch to establish electrical home and set Absolute
Position = zero.

302 Glossary

NESTING - The ability of an active subroutine to call
another subroutine. The Motion Controller can nest up
to 16 levels.

NONVOLATILE MEMORY - Data storage device that
retains its contents even if power is removed. Examples
are EEPROM, flash memory, and battery-backed RAM.

OPTO-ISOLATION - The electrical separation of the
logic section from the input/output section to achieve
signal separation and to limit electrical noise. The two
systems are coupled together via a transmission of light
energy from a sender (LED) to a receiver (phototransis-
tor).

PARITY -- An error checking scheme used in serial
communications (via the RS-232 or RS-485 port) to
ensure that the data is received by a Motion Controller is
the same as the data sent by a host computer or terminal.

REDUCE CURRENT - Reduction of motor current
during standstill to alleviate motor heating.

RESOLUTION - The minimum position command that
can be executed. Specified in steps per revolution or
some equivalent.

RINGOUT - The transient oscillatory response (prior to
settling down) of a step motor about its final position.
Note: a small wait or dwell time between moves can
alleviate ringout problems.

RS232-C - EIA (Electronic Industries Association)
communication standard to interface devices employing
serial data interchanges. Single-wire connections for
transmit and receive, etc.

RS-485 - EIA (Electronic Industries Association)
communication standard to interface devices employing
serial data interchanges. Two-wire connections (differ-
ential circuits) for transmit and receive, etc. Better than
RS-232 for long wire runs and multi-drop circuits with
many devices.

SINKING - An input that responds to, or output that
produces, a "low" level (signal common or low side of
the input/output power supply) when active.

SOURCING - An input that responds to, or output that
produces, a "high" level (the voltage used for the in-
put/output power supply) when active.

SUBROUTINE - A sequence of lines that may be ac-
cessed from anywhere in a program to preclude having
to program those lines repetitively. This allows shorter,
more powerful, and more efficient programs. See also
NESTING.

TORQUE - Product of the magnitude of a force and its
force arm (radius) to produce rotational movement.
Units of measure are pound-inches, ounce-inches, new-
ton-meters, etc.

TRANSLATOR - A motion control device (also called
"translator drive") that converts input pulses to motor
phase currents to produce motion.

WAIT - A programmed delay or dwell in program
execution (specified in seconds).

XON / XOFF - A computer software "handshaking"
scheme used by a Motion Controller. The Motion Con-
troller sends an XOFF character (ASCII Code 19) when
it receives a command string with a Carriage Return and
has less than 82 characters remaining in its host serial
port buffer. The Controller sends an Xon when available
buffer space reaches 100 characters or in response to an
ID attention with adequate buffer space remaining.
Since it is impossible for the host device to immediately
cease transmissions, the next three characters (subject
to the total serial buffer capacity of forty characters)
received subsequent to the Motion Controller sending the
XOFF character will be stored in the Motion Controller's
serial buffer (a memory dedicated to store characters
that are in the process of transmission).

Similarly, the Motion Controller will not transmit data if
the host device has sent an XOFF character to the
Controller; Motion Controller transmissions will resume
when the Controller receives an XON character.

Glossary 303

ASCII Table

ASCII
Char

Dec
Code

ASCII
Char

Dec
Code

ASCII
Char

Dec
Code

ASCII
Char

Dec
Code

Null 0 Space 32 @ 64 ` 96

SOH 1 ! 33 A 65 a 97

STX 2 A 34 B 66 b 98

ETX 3 # 35 C 67 c 99

EOT 4 $ 36 D 68 d 100

ENQ 5 % 37 E 69 e 101

ACK 6 & 38 F 70 f 102

BELL 7 > 39 G 71 g 103

BS 8 (40 H 72 h 104

HT 9) 41 I 73 i 105

LF 10 * 42 J 74 j 106

VT 11 + 43 K 75 k 107

FF 12 , 44 L 76 l 108

CR 13 - 45 M 77 m 109

SO 14 . 46 N 78 n 110

SI 15 / 47 O 79 o 111

DLE 16 0 48 P 80 p 112

DC1 17 1 49 Q 81 q 113

DC2 18 2 50 R 82 r 114

DC3 19 3 51 S 83 s 115

DC4 20 4 52 T 84 t 116

NAK 21 5 53 U 85 u 117

SYNC 22 6 54 V 86 v 118

ETB 23 7 55 W 87 w 119

CAN 24 8 56 X 88 x 120

EM 25 9 57 Y 89 y 121

SUB 26 : 58 Z 90 z 122

ESC 27 ; 59 [91 { 123

FS 28 < 60 \ 92 | 124

GS 29 = 61] 93 } 125

RS 30 > 62 ^ 94 ~ 126

DEL 31 ? 63 _ 95 DEL 127

304 Glossary

This page left intentionally blank

WARRANTY AND LIMITATION OF LIABILITY

Superior Electric (the "Company"), Bristol, Connecticut, warrants to the first end user purchaser (the "purchaser") of equipment manufactured
by the Company that such equipment, if new, unused and in original unopened cartons at the time of purchase, will be free from defects in
material and workmanship under normal use and service for a period of one year from date of shipment from the Company's factory or a
warehouse of the Company in the event that the equipment is purchased from the Company or for a period of one year from the date of
shipment from the business establishment of an authorized distributor of the Company in the event that the equipment is purchased from an
authorized distributor.

THE COMPANY'S OBLIGATION UNDER THIS WARRANTY SHALL BE STRICTLY AND EXCLUSIVELY LIMITED TO REPAIRING OR
REPLACING, AT THE FACTORY OR A SERVICE CENTER OF THE COMPANY, ANY SUCH EQUIPMENT OF PARTS THEREOF WHICH
AN AUTHORIZED REPRESENTATIVE OF THE COMPANY FINDS TO BE DEFECTIVE IN MATERIAL OR WORKMANSHIP UNDER
NORMAL USE AND SERVICE WITHIN SUCH PERIOD OF ONE YEAR. THE COMPANY RESERVES THE RIGHT TO SATISFY SUCH
OBLIGATION IN FULL BE REFUNDING THE FULL PURCHASE PRICE OF ANY SUCH DEFECTIVE EQUIPMENT. This warranty does not
apply to any equipment which has been tampered with or altered in any way, which has been improperly installed or which has been subject
to misuse, neglect or accident.

THE FOREGOING WARRANTY IS IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITA-
TION, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, and of any other obligations
or liabilities on the part of the Company; and no person is authorized to assume for the Company any other liability with respect to equipment
manufactured by the Company. The Company shall have no liability with respect to equipment not of its manufacture. THE COMPANY SHALL
HAVE NO LIABILITY WHATSOEVER IN ANY EVENT FOR PAYMENT OF ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, IN-
CLUDING, WITHOUT LIMITATION, DAMAGES FOR INJURY TO ANY PERSON OR PROPERTY.

Written authorization to return any equipment or parts thereof must be obtained from the Company. The Company shall not be responsible for
any transportation charges.

IF FOR ANY REASON ANY OF THE FOREGOING PROVISIONS SHALL BE INEFFECTIVE, THE COMPANY'S LIABILITY FOR DAM-
AGES ARISING OUT OF ITS MANUFACTURE OR SALE OF EQUIPMENT, OR USE THEREOF, WHETHER SUCH LIABILITY IS BASED
ON WARRANTY, CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR OTHERWISE, SHALL NOT IN ANY EVENT EXCEED THE
FULL PURCHASE PRICE OF SUCH EQUIPMENT.

Any action against the Company based upon any liability or obligation arising hereunder or under any law applicable to the sale of equipment,
or the use thereof, must be commenced within one year after the cause of such action arises.

The right to make engineering refinements on all products is reserved. Dimensions and other details are subject to change.

Distribution Coast-To-Coast and International

Superior SLO-SYN products are available worldwide through an

extensive authorized distributor network. These distributors offer litera-

ture, technical assistance and a wide range of models off the

shelf for fastest possible delivery and service.

In addition, Superior Electric sales engineers are conveniently located to

provide prompt attention to customers' needs. Call the nearest office

listed for ordering and application information or for the address of the

closest authorized distributor.

In U.S.A. and Canada
383 Middle Street

Bristol, CT 06010

Tel: 860-585-4500

Fax: 860-589-2136

Customer Service: 1-800-787-3532

Product Application: 1-800-787-3532

Product Literature Request: 1-800-787-3532

Fax: 1-800-766-6366

Web Site: www.superiorelectric.com

Printed in U.S.A.400030-149 Rev.B

383 MIDDLE STREET • BRISTOL, CT 06010
(860) 585-4500 • FAX: (860) 589-2136

ECN# 84626

	Obsolete Documents Cover Page
	Installation manual
	430149tc.pdf
	Structured bookmarks
	Warner Electric reserves the right to make engineering refinements on all its products. Such refinements may affect inform...
	Table of Contents
	ACCEL 173
	POSMODE 200
	ACTSPD 224

	43014904.pdf
	Structured bookmarks
	Digital I/O Card
	Expansion I/O Card
	Programming Features

	43014905.pdf
	Structured bookmarks
	Section 5
	Equivalent Circuits
	Size: 5.34” X 10.63” X 7.48”
	Weight: 8.25 lbs
	Size: 9.34” X 10.63” X 7.48”
	Size: 19.0” X 10.63” X 7.54”
	Dual-Axis Interface board 222420-001
	Expansion I/O-BCD board 222642-001
	Daisy Chaining MX2000 Controllers
	Where: “B” is the board number, 1 through 4.
	Where: “B” is the board number, 1 through 4.
	
	 User
	Label
	5.15 – MX & SERVO AMPLIFIER CONNECTION DIAGRAM

	43014908.pdf
	Structured bookmarks
	Section 8
	ACTSPD(axis) commanded velocity of an axis
	8.1.1.2 - Encoder Following
	8.1.1.3 – Command & Variable
	 Following
	8.1.2 - Following Ratio
	FOLJOG(axis) = exp
	FOLJOG = exp, … , exp
	FOLJOG(axis, … , axis) = exp, … , exp
	FOLMOVE(axis) = exp
	FOLMOVE = exp, … , exp
	FOLMOVE(axis, … , axis) = exp, … , exp
	FOLMOVEREG(axis) = exp
	FOLMOVEREG = exp, … , exp
	FOLMOVEREG(axis, … , axis) = exp, … , exp
	STOP(axis)
	STOP=exp, … , exp
	STOP(axis, … , axis)
	Basic Following States
	8.1.4.1 - Following Trigger
	FOLTRIG(axis)=exp
	FOLTRIG=exp, … , exp
	FOLTRIG(axis, … , axis)=exp, … , exp
	8.1.4.2 - Follower Start Delay Distance
	FOLSTARTDIST(axis)=exp
	FOLSTARTDIST=exp, … , exp
	FOLSTARTDIST(axis, … , axis)=exp, … , exp
	8.1.4.3 - Follower Acceleration
	FOLACCDIST(axis) = exp
	FOLACCDIST = exp, … , exp
	FOLACCDIST(axis, … , axis) = exp, … , exp
	8.1.4.4 - Follower Synchronization
	The follower is considered in Synchronization when the follower velocity matches the master velocity times the following ra...
	FOLSYNC(axis) - used in an expression
	MOTIONSTATE(axis) - used in an expression
	FOLDCCDIST(axis) = exp
	FOLDCCDIST = exp, … , exp
	FOLDCCDIST(axis, … , axis) = exp, … , exp
	FOLOFFSET(axis)=exp
	FOLOFFSET=exp1, … , exp8
	FOLOFFSET (axis, … , axis)=exp, … , exp
	8.1.5.1 - Offset Wait Distance
	FOLSYNCDIST(axis) = exp
	FOLSYNCDIST = exp, … , exp
	FOLSYNCDIST (axis, … , axis) = exp, … , exp
	FOLMAXRATIO(axis) = exp
	FOLMAXRATIO = exp, … , exp
	FOLMAXRATIO (axis, … , axis)=exp, … , exp
	FOLMINRATIO(axis) = exp
	FOLMINRATIO = exp1, … , exp8
	FOLMINRATIO(axis, … , axis) = exp, … , exp
	FOLOFFSETDIST(axis) = exp
	FOLOFFSETDIST = exp, … , exp
	FOLOFFSETDIST(axis,…, axis)=exp, … , exp
	FOLOFFSET(axis) = exp
	FOLOFFSET = exp1, … , exp8
	FOLOFFSET(axis, … , axis) = exp, … , exp
	CAPTURE(axis)=exp
	CAPTURE=exp1, … , exp8
	CAPTURE(axis, … , axis)=exp, … , exp
	CAPTURE(axis) – used in an expression
	axis specifies the number of the axis.
	CAPPOS(axis) – used in an expression
	DELTACAPPOS(axis) – used in an expression
	8.1.8 - Cut to length Example
	The cutting cycle requires that the material and cutter be in synchronization when the material is being cut and that the c...
	Example: The material is to be cut in 11 units lengths. The cutting portion of the cycle will take 1 second and the materia...
	Cut to length Cycle
	Fig 1. Shows the Velocity Profile for this Fig 2. Shows the Positional Profile for this
	 application application.
	Ave Vel = -(11/10) + 1 = -.1 (-10%)
	Peak Vel = (-.1 * 2) – 1 = -1.2 (-120%)
	Max + direction distance traveled =
	(.5 * (1/(1 + .1)) * (10/4)) + 1 = +2.136 units
	FOLDCCDIST(FOLLOWER)=1 ‘ master travels 1 unit before follower stops
	JOG(MASTER)=1 ‘ start master axis
	DO : LOOP UNTIL FOLSYNC(FOLLOWER)=1 ‘wait for initial velocity synchronization
	DO : LOOP UNTIL FOLSYNC(FOLLOWER) = 1
	WAITDONE(FOLLOWER)
	WAITDONE(MASTER)
	WAITDONE(FOLLOWER)
	FOLACCDIST(FOLLOWER)=(144/360) * 2 ‘align knife with cutting surface
	FOLDCCDIST(FOLLOWER)=(144/360) * 2 ‘ align knife at 12 o’clock
	WAITDONE(FOLLOWER) ‘ wait for follower axis to stop
	WAITDONE(MASTER)
	FOLACCDIST(FOLLOWER)=(144/360) * 2 ‘ align knife with cutting surface 144(from start
	FOLDCCDIST(FOLLOWER)=(144/360) * 2 ‘ align knife at 12 o’clock
	FOLINPUT(FOLLOWER)=ACTSPD(MASTER)
	Program Example
	FOLACCDIST(FOLLOWER)=0 ‘ no acceleration distance
	FOLDCCDIST(FOLLOWER)=0 ‘ no deceleration distance
	FOLACCDIST(axis) - used in an expression
	Motion state 32 (Wait For Sync Distance)
	Motion state 64 (Offset Accel)

	43014909.pdf
	Structured bookmarks
	Servo Block Diagram
	9.1.1.1 - System folder
	This term reduces the error during motion. It should typically be set between 50% and 100%. The figures below show a respon...
	H1
	ACTION: Sets or returns the Excessive Duty Cycle Shutdown time in seconds.
	PROGRAM SYNTAX: IXT(axis) = expression
	REMARKS: The axis specifies the number of the axis (1-8).
	The default value for IXT is set each time a project is loaded or executed. Thus, adding an IXT basic command to a task is ...
	EXAMPLES: IXT(1) = 5
	WNDGS(1)=1
	IXT(1,3) = 5,6
	WNDGS(1,3)=1,1
	IXT = 5, ,6
	WNDGS(1,3)=1,1
	KAFF(axis) - used in an expression
	KAFF=.2,,0
	KAFF(1,3)=.2,0
	KP Servo Parameter
	KVFF Servo Parameter
	KVFF=98,,95
	KVFF(1,3)=98,95
	OUTLIMIT Servo Parameter
	OUTLIMIT=5,,10
	OUTLIMIT(1,3)=5,10
	STOPERR=expression1, … , expression8
	STOPERR(axis, … , axis)=expression, … , expression
	Sets the maximum position error for axis 3 to .1 units
	Sets the maximum position error for axis 1 to .1 units and axis 4 to .15 units.
	STOPERR(1,4)=.1,.15
	Sets the maximum position error for axis 1 to .1 units and axis 4 to .15 units.

	43014910.pdf
	Structured bookmarks
	Encoder resolution
	Number of correction attempts allowed
	Error action
	Testing closed loop operation
	ENCMODE Closed Loop Stepper Parameter
	STOPERR Closed Loop Stepper Parameter
	STOPERR=expression1, … , expression8
	STOPERR(axis, … , axis)=expression, … , expression
	Sets the maximum position error for axis 3 to .1 units
	Sets the maximum position error for axis 1 to .1 units and axis 4 to .15 units.
	STOPERR(1,4)=.1,.15
	Sets the maximum position error for axis 1 to .1 units and axis 4 to .15 units.

	43014911.pdf
	Structured bookmarks
	Section 11
	Data Logging
	11.1.2 - Data Transfer
	The cursors can be dragged to any horizontal position on the waveform. The elapsed time from the start of the waveform for ...

	43014912.pdf
	Structured bookmarks
	DEBUG
	12.2.2 - Breakpoint Setting/Clearing
	12.2.3 - Terminal Window
	12.2.4 - Watch variables
	12.2.5 - Exit Debug Environment

	43014913.pdf
	Structured bookmarks
	Section 13
	Application Examples
	13.1 – Using a Joystick to teach an Arbitrary shape program
	13.1.1 - MX2000 Joystick connection
	13.1.3 - Main Section
	13.1.4 - Teach section
	13.1.5 - Print program section
	LINE=2,9
	POSMODE(1,2)=1,1 ‘sets absolute position mode
	END

